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Figure 1: Given a single RGB image of two-hand interaction, our method predicts a distribution of plausible 3D hand poses. We show that
samples from our method projects well into the image (top) while being diverse in 3D (bottom), which demonstrate our method’s ability to
captures the inherent ambiguity in the task.

Abstract
Reconstructing two-hand interactions from a single image is a challenging problem due to ambiguities that stem from projective
geometry and heavy occlusions. Existing methods are designed to estimate only a single pose, despite the fact that there exist
other valid reconstructions that fit the image evidence equally well. In this paper we propose to address this issue by explicitly
modeling the distribution of plausible reconstructions in a conditional normalizing flow framework. This allows us to directly
supervise the posterior distribution through a novel determinant magnitude regularization, which is key to varied 3D hand
pose samples that project well into the input image. We also demonstrate that metrics commonly used to assess reconstruction
quality are insufficient to evaluate pose predictions under such severe ambiguity. To address this, we release the first dataset
with multiple plausible annotations per image called MultiHands. The additional annotations enable us to evaluate the esti-
mated distribution using the maximum mean discrepancy metric. Through this, we demonstrate the quality of our probabilistic
reconstruction and show that explicit ambiguity modeling is better-suited for this challenging problem.

CCS Concepts
• Computing methodologies → Tracking; Computer vision; Neural networks;

1. Introduction

Reconstructing two interacting hands in 3D is an actively re-
searched topic, as it enables applications in various areas of vision

and graphics, including augmented and virtual reality, robotics, or
sign language translation. While earlier methods leverage multi-
camera setups [BTG∗12, SOT13] or depth sensors [TTT∗17,
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MDB∗19], recent works focus on using monocular RGB cameras
to enable potential applications in mobile or wearable settings.

However, hand pose estimation from monocular RGB images is
a very challenging problem. Hand interactions lead to severe oc-
clusions; and monocular color images exhibit an inherent depth
and scale ambiguity. Existing methods [WMB∗20, MYW∗20,
ZWD∗21] aim to deterministically estimate the relative depth be-
tween the two hands directly. However, this is prone to error in
heavily occluded situations due to the ill-posed nature of the prob-
lem. For example, a small error in hand scale or depth can cause
a significant difference in touch points and hence semantics of the
interaction. As a result, most methods evaluate each hand pose in-
dependently using the root-relative pose error which discards im-
portant information regarding the positioning of the hands.

Given these extreme challenges, we take a different approach and
propose to explicitly model the ambiguities instead (see Fig. 1).
Inspired by previous work on reconstruction of human body and
face [KPJD21, WRRW21, KWMF∗18, SEMFV17], we propose to
predict a distribution over likely two-hand poses. To this end, we
adopt normalizing flow [RM15] as a way to parameterize the pos-
terior distribution that enables not only fast sampling but also dif-
ferentiable likelihood estimates. This allows us to formulate a novel
loss to supervise the shape of the distribution. Our proposed regu-
larization term encourages diversity in distribution without sacri-
ficing image consistency, which is key to model the severe ambigu-
ities in our setting.

We quantitatively demonstrate that our sampled reconstructions
capture the range of plausible articulations better than existing
state-of-the-art methods. This is facilitated by our new dataset,
MultiHands, the first to provide multiple plausible annotations per
image for measuring the accuracy of distribution predictions.

In summary, our main contributions are:

• A method for reconstructing two-hand interactions that can gen-
erate diverse 3D poses which match the observed image.

• A new regularization term for training conditional normalizing
flow to encourage diversity of samples.

• The first dataset to account for pose ambiguity by providing mul-
tiple pose annotations.

Finally, we demonstrate that the estimated pose distribution can be
leveraged for unambiguous view-point selection, a downstream ap-
plication not possible with deterministic approaches.

2. Related Work

The majority of existing works investigate the reconstruction of a
single hand in free air or with a rigid object. These methods use in-
put data that ranges from multi-camera setups [BTG∗12, SOT13],
over depth sensors [SMOT15, MAE∗20], to monocular color im-
ages [MBS∗18,BBT19,HTB∗20]. However, estimating hand poses
during interaction with another hand is a significantly greater chal-
lenge due to, for example, occlusion and similarity between hands.
Thus we focus our discussion on methods tackling reconstruction
of two interacting hands.

Multiple Hands. Few existing methods reconstruct two interacting

hands in 3D. Oikonomidis et al. [OKA12] first leveraged a multi-
camera setup to mitigate some of the inherent challenges like strong
occlusions. While some recent methods still use multi-view setups
and markers [SJMS17, HLW∗18], most works have moved to em-
ploying single depth sensors for the flexibility of the capture setup
[TTT∗17, MDB∗19].

Considering a monocular color image as input, Wang et
al. [WMB∗20] and Moon et al. [MYW∗20] simultaneously de-
veloped the first two methods for 3D pose estimation of inter-
acting hands. While the former combines machine-learning-based
pixel-to-model correspondence prediction with optimization-based
model fitting, the latter uses a neural network to predict 3D
joint positions directly. Recent extensions make use of visibil-
ity [KKB21] or hand part segmentation [FSK∗21] to help the net-
work to take into account occlusion information. Others were de-
veloped to additionally estimate hand surfaces, either as a para-
metric model [ZWD∗21] or as a mesh [LAZ∗22]. These methods
have in common that they deterministically reconstruct the hand
interaction. However, during interactions, we often observe heavy
occlusions between hands or ambiguous semantics (see Fig. 1). In
contrast, our work focuses on tackling the specific challenges of
such interactions through a probabilistic approach.

Probabilistic Methods. Explicitly accounting for ambiguities in
monocular RGB images is an important problem that has re-
ceived recent attention in the field of 3D human poses estimation
and face reconstruction [ZBX∗20,KPJD21,WRRW21,KWMF∗18,
SEMFV17]. However, the only existing method for hands is de-
signed for a single hand and uses depth images as input [YK18].
Our approach is the first to address the more ambiguous case of
RGB images with challenging two-hand interactions.

Some recent probabilistic solutions for estimating 3D pose of a
single body [KPJD21, WRRW21] are also based on normalizing
flows [RM15], which can construct a complex distribution from a
simple probability density using invertible operations. In our ap-
proach, we build upon normalizing flows to address severe monoc-
ular depth ambiguities and occlusions in two interacting hands sce-
narios. To this end, we introduce a new regularization term for the
pose distribution and show that it is crucial for encouraging the
sample diversity needed to model the ambiguities.

Two-Hand Datasets. Although several datasets exist that con-
tain images of synthetic [MDB∗19, WMB∗20, LWM21] or real
[TBS∗16, SJMS17, WMB∗20, MYW∗20] images of two interact-
ing hands, they all provide only a single annotation per image.
This is insufficient for monocular RGB reconstruction since mul-
tiple plausible poses can fit the image equally well. We argue
that these plausible poses should also be considered correct, and
propose our new MultiHands dataset to extend the existing Inter-
Hand2.6M [MYW∗20] with 100 additional annotations per image.
With MultiHands, we are able to quantify the pose ambiguity in an
image, and to use a new metric for measuring the distance between
predicted and ground-truth pose distributions.

3. Method

The goal of our method is to estimate a distribution of 3D hand
poses that are plausible to explain a given monocular color image.
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Figure 2: Our HandFlowNet first extracts an image feature vector v from 2D cues in the input image. The feature vector is then used as
conditioning input to a normalizing flow network to output a distribution of 3D hand poses that plausibly explain the monocular input.

To this end, we propose HandFlowNet. Our method first extracts a
feature encoding from the input image, which we then use to gen-
erate the desired output pose distribution from a normalizing flow
network (Section 3.2). The estimated 3D hand poses are parame-
terized using the MANO hand model (Section 3.1).

3.1. Hand Model

We use the MANO hand model [RTB17] to represent the hand sur-
face as well as additional parameters for the rigid transformation.
We will first describe the parameterization of a single hand, which
is then readily expanded to two hands.

Given 15 joint rotations R ∈R15×3×3 represented as stacked ro-
tation matrices and shape parameters β ∈ R10, the MANO model
computes the hand surface as mesh and the 3D hand keypoint po-
sitions. In order to place the hand correctly relative to the camera,
we additionally estimate global rotation parameters r ∈ R3×3, the
hand root position in image coordinates t ∈ R2, and the perspec-
tive scale factor s ∈R. This enables the recovery of the global pose
when the focal length is known at inference [BBT19]. The com-
bined global and joint rotations {r,R} are parameterized using the
6 DOF representation θ ∈ R16×3×2 as proposed in [ZBJ∗19]

Therefore, the full set of parameters for a single hand is de-
fined as ψ = {θ,β, t,s} ∈ Ψ, where Ψ denotes the parameter space,
and the full set of parameters for both hands is defined as ψboth =
[ψright,ψleft]. In the following, we will refer to ψboth simply as ψ.

3.2. HandFlowNet

Given a monocular input image, our HandFlowNet regresses a dis-
tribution of 3D hand poses corresponding to plausible hand poses
that could be observed in the image (see Fig. 2). HandFlowNet can
be divided into two parts, an image feature extractor and a condi-
tional normalizing flow network that produces a 3D pose distribu-
tion and is conditioned on the extracted image feature vector.

3.2.1. Image Feature Extractor

The image feature extractor summarizes the visible, unambiguous
features that the sampled poses should reconstruct. We use ResNet-
50 [HZRS16] as the backbone architecture. From an input image
with resolution 224×224, we extract the 2048-dimensional feature
vector v∈V from the average pooling of the last residual block, and
use it as the conditional vector for the next step.

3.2.2. Normalizing Flow Network

To predict a range of plausible poses, we must first choose a way to
parameterize a distribution pY (y).

Normalizing flow [RM15] does this by learning an invertible
transformation f : Rd → Rd of a simple distribution pZ(z), i.e.

pY (y) = pZ(z)
∣∣∣∣det

∂ f (z)
∂z

∣∣∣∣−1

. (1)

where y = f (z). This invertible parameterization allows for both
differentiable sampling and likelihood estimation. As a result, we
can apply losses on each sample to improve reconstruction quality,
while supervising the entire distribution using negative log likeli-
hood loss and multiple annotations (see Section 3.2.3).

Since we want to estimate a distribution over the space of 3D
hand poses Ψ given an image feature vector v, we are inter-
ested in finding the conditional distribution pΨ|V (ψ|v). To this
end, normalizing flow can be extended to conditional normalizing
flow [WWHW19] by using transformations fv : Rd → Rd parame-
terized by v, so that we have

pΨ|V (ψ|v) = pZ|V (z|v)
∣∣∣∣det

∂ fv(z)
∂z

∣∣∣∣−1

. (2)

For our implementation, we use the conditional GLOW architecture
for fv which has been successfully used in previous work [KPJD21]
due to its quick sampling and probability estimation. For a more
detailed overview of different architectures, we refer to [KPB21].

By setting pZ|V = pZ ∼ N (0, I), the mode of the distribution
pΨ|V (ψ|v) can be obtained as fv(0). We choose this design to pro-
vide easy access to the mode sample for use in our losses.

3.2.3. Training Losses

In the following, we detail the losses used for training. The entire
loss is given by

L= Lnll +LDetMag +Lψ +LJ3D +LJ2D +Lθ . (3)

Here, Lnll and LDetMag are used to supervise the likelihood of the
annotations, and Lψ, LJ3D , LJ2D , and Lθ are used to supervise the
quality of the sampled reconstructions. For network training param-
eters and loss weights, please refer to the supplemental document.

Maximum Likelihood Estimation. Given images and their 3D an-
notation, we want to ensure that the probability of the pose annota-
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tion ψ
∗ is maximized. Hence, we minimize the negative log likeli-

hood (NLL) loss

Lnll =− ln pΨ|V (ψ
∗|v)

=− ln pZ( f−1
v (ψ∗))

∣∣∣∣det
∂ fv(z)

∂z

∣∣∣∣−1

. (4)

When multiple annotations {...,ψ∗
n} are available, the NLL loss is

minimized over all annotated poses.

Enhancing Pose Variety. We observe that training the network
using just the term Lnll quickly collapses the variety in the out-
put pose distribution. To explain this, we note that Lnll maximizes∣∣∣det ∂ fv(z)

∂z

∣∣∣−1
, which describes the compression factor between the

two spaces for density conservation. Therefore, the network can
trivially optimize the conditional distribution by concentrating the
density in the pose space, leading to the collapse in pΨ|V (ψ|v). To
prevent this, we add the regularization term

LDetMag =− ln
∣∣∣∣det

∂ fv(z)
∂z

∣∣∣∣ . (5)

Since this term aims at increasing variation in the output distribu-
tion of the normalizing flow network only, we do not backpropa-
gate it into the image feature extractor. Otherwise, the extraction
network might be hindered in learning pose-relevant features.

Mode Supervision. While Lnll encourages the probability of the
pose annotations to be maximized, we also want the mode sample
fv(0) to be a valid reconstruction. We use the loss

Lψ = || fv(0)−ψ
∗||22 . (6)

Note that Lψ is complementary to Lnll and both together form a
two-sided loss that ensures plausible pose predictions. When mul-
tiple annotations are available, a single annotation is randomly cho-
sen to act as the mode sample for the entire training procedure.

Although data with MANO parameter annotation exists, the
amount is limited compared to the amount of data with joint po-
sition annotations. To make use of all available data, we impose the
additional 3D joint position loss

LJ3D =
NJ

∑
i=1

||J (ψ)i −P3D
i ||22 , (7)

where J is a function defined by the hand model that calculates
the 3D joint positions given pose parameters ψ, and P3D are the 3D
joint position annotations.

2D Consistency. Our HandFlowNet aims to provide a distribution
of poses that all correspond to the same input image. Hence, the 2D
position of visible joints should be the same for the mode and the
samples of the distribution, and should thus match the annotation.
We employ

LJ2D =
NJ

∑
i=1

ηi ||Π(J (ψ)i)−P2D
i ||22 , (8)

where Π is the known camera projection, P2D are the 2D joint posi-
tion annotations, and ηi = 1 if the joint i is visible and 0 otherwise.
These visibility scores are computed from the meshes of MANO

pose annotations. We calculate LJ2D on the mode of the distri-
bution fv(0) and on two samples from the estimated distribution
pΨ|V (ψ|v).

Rotation Regularization. As explained in Section 3.1, we use the
continuous 6-dimensional representation for 3D rotations proposed
by Zhou et al. [ZBJ∗19]. The representation is not unique, i.e.,
there are multiple A ∈ R3×2 that represent the same 3D rotation
R ∈ SO(3). To encourage consistent output, we follow previous
work [KPJD21] and add a regularizer that constrains all rotations
in their 6-dimensional representation A to be orthonormal

Lθ = ∑
A∈θ

||A⊤A− I||2F . (9)

4. Creating Additional Annotations

While there exists a single ground-truth pose, i.e. the one that forms
a given image, recovering this exact pose from an image is am-
biguous since there are multiple plausible pose annotations. Since
our goal is to model this ambiguity with a distribution, the single
ground truth found in most datasets is not sufficient for evaluating
our predictions and more annotations are needed.

Here we describe how we obtain additional annotations from a
provided MANO ground truth.

Plausible Pose Annotations: Given the ground-truth pose param-
eters ψgt and a camera projection Π, an annotation ψannot is plausi-
ble if the hand joints fit the observed image and the overall articula-
tion is anatomically possible. To ensure this, we use the following
criteria:

• The 2D locations of visible joints should be within a pixel thresh-
old of the ground truth locations.

• Occluded joints in the original pose should remain occluded.
• The pose should be anatomically likely as measured using the

pose PCA space of the MANO model [RTB17]. A likelihood
threshold is used to eliminate extreme articulations.

• No collision between hands. Collisions are detected using Gaus-
sian proxies [MDB∗19] attached to the MANO model. Collision
occurs when the one-standard-deviation spheres of the Gaussian
proxies intersect each other.

Annotation Generation: Starting from the ground-truth pose pa-
rameters ψgt , we perturb the hand pose parameters to generate hand
pose proposals. These proposals are checked for plausibility as de-
fined in the above criteria, and implausible pose annotations are
rejected. The accepted plausible pose annotations will now serve
as new starting poses for the next iteration. This perturbation and
plausibility checking is repeated for a fixed number of iterations to
obtain the final plausible pose annotations. For additional imple-
mentation details, please refer to the supplemental document.

5. Experimental Results

We evaluate our method on existing datasets (Sec. 5.1), and discuss
the limitations of commonly used metrics in dealing with ambiguity
(Sec. 5.2 and 5.3). To deal with this ambiguity, we propose to use
an alternative metric (Sec. 5.3) to evaluate our method (Sec. 5.7,
5.6, 5.7). Finally, we show an application beyond pose estimation
to demonstrate the advantages of distribution estimation (Sec. 5.8).
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Figure 3: Our MultiHands dataset captures the ambiguities of monocular input with diverse 3D reconstructions that fit the input images.
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Figure 4: From the camera view, we show that both our samples and InterNet predictions are consistent with the input image (top row).
From a novel view (bottom rows), the diversity in our samples is apparent. This diversity allows for samples that are close to the single
InterHand2.6M ground truth, while the deterministic InterNet predictions is mislead by the ambiguity or fails under heavy occlusions.

5.1. Datasets

Here we describe each dataset and practical considerations that we
took into account to run the experiments.

InterHand2.6M Dataset [MYW∗20]. We use the 673,514 train-
ing frames labeled as interacting hands to train our method. Notice
that the terms Lnll, Lψ from Eq. 4, 6, respectively, require MANO
parameter annotations. These losses are applied to the subset of
394,599 frames where these are available.

Following the method of InterNet [MYW∗20], we use Root-
Net [MCL19] for hand detection. A 334×334 crop centered around
the provided bounding box is used for the image feature extractor.

MultiHands Dataset: Using the method described in Sec. 4, we
propose to extend InterHand2.6M with 100 additional annotations
for each of the 281,369 test and 394,599 training images with
MANO annotations. Since our losses Lnll and LDetMag can use
multiple annotations, we also use MultiHands for training. See
Fig. 3 and the supplemental document for examples of annotations.

Tzionas Dataset [TBS∗16]. To demonstrate that the learned 3D
pose distribution generalizes to other settings, we show qualitative
results on the Tzionas Dataset. This dataset has seven sequences
captured in an office environment with only 2D annotations.

Following Moon et al. [MYW∗20], we trained with mixed
batches on 90% of the annotated 2D frames, and show results on
the remaining 10%.

Method Global MPJPE↓ RRR MPJPE↓ RR* MPJPE ↓
InterNet (min) 67.2 24.5 22.6
InterNet (max) 103.6 42.2 24.6
Fan et al. (min) 65.7 27.1 20.5
Fan et al. (max) 102.1 45.9 22.5

Table 1: MPJPE of deterministic estimates can vary wildly depend-
ing on the plausible pose annotation used. For RR*, the error is
reported for occluded joints. All errors are in mm.

5.2. Pose Alignment

We use three different alignments to evaluate the mean per-joint
position error (MPJPE) in mm. All equations can be found in the
supplemental document.

Root-Relative MPJPE (RR) captures the errors in articulation,
where each hand is individually root-aligned. Right-Root-Relative
MPJPE (RRR) measures the accuracy of the two hands together,
where both hands are aligned to just the root of the right hand.
Global MPJPE (Global) captures the accuracy of the global pose
estimate, without any alignment.

Although the RR metric is most commonly reported in the lit-
erature, it evaluates the two hands independently by ignoring the
relative hand placements. Since this placement is vital for most ap-
plications, we show and focus on the RRR and Global metrics.

5.3. Problem with Traditional Metric

When the observed image is ambiguous, the choice of the target
pose can greatly impact the MPJPE even though equally valid al-

© 2022 The Author(s)
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Method Global MMD ↓ RRR MMD ↓ RR MMD ↓
Ours 0.50 0.42 0.44
VAE 0.61 0.47 0.48
Gaussian 0.82 0.51 0.46
MCDropout 0.91 0.60 0.51
InterNet 1.12 0.59 0.56
Fan et al. 1.12 0.63 0.50

Table 2: Our method best captures the true distribution of plausible
poses using the maximum mean discrepancy (MMD) [GBR∗12].

ternative exist. To quantify this effect on InterHand2.6M, we eval-
uated the InterNet [MYW∗20] and Fan et al. [FSK∗21] predictions
against the closest and farthest annotation in MultiHands ( Table 1).

For the challenging Global and RRR metrics, the choice of plau-
sible annotation accounts for a difference of 36mm and 18mm on
average. Even when each hand is evaluated independently with the
RR metric, the occluded joints differ by 2mm on average.

We argue that this sensitivity to the choice of annotation makes
MPJPE unsuitable for the highly ambiguous monocular two-hand
reconstruction task. Instead, a metric that measures the distances
between pose distributions would better reflect prediction quality.

5.4. Maximum Mean Discrepancy (MMD)

We can measure how well the estimated distribution matches
the annotation distribution using the maximum mean discrepancy
(MMD) [GBR∗12].

The empirical MMD can be estimated given sampled pose pre-
dictions, multiple pose annotations, and the selection of a kernel
function. We used 100 samples and annotations, and choose Gaus-
sian kernels for our evaluation. All reported MMD are averaged
over different kernel distance scales.

5.5. Comparison to the State of the Art

Competing methods. We implement the widely applied prob-
abilistic baselines Monte Carlo dropout (MC-dropout) [GG16],
aleatoric uncertainty (Gaussian) [KG17], and Variational Auto En-
coder (VAE) [KW14] for comparisons. The implementation de-
tails can be found in the supplemental document. As reference, we
also compare against deterministic methods [MYW∗20, FSK∗21]
by treating the estimates as a Dirac delta distribution. Given each
method, 100 poses are sampled to find the MMD to ground-truth
samples. MMD is computed for all alignment to better understand
the sources of ambiguity.

Results. Overall, our method produces estimates that best match
the ground-truth distribution (Table 2). This is especially notable
for the challenging Global and RRR MMD metric, which demon-
strates the benefits of our formulation under ambiguity. State-of-
the-art deterministic methods fail to account for ground truth vari-
ability (Fig. 4). As a result, they have one of the worst MMD.

For reference, a comprehensive evaluation of our method using
the single provided InterHand2.6M annotation can be found in the

Method Global MMD ↓ RRR MMD ↓ RR MMD ↓
Ours 0.50 0.42 0.44
w/o MultiHands 0.53 0.44 0.46
w/o LDetMag 0.72 0.49 0.46
w/o LJ3D 0.65 0.62 0.52
w/o LJ2D 0.74 0.74 0.46
w/o Lψ 0.55 0.42 0.45
w/o Lθ 0.61 0.46 0.45

Table 3: All losses and annotations are needed for the best results.

supplemental document. There, we show that our best sample out-
performs the state-of-the-art methods while still remaining compet-
itive as a single pose estimator.

5.6. Ablation Study

We show in Table 3 that every loss helps to make our samples match
the ground-truth distribution. In particular, our proposed determi-
nant magnitude regularization LDetMag is vital for increasing the
diversity of 3D samples. The mean standard deviation of the joint
positions is improved from 18 to 31 mm while lowering the MMD.
Lastly, we observe that using multiple annotations from Multi-
Hands in the Lnll and LDetMag terms further improves the MMD,
which demonstrate the advantage of the differentiable likelihood
estimation in the normalizing flow formulation.

5.7. More Qualitative Results

In Fig. 5, we show qualitative results to demonstrate the diver-
sity and accuracy of our learned pose distribution. Specifically, we
show pose samples visualized as superimposed transparent kine-
matic skeletons. Note that pose variations well reflect the expected
monocular ambiguity, and occlusions further increase variability.
Hence, the standard deviation of our samples can serve as an indi-
cator for the ambiguity in the input image and thus uncertainty in
the pose prediction. See supplemental video for more results.

5.8. Application: View Selection

By using the sample standard deviations to estimate pose ambigu-
ity, we can identify camera views that provide the most information
for a given motion sequence. This information can be useful, for ex-
ample, in a multi-view capture setup where uninformative cameras
can be removed to reduce the hardware and data bandwidth require-
ments. We demonstrate this on the InterHand2.6M test set with over
100 images in the sequence. This consists of the 7 sequences in
Capture0-1 with interacting hands, each with 140 camera views.

The view quality is evaluated using regret [BF85] in MPJPE: the
difference between the MPJPE on the selected view and the low-
est MPJPE. The best and worst views selected by our method have
a regret of 3.1 and 15.9 mm respectively, while the average regret
over the cameras is 10.7 mm. This shows that our method is able
to eliminate cameras with ambiguous views where the monocular
pose estimator is not expected to perform well, while keeping cam-
eras views where the estimator is likely to succeed.

© 2022 The Author(s)
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Input Camera View Side View Input Camera View Side View

Figure 5: Here we show 30 pose samples superimposed as semi-transparent skeletons. Samples are aligned to the root joint of one hand and
the mode of the distribution is made opaque for ease of visualization. The samples are consistent in the camera view, while showing larger
variations in novel views. Examples are from the InterHand2.6M dataset (left) and the Tzionas dataset (right), where we transferred learned
3D ambiguity modeling using only 2D annotations.
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Figure 6: Each column shows the least (Best Mono) and most am-
biguous views (Worst Mono) selected; note the sever occlusions
in the worst view. Likewise, the Best Stereo pair disambiguate the
pose, while the Worst stereo pair has similar views.

We can extend view selection to stereo camera pairs by com-
bining two monocular pose distributions. By assuming conditional
independence, we can approximating the pose samples from each
view with normal distributions and combine them by taking their
product. See Fig. 6 and supplemental video for a qualitative evalu-
ation of the selected views.

6. Limitations and Future Work

Although we demonstrated promising results, there are some limi-
tations that could be addressed in future work.

Currently, we do not penalize physically implausible in-
tersections in our reconstructions. As demonstrated in related
work [WMB∗20, HVT∗19], an explicit loss to prevent these inter-
sections could be used to improve the results.

Although we showed promising generalization results on the
Tzionas dataset, we did not tackle completely unconstrained in-the-
wild images. We believe that in the future this can be solved with
more data, especially 2D annotations for in-the-wild data.

While our experiments verified the need for probabilistic pose
estimates in ambiguous scenarios, many applications can only
make use of a single pose prediction. Future work could investi-
gate ways to integrate additional observations (e.g., temporal in-
formation, multi-view images, depth images, task-based priors) to
disambiguate the output distribution for a given down-stream task.

7. Conclusion

We have presented the first two-hand reconstruction approach to
explicitly model the inherent ambiguities that arise from using a
single monocular input image. Given this challenging setting, our
method produce a distribution of plausible reconstructions, from
which diverse 3D pose samples can be drawn that all explain the
observed image evidence. Additionally, we showed that existing
evaluation schemes are problematic as they assume a single correct
pose even though multiple solutions are equally valid. Along with
our proposed dataset with multiple annotations and the distribution
metric, we hope our work demonstrates the need for probabilistic
approaches and provides a way to evaluate them.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.
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