Learning-Based Animation of Clothing for Virtual Try-On

Igor Santesteban, Miguel A. Otaduy, Dan Casas

Universidad Rey Juan Carlos, Madrid, Spain

20

The 40° Annual Conference of the European Association for Computer Graphics

~80% of clothing is purchased at brick-and-mortar stores

Images from Wikimedia Commons

Virtual try-on

Garment

Different bodies

Garment

Learning-Based Animation of Clothing for Virtual Try-On Igor Santesteban, Miguel A. Otaduy, Dan Casas

4

Virtual try-on

Virtual try-on Key insights

- Cloth deformations are highly nonlinear
 - Physics-based models
 - Data-driven models (e.g., neural networks)
- Clothing deformations are strongly correlated with body shape and motion
- The human body can take a wide ranges of shapes

Human model

 $\boldsymbol{\theta} \in \mathbb{R}^{69}$ (Pose coefficients) $\boldsymbol{\beta} \in \mathbb{R}^{10}$ (Shape coefficients)

SMPL [Loper et al. 2015]

Human model

Physics-based models

Cirio et al. 2015

Narain et al. 2012

Tang et al. 2018

Physics-based models

Tang et al. 2018

Narain et al. 2012

Kavan et al. 2011

Hahn et al. 2014

Wang et al. 2010

Guan et al. 2012

Hahn et al. 2014

Guan et al. 2012

DRAPE Guan et al. 2012

- Preserves the style across different body shapes
- The size of the garment changes

ClothCap Pons-Moll et al. 2017

- Uses retargeting
- The wrinkles are copied from one shape to another

DRAPE Guan et al. 2012

ClothCap Pons-Moll et al. 2017

Our method

Our method

250 fps

Our method Key ideas

- 1. Build a rich dataset of dressed character simulations
- 2. Learn deformations in pose-space
- 3. Disentangle two sources of deformation:
 - Static fit deformations (shape dependent)
 - Dynamic wrinkle deformations (shape and motion dependent)
- 4. Capture temporal dependencies

Data-generation pipeline

Data-generation pipeline

Dataset 56 sequences × 17 shapes

ARCSim [Narain et al. 2012]

Data preprocessing

Simulated mesh

Data preprocessing

Data preprocessing

Step 2: Δ_{wrinkle}

- Modelling temporal dependencies:
 - Add the output of the previous frame as input (e.g., De Aguiar et al. SIGGRAPH 2011, Casas et al. i3D 2018)
 - Recurrent neural networks (e.g., RNN, GRU, LSTM)

Postprocessing

Before

After

Qualitative evaluation

Shape generalization

Cloth simulation

Retargeting

Our method

Qualitative comparison

ClothCap (Retargeting) [Pons-Moll et al. 2017]

Our method

Qualitative comparison

ClothCap (Retargeting) [Pons-Moll et al. 2017]

Our method

Qualitative comparison

Qualitative evaluation

Pose generalization

Contributions

Clothing deformations as a function of body shape and motion

- Captures highly nonlinear effects
- Very fast clothing animations: 250 fps!

Future work

Generalize to multiple garments

Future work

Generalize to multiple garments

Collisions

Future work

Generalize to multiple garments

Collisions

Loose garments

Igor Santesteban, Miguel A. Otaduy, Dan Casas

Universidad Rey Juan Carlos, Madrid, Spain

