
RGB2Hands: Real-Time Tracking of 3D Hand Interactions from

Monocular RGB Video

JIAYI WANG and FRANZISKA MUELLER,MPI Informatics, Saarland Informatics Campus

FLORIAN BERNARD,MPI Informatics, Saarland Informatics Campus, Technical University of Munich

SUZANNE SORLI, Universidad Rey Juan Carlos

OLEKSANDR SOTNYCHENKO and NENG QIAN,MPI Informatics, Saarland Informatics Campus

MIGUEL A. OTADUY and DAN CASAS, Universidad Rey Juan Carlos

CHRISTIAN THEOBALT,MPI Informatics, Saarland Informatics Campus

VR View

3D View

Fig. 1. Our RGB2Hands approach tracks and reconstructs the 3D pose and shape of two interacting hands in real time based on a single RGB camera (right).

We obtain global 3D pose and shape (bottom left), which can be used to visualize interacting hands in VR (upper left), among many other applications.

Tracking and reconstructing the 3D pose and geometry of two hands in
interaction is a challenging problem that has a high relevance for several
human-computer interaction applications, including AR/VR, robotics, or
sign language recognition. Existing works are either limited to simpler track-
ing settings (e.g., considering only a single hand or two spatially separated
hands), or rely on less ubiquitous sensors, such as depth cameras. In contrast,
in this work we present the first real-time method for motion capture of
skeletal pose and 3D surface geometry of hands from a single RGB camera
that explicitly considers close interactions. In order to address the inherent
depth ambiguities in RGB data, we propose a novel multi-task CNN that
regresses multiple complementary pieces of information, including segmen-
tation, dense matchings to a 3D hand model, and 2D keypoint positions,
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together with newly proposed intra-hand relative depth and inter-hand dis-
tance maps. These predictions are subsequently used in a generative model
fitting framework in order to estimate pose and shape parameters of a 3D
hand model for both hands. We experimentally verify the individual compo-
nents of our RGB two-hand tracking and 3D reconstruction pipeline through
an extensive ablation study. Moreover, we demonstrate that our approach
offers previously unseen two-hand tracking performance from RGB, and
quantitatively and qualitatively outperforms existing RGB-based methods
that were not explicitly designed for two-hand interactions. Moreover, our
method even performs on-par with depth-based real-time methods.
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1 INTRODUCTION

Marker-less 3D hand motion capture is a challenging and impor-
tant problem. With the abundance of smart and mobile devices,
interaction paradigms with computers are changing rapidly and
moving farther away from the traditional desktop setting. With the
recent progress on virtual and augmented reality (VR/AR), hand
pose estimation has gained further attention as direct, natural, and
immersive way to interact. The numerous opportunities for appli-
cation also include robotics, activity recognition, or sign language
recognition and translation. Hence, hand pose estimation has been
an actively researched topic for years. Depending on the application,
several properties are desirable for the method, e.g., marker-less cap-
ture, real time performance, capabilities for tracking two interacting
hands, automatically adapting to the users’ hand shape, or the use
of a single RGB camera. However, due to a range of challenges, such
as frequent occlusion, depth-scale ambiguity, and self-similarity of
hand parts, achieving all of these properties is a difficult task.

To ease the problem, many previous works on 3D hand pose esti-
mation use special depth cameras providing partial 3D information.
Nevertheless, many of them focused on tracking a single isolated
hand [Yuan et al. 2018], with only a few exceptions that are able to
handle object interactions [Panteleris et al. 2015; Sridhar et al. 2016;
Tzionas and Gall 2015] or interactions with a second hand [Mueller
et al. 2019; Taylor et al. 2016, 2017]. In recent years, the research
focus has shifted towards methods that use a single RGB camera
since these sensors are ubiquitous [Cai et al. 2018; Mueller et al.
2018; Zimmermann et al. 2019]. Despite tremendous progress, to
date there is no method explicitly designed for and capable of re-
constructing close two-hand interactions from single RGB input.
However, humans naturally use both of their hands for interaction
with real and virtual surroundings, and for gesturing and communi-
cation. Therefore, many applications require hand pose estimation
of both hands in close interaction simultaneously.
To this end, we present the first method for marker-less cap-

ture of 3D hand motion and shape from monocular RGB input that
successfully handles two closely interacting hands. Our real-time
approach automatically adapts to the user’s hand shape, and reli-
ably captures collision-resolved poses also under difficult occlusions.
Since color images carry no explicit 3D information, we also have
to cope with scale and depth ambiguities. A proper handling of
these ambiguities, which are inherent to monocular RGB data, is
particularly important in the two-hand case, since mismatches in
per-hand depth estimates would lead to incorrectly captured inter-
actions in 3D. Hence, our setting with a monocular RGB camera
is significantly more challenging compared to previous works that
make use of depth data, such as [Mueller et al. 2019; Tzionas et al.
2016]. To achieve our goal, and thus overcome the challenges and
ambiguities of monocular RGB data, we propose a novel multi-task
CNN which regresses multiple variables simultaneously: per-pixel
left/right hand segmentation masks, dense vertex matchings to a
parametric hand model, intra-hand relative depth maps, inter-hand
distance, as well as occlusion-robust 2D keypoint positions. Our
regression targets are designed to explicitly consider the challenges
of monocular two-hand reconstruction like strong occlusions and

ambiguous relative 3D placement of the hands. We use these predic-
tions in a generative model fitting framework to robustly estimate
for both hands the pose and shape parameters of a 3D hand model.
For training our multi-task network we combine real and syn-

thetic data from different sources to bridge the domain gap. Since
none of the publicly available datasets are sufficient for our pur-
poses, in addition we create our own dataset comprising both real
and synthetic images. To obtain real data with (possibly noisy) an-
notations, we use the depth-based CNN from Mueller et al. [2019]
and an RGB-D sensor. To obtain perfectly annotated synthetic data,
we develop the first system simulating physically correct two-hand
interactions with personalized hand shape, based on the parametric
MANO hand model [Romero et al. 2017], and diverse appearances.
We experimentally show that our proposed mixed-data training set
in conjunction with the multi-task CNN is crucial for a successful
optimization of the hand model parameters on monocular RGB im-
ages. Our extensive evaluation, in both 2D and 3D, is enabled by
our new benchmark dataset RGB2Hands that contains significantly
stronger hand interactions compared to previous benchmarks.

In summary, we propose the first monocular-RGB-based method
for 3D motion capture of two strongly interacting hands, which
simultaneously estimates hand pose and shape, while running in real
time. The technical contributions in order to achieve this include:

• A generative model fitting formulation that is specifically tai-
lored towards fitting parametric 3D hand models of two inter-
acting hands to an RGB image, while taking inherent depth
ambiguities and occlusions into account. To this end, we ex-
tract information from the input image based on a machine
learning pipeline, which is then used as fitting target.

• We propose an alternative image-based representation of 3D

geometry information, namely intra-hand relative depth, and
inter-hand distance, which can be extracted directly from
RGB images using our novel multi-task CNN and is scalable
to dense hand surfaces. In combination with 2D keypoint pre-
dictions, and an image-to-hand-model matching prediction,
this allows to effectively fit the parametric model.

• To train our machine learning predictors, we use synthetic
data to complement a real dataset that has possibly noisy
annotations. For the former, we introduce a physically-correct
synthetic data generation framework, which is able to account
for interacting hands with varying hand identities, both in
terms of shape and appearance.

• For performance evaluation we introduce a new benchmark
dataset RGB2Hands of real two-hand image sequences that
comes with manual keypoint annotations of position and
occlusion state. Synchronously recorded depth data enables
3D evaluation.

2 RELATED WORK

Marker-less 3D hand pose estimation has been an actively researched
problem for decades, which can be explained by the fact that it
enables many important applications, e. g. in human–computer in-
teraction, activity recognition, or robotics. In our review of related
work we focus on methods using a single depth or RGB camera that
are most related to our approach.
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Depth-Based Methods. The majority of previous work on 3D hand
pose estimation with a single camera has used depth data [Yuan
et al. 2018]. These approaches can generally be classified as gen-
erative, discriminative, or hybrid approaches. Generative methods
use a parametric generative hand model and compare current pose
hypotheses to the observed image [Melax et al. 2013; Tagliasacchi
et al. 2015; Tkach et al. 2016]. The parameters of the hand model are
commonly found by minimizing an energy function which describes
the discrepancy between the current pose and the observation, com-
monly in conjunction with suitable priors to serve es regularization.
The employed optimization strategies require a good initialization,
so that oftentimes tracking failures occur when there is large inter-
frame motion. With an increasing popularity of machine learning
techniques in computer vision, researchers started to investigate hy-
brid methods. These approaches add a discriminative component to
a generative method to improve the overall robustness, e. g. through
regression of finger-part labels [Sridhar et al. 2015] or partial pose
[Tang et al. 2015]. Especially due to the success of neural networks
and deep learning, most of the recent work has focused on purely dis-
criminative methods for 3D hand pose estimation. These approaches
are generally based on regressing joint locations from depth data
[Baek et al. 2018; Chen et al. 2019; Ge et al. 2018; Li and Lee 2019;
Oberweger et al. 2015; Tompson et al. 2014; Wan et al. 2017]. Most
of these approaches are single-frame methods and therefore inde-
pendent of an initialization (in contrast to the mentioned generative
methods), however, they are dependent on the training data, which
are not trivial to obtain, and independent per-frame estimates may
exhibit temporal noise on sequences. The majority of depth-based
hand pose estimation methods are limited to tracking or recon-
structing a single hand in free space, and only few approaches have
tackled the harder problems of estimating hands and objects, or two
interacting hands. The methods by [Mueller et al. 2017; Rogez et al.
2014] work for a strongly occluded hand in cluttered scenes with
arbitrary objects. Other methods, like [Sridhar et al. 2016; Tzionas
et al. 2016], jointly reconstruct hand and object motion, and are thus
able to exploit mutual constraints like physically stable grasps. Pose
estimation methods for two hands often have a trade-off between
real-time runtime [Taylor et al. 2017] and accurate collision resolu-
tion [Kyriazis and Argyros 2014; Oikonomidis et al. 2012; Tzionas
et al. 2016]. The most recent method by [Mueller et al. 2019] runs
in real time while providing coarse interpenetration avoidance. All
methods discussed in this paragraph have the shortcoming that they
rely on specialized camera hardware. In contrast, we address the
much more difficult setting of using only more common RGB data,
as will be addressed in the next paragraph.

RGB-Based Methods. Due to the ubiquity of RGB cameras, re-
search on 3D hand pose estimation has shifted towards monocular
RGB methods. Earlier approaches [Simon et al. 2017] estimate 2D
hand pose from a single RGB image but require multi-view RGB
for 3D pose. More recent methods are able to estimate normalized
3D pose [Cai et al. 2018; Spurr et al. 2018; Yang et al. 2019; Zimmer-
mann and Brox 2017] or even global 3D pose with respect to the
camera [Iqbal et al. 2018; Mueller et al. 2018; Panteleris et al. 2018].
The approach by Ge et al. [2019] estimates a full 3D hand mesh
directly. With the increasing popularity of the MANO hand model

[Romero et al. 2017] several methods that regress both shape and
pose parameters have been proposed [Baek et al. 2019; Boukhayma
et al. 2019; Zhang et al. 2019]. Zimmermann et al. [2019] recently
built an extensive dataset of RGB images with fitted MANO models.
However, all the aforementioned monocular-RGB methods only
work for a single isolated hand.

Alternatively, a few existing methods track the full 3D body from
RGB-only input, including the two articulated hands, by fitting a
parametric human model [Pavlakos et al. 2019; Xiang et al. 2019].
Despite the impressive results, they often fail in close hand-to-hand
interaction since they have not been explicitly designed for this
setting. Two-hand tracking has also been attempted by performing
per-hand tracking based on tight crops around each hand, e.g., by
Panteleris et al. [2018]. Similarly to the full body methods, this
strategy performs poorly in close two-hand interaction. There are
few methods [Hasson et al. 2019; Tekin et al. 2019] that jointly
reconstruct the pose of a single hand and a manipulated object, but
to the best of our knowledge there is no method that reconstructs
very close two-hand interactions from monocular RGB images.

In this work we fill this gap and propose the first method to jointly
estimate global 3D hand pose and shape of two strongly interacting
hands from monocular RGB video. In addition, our approach runs
in real time and resolves collisions for fast and physically accurate
results.

3 OVERVIEW

We present an overview of our approach in Figure 2. Given a monoc-
ular RGB image that depicts a two-hand interaction scenario, our
goal is to recover the global 3D pose and 3D surface geometry by
fitting a parametric hand model to both hands in the input image, as
described in Sec. 4. Such a model-fitting task requires information
extracted from the input image to be used as a fitting target, which
however represents a major challenge when using monocular RGB
data only. Previous methods that rely on depth data [Mueller et al.
2019; Taylor et al. 2017] are implicitly provided with a much richer
input (i.e., global depth), which is the fundamental ingredient for
an accurate 3D pose and shape fit. Per-pixel estimation of correct
3D hand depth from a single RGB image is very challenging.

Note that, in particular in the two-hand case, inconsistent depth
estimates per hand would lead to incorrectly captured interactions
in 3D. Thus, the method and the scene representation need to be
able to handle these ambiguities well. Therefore, in Sec. 5, we design
an alternative representation of dense 3D geometry information,
tailored for a two-hand scenario, which is amenable to be directly
extracted from RGB images based on a machine learning pipeline.
This is in contrast to existing representations which are limited to
sparse (i.e., per-hand and/or per-joint) information and cannot be
extended to dense geometry in a scalable way, such as joint heatmaps
[Mueller et al. 2018; Panteleris et al. 2018; Zimmermann and Brox
2017] or part orientation fields [Xiang et al. 2019]. To this end, we
opt to regress inter-hand distance and intra-hand depth maps, in
combination with robust 2D keypoints. This design choice explicitly
provides sufficient information to resolve depth ambiguities in our
model-fitting step. Furthermore, we also regress dense per-pixel
surface matchings to the parametric hand model directly from input
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Fig. 2. Illustration of our RGB2Hands approach. The RGB input image is processed by neural predictors that estimate segmentation, dense matching,

intra-hand relative depth, inter-hand distances, as well as 2D keypoints. This is then used within our two-hand tracking energy minimization framework. The

output are pose and shape parameters of the 3D MANO model [Romero et al. 2017] of both hands, which directly give rise to a bimanual 3D reconstruction.

images. This step is designed to be robust against the significant
skin tone and illumination variability in RGB images.
Finally, we describe the training data that we used to train our

machine learning components in Sec. 6, where we also introduce a
novel methodology to generate photorealistic and physically accu-
rate synthetic data of sequences with interacting hand motions. To
this end, we employ a motion capture-driven physics-based simula-
tion to generate physically-correct sequences of hands with varying
identities (skin tone and shape).

4 TWO-HAND TRACKING FRAMEWORK

Our hand representation builds on the parametric surface hand
model MANO proposed by Romero et al. [2017], which we summa-
rize below. Subsequently, we will derive our model-based fitting
framework.

4.1 Parametric Pose and Shape Model

MANO was built from more than 1,000 scans of 30 subjects perform-
ing a large variety of poses, and consequently the model is capable
of reproducing hand shape variability and surface deformations of
articulated hands with high detail. Specifically, for a single hand,
MANO outputs a set of 3D vertex positions X of an articulated 3D
hand mesh, i.e.,

X(β,θ ) =W (T (β,θ ), J (β),W) , (1)

where β ∈ R10 and θ ∈ R51 are the shape and pose parameters with
the latter consisting of 45 articulation parameters and 6 global rota-
tion and translation parameters. T (·) is a parametric hand template
in rest pose with pose-dependent corrections to reduce skinning
artifacts, J (·) computes the 3D position of the hand joints, andW is
a matrix of rigging weights used by the skinning functionW (based
on linear blend skinning). See [Romero et al. 2017] for further details.

As we are targeting a two-hand scenario, we use two sets of shape
and pose parameters (βh,θh ),h ∈ {left, right}, for the left and right
hand respectively. To simplify the notation, we stack the parameters
of both hands as β = (βleft, βright) ∈ R

20 and θ = (θleft,θright) ∈

R102, and define the unique set of vertices X = (Xleft,Xright), where
we may omit the dependence of X on β and θ for brevity.

4.2 Overview of Model-Based Fitting Formulation

In order to track two interacting hands in an image sequence we
use the parametric MANO model within an energy minimization
framework. To this end we introduce the fitting energy f (β,θ ) as

f (β,θ ) = Φ(β,θ ) + Ω(β,θ ) , (2)

where Φ(·) is the image fitting term that accounts for fitting the
model to the observed RGB image, and Ω(·) is the regularizer that
has the purpose of obtaining a plausible and well-behaved tracking
result. By minimizing the fitting energy f we jointly estimate the
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pose and shape parameters θ ∈ R102, β ∈ R20 (of both hands) for
each frame of the image sequence.

4.3 Image-fitting Term

Due to the 2D nature of RGB images and the so-resulting depth
ambiguities, as well as the additional level of difficulty caused by
interactions between the left and right hand, our novel image-fitting
term Φ is designed carefully in order to allow for a reliable fit of the
parametric handmodel. In particular it uses specific information that
our multi-task CNN (see Sec. 5) extracts from 2D images that enables
us to estimate the correct and coherent 3D pose of both hands
in interaction, and minimizes the risk of implausible interaction
capture due to ambiguous 3D pose estimates of each individual
hand. We propose to combine five components, where we use

(1) the dense 2D fitting term Φdense,
(2) the silhouette term Φsil,
(3) the 2D keypoint term Φkey,
(4) the intra-hand relative depth term Φintra, and
(5) the inter-hand distance term Φinter.

We emphasize that existing methods that are capable of tracking two
hands in interaction avoid 3D pose ambiguities by heavily relying
on depth-based input data that is used in their image-fitting term,
which, however severely simplifies the problem. In contrast, our
energy termsΦdense,Φintra,Φinter have the purpose of compensating
the lack of available depth information and enable 3D consistent two-
hand reconstructions by using a strong neural prior that extracts
suitable information from RGB images only.

With that, the complete image fitting term that accounts for the
model-to-image fitting reads

Φ(β,θ ) = Φdense + Φsil + Φkey + Φintra + Φinter , (3)

where we have omitted the explicit dependence on (β,θ ) of the
individual terms for the sake of readability.
We assume known camera intrinsics and define Π : R3 → Γ to

be the projection from camera space onto the image plane. When
this is not available, plausible intrinsics can be provided to obtain
results accurate up to a scale.
One crucial part for defining the image fitting term is the dense

matching map ψ : X → Γ, which predicts for each vertex x ∈ X the
corresponding pixel position (u,v) ∈ Γ in the input image. For the
time being we will assume thatψ is known, and later in Sec. 5 we
will explain how we obtain it. In the following, when we sum over
vertices in the setX, we only consider those vertices that are visible,
where a vertex x is considered to be visible wheneverψ (x) , ∅.

We will now explain the individual components in depth.

Dense 2D Fitting: Since an RGB image does not contain explicit 3D
information, the actual depth of a model vertex is unknown. Hence,
we penalize the 2D image-plane distance between a projected visible
vertex Π(x) and its corresponding pixelψ (x). We define the dense
2D fitting term as

Φdense(β,θ ) = λd
∑
x ∈X

∥Π(x) −ψ (x)∥22 , (4)

where λd is the relative weight of this term.

Silhouettes: Since the dense matching map might not be per-
fectly precise for neighboring vertices and pixels, we introduce
an occlusion-aware silhouette term to improve the projection error
of the estimated hand models in the input image. Similar to pre-
vious work [Habermann et al. 2019], we define a set of boundary
vertices Xb and penalize their distance from the silhouette edges in
the input image. We determine the set of boundary vertices based
on the current pose and shape estimate in every iteration of the
optimization. We choose all hand model vertices that lie close to
model-to-background edges in the projected view. To efficiently
represent the distance to the silhouette edges without explicit corre-
spondences, a Euclidean distance transform representation is used.
Since we need to distinguish the right and left hand, we create two
distance transform images DTright and DTleft, one for each hand
respectively. To this end, we make use of the predicted segmenta-
tion mask S (see Section 5.1) to extract silhouette edges per hand.
Since we specifically target close two-hand interactions, the seg-
mentation mask does not only contain silhouette edges but also
occlusion boundaries (i.e., hand-hand boundaries). Without proper
handling, vertices that are occluded by the other hand would be
drawn towards the occlusion boundary, which in turn would en-
courage shrinking of the occluded hand. Thus, we set the distance
transform image for each hand to 0 at all pixels that are predicted to
belong to the other hand (see Fig. 3). With that, boundary vertices
that project onto the other hand in the input image are not pulled
towards the occlusion boundary, which would produce an undesir-
able distortion effect, leading to a grasping pose, everytime a hand
is occluded. Mathematically, our occlusion-aware silhouette term is
formulated as

Φsil(β,θ ) = λsil
∑

xb ∈Xb

(
DTh(xb )(Π(xb ))

)2
, (5)

where h(xb ) gives the handedness of boundary vertex xb . Note that
we use an additional normal-based weight for each summand as
introduced by Habermann et al. [2019]. Please refer to this paper
for further details.

2D keypoints: Since the dense 2D fitting only constrains visible
parts of the hand model, we add an occlusion-robust 2D keypoint
term. We penalize the discrepancy between corresponding keypoint
predictions on the RGB image and the hand model projected to the
image plane. Our keypoint detection is designed to also be available
under occlusion, increasing the robustness to strong occlusions that
frequently occur in the two-hand scenario. For each hand we use
the center of the wrist and the 5 fingertip positions as keypoints,
leading to a total number of 12 keypoints across both hands. We
use x j ∈ R3 to denote the 3D position of the j-th keypoint of the
hand model. Similarly, by Qkey(j) ∈ Γ we denote the pixel position
of the j-th keypoint in the image, which is obtained based on the
keypoint predictor Qkey that we will define in Sec. 5. Let J be the
set of detected keypoints, which may have less than 12 elements
whenever some keypoints do not meet the confidence threshold
(see Section 5.1). With that, our 2D keypoint term reads

Φkey(β,θ ) = λkey
∑
j ∈J

∥Π(x j ) − Qkey(j)∥
2
2 . (6)
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Fig. 3. Visualization of loд(DT
left
+1) with (top left) and without (top right)

occlusion handling. The reconstructed hand without occlusion handling

(bottom right) incorrectly articulates to explain an occlusion boundary, while

our proposed method (bottom left) correctly handles the occlusion.

Intra-hand relative depth: In order to address depth ambiguities
within estimated 3D pose and shape of each individual hand (cf. the
Bas-Relief Ambiguity [Belhumeur et al. 1999]), we introduce the
intra-hand relative depth term that penalizes the differences between
per-hand root-relative depth values of the 3D hand model and per-
hand relative depth predictions obtained from the RGB image. To
this end, we compare the estimated distance along the camera di-
rection (which we refer to as z-direction) from the hand root joint in
the model to an analogous output of a machine learning predictor
(Sec. 5) that serves as relative depth prior conditioned on the RGB
image. Let the function root(x) compute the 3D position of the root
joint of the hand to which the vertex x belongs to, and let (·)z de-
note the extraction of the z-component of a 3D vector. Moreover,
by Qintra(u,v) we denote the relative depth that was predicted by a
neural network in the image at the pixel (u,v). With that, we define
the intra-hand relative depth term Φintra as

Φintra(β,θ ) = λintra
∑
x ∈X

(Qintra(ψ (x)) − (xz − root(x)z ))2 . (7)

Inter-hand distance: In addition to the intra-hand relative depth,
we also take the inter-hand distance into account, where we compare
the estimated distance between the root of both hands to the output
of a trained learning system predicting the same conditioned on the
RGB image. Note that this term is crucial to obtain correct relative
placement of the two hands in 3D from monocular RGB data. Let
rooth,h ∈ {left, right} be the 3D position of the root joint of a hand
and let qinter denote the relative distance of the left hand from the
right hand as predicted by a neural network. With that, we define
the inter-hand distance term as

Φinter(β,θ ) = λinter
(
(rootleft)z − (rootright)z − qinter

)2
. (8)

4.4 Hand Model and Tracking Regularization

In order to enable a plausible and realistic tracking, we define a
regularizer Ω(β,θ ) that combines different terms to account for an
appropriate regularization of the parametric hand model:

Ω(β,θ ) = Ω0(β,θ ) + Ωoverlap(β,θ ) + Ωscale(β) . (9)

Belowwe first summarize the structural regularizers Ω0 and Ωoverlap,
which are a well-established terms in hand tracking and reconstruc-
tion settings. We refer the interested reader to previous works for
a more detailed description, such as [Mueller et al. 2019; Romero
et al. 2017; Tagliasacchi et al. 2015; Tan et al. 2016]. Subsequently,
we introduce the new (optional) hand scale prior Ωscale, which we
designed in order to address the scale ambiguity that arises specifi-
cally when performing 3D reconstruction in monocular RGB data.
If this prior is provided, our method is able to obtain metric 3D pose
and shape reconstruction results.

Structural Regularization: We impose Tikhonov regularization
upon the shape parameter β , which accounts for it following a multi-
variate standard normal distribution. Similarly, we use a thresholded
version thereof for the pose paraemter θ , so that poses close to the
mean pose are not penalized. Furthermore, we impose a temporal
regularization that penalizes the difference between the parameters
at the current and the previous frame. Moreover, in order to ensure
that the shapes of the left and right hand are similar, we penalize
discrepancies between the hand shapes. We write these structural
regularizers in terms of the squared ℓ2-norm summarily as

Ω0(β,θ ) =



λββ
λθ 1>tθ (θ )
λτ (β ′ − β)
λτ (θ ′ − θ )

λsym(βleft − βright)


2
2 , (10)

where 1>tθ (θ ) is a function yielding θ if | |θ | |2 > tθ , and 0 otherwise.
The variables β ′ and θ ′ denote the shape and pose parameters from
the previous frame, and λ• are the respective weights.

For avoiding collisions between the two hands, as well as within
each hand, we penalize mesh overlaps as approximated with 3D
Gaussians that are attached to the parametric hand model. The
position and size of the Gaussians change according to the shape
and pose parameters (β,θ ) [Mueller et al. 2019]. For Ni (z |β,θ )
denoting the i-th 3D Gaussian evaluated at the position z ∈ R3, we
compute the overlap between all pairs (i, j) of Gaussians as

Ωoverlap(β,θ ) = λN
∑
i , j

( ∫
R3

Ni (z |β,θ ) · Nj (z |β,θ )dz
)2
. (11)

Hand Scale Prior: Since reconstruction from monocular RGB data
is inherently ambiguous up to a single scalar factor, we give the
option to provide a single metric measurement of the user’s hand in
order to produce metric results. We choose this measurement to be
the length of the palm, defined as the distance between the middle
finger metacarpophalangeal joint (MCP) and the wrist. If the user
does not provide this measurement, we assume the palm length
is given by the mean shape of the MANO model, i.e., for β = 0.
We formulate the hand scale prior to penalize deviations from the
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pre-defined palm length α as

Ωscale(β) = λs
∑

h∈{left,right}
(palmlength (βh ) − α)2 , (12)

where the function palmlength(·) computes the length of the palm
of the hand model given a set of shape parameters.

4.5 Numerical Optimization

For the numerical optimization of the fitting energy f in (2) we use
a Levenberg-Marquardt (LM) approach. The main idea here is to
iteratively update the parameters ν := (β,θ ) using the Jacobian
matrix Jf of f as

ν = νold − (JTf Jf + µI)
−1 JTf f (νold) , (13)

where f is the vector-valued function that stacks all the individual
(quadratic) residuals of f , and µ is the LM damping factor. Based on
empirical evidence, the LM method is generally known for rapidly
decreasing the objective function with very few iterations. Hence,
and in order to maintain real-time performance, in addition to ef-
ficiently evaluating the Jacobian on the GPU, we terminate the
iterative optimization after 10 iterations.

5 DENSE MATCHING AND DEPTH REGRESSION

In order to obtain the predictions that were described in the previous
section, including predictions for segmentation, dense matching,
intra-hand depth, inter-hand distance and 2D keypoints, we feed
the RGB input image to a fully-convolutional neural network. This
enables us to work on entire images without requiring a potentially
error-prone bounding box estimation for each hand. Since our net-
work is trained using a large training corpus, it successfully learns
priors to handle the inherent ambiguities in monocular RGB data.
In the following, we describe our network, including the outputs,
losses, and the architecture, in more detail.

5.1 Network Outputs

Our network architecture comprises two stages. In the first stage our
network performs per-pixel segmentation into left hand, right hand,
and background pixels. Then, we branch into multiple subnetworks
to regress dense matching, 2D keypoints, intra-hand relative depth,
and inter-hand distance (the latter two using a shared multi-task
subnetwork). The input for the second stage are both the original
RGB input image, as well as the segmentation masks predicted in
the first stage. Fig. 4 shows all outputs predicted from test images.

Segmentation. Let the image have height h and widthw . Given
only the RGB input image, the first-stage segmentation network
predicts class-probability maps S′ ∈ [0, 1]h ×w × 3 for the three
classes left, right, and bg. We convert the probability maps to
a segmentation mask S ∈ {left, right, bg}h ×w by assigning the
most probable class to each pixel.

Dense Matching. The dense matching subnetwork regresses a
dense matching image M ∈ Rh ×w ×k , where k is the number of
features. Each pixel γ = (u,v) ∈ Γ contains the feature vector
M(γ ) ∈ Rk that uniquely determines the surface point of the 3D
hand model which is visible at this pixel. We call the mapping

from the feature vector to the 3D model surface dense matching

encoding. Note that the dense matching encoding is the same for
the left and right hand, where we make use of the segmentation
mask S for disambiguation. We use the same encoding as [Mueller
et al. 2019] to embed the hand surface to a 3D feature space for our
dense matching map. This is done using the method of [Bronstein
et al. 2006] to approximately preserve geodesic distances in the
feature space. We then map the feature space to an HSV color space
cylinder which results in each finger being assigned a different hue.
We denote the extended feature vector at vertex x as η′(x) ∈ Rk+1

and define η′(x) = [η(x), s(x)], where η : X → Rk is the original
dense matching encoding defined on the mesh. The scalar s(x) yields
a different value σ (right) or σ (left) that encodes which hand x
belongs to. We can then measure the matching distance between 3D
hand model vertices x and pixels γ in the image as

∆M,S(γ ,x) = | | [M(γ ),σ (S(γ ))] − η′(x) | |2 . (14)
We formulate the dense matching map ψ : X → Γ to establish

correspondence between model vertices and the RGB image as

ψ ′(x) = argmin
γ ∈Γ

∆M,S(γ ,x) (15)

ψ (x) =

{
ψ ′(x) , if ∆M,S(ψ

′(x),x) < tc

∅ , otherwise
. (16)

If the minimum distance of vertex x to all pixels is larger than the
threshold tc , this vertex is likely not visible and we setψ (x) = ∅. The
calculation of the dense matching mapψ is efficiently implemented
using parallel reduction in CUDA. The dense matching encoding
η(·) is defined analogously to the approach by Mueller et al. [2019]
with k = 3.

Furthermore, we set σ (left) = 0.0 and σ (right) = 0.5.

Intra-Hand Relative Depth. The network further learns to predict
an intra-hand relative depth map Dintra ∈ Rh ×w . For each hand
pixel, it contains the estimated depth difference of this hand point to
the root of the respective hand. Note that Dintra is scale-normalized
due to the inherent ambiguity in RGB images. We multiply it with
the palm length α to obtain the metric relative depth map Qintra,
which is used for 3D model fitting (cf. Equation 7).

Inter-Hand Distance. Our multi-task CNN also learns to estimate
the distance in depth between the two hands. Instead of predicting
a single scalar, we predict the distance as image Dinter ∈ Rh ×w .
This allows us to use a fully-convolutional network and thereby
enables feature sharing with the intra-hand depth prediction task.
Every pixel in Dinter that belongs to a hand contains the distance
of its root joint from the other hand’s root (in the case for only a
single hand being visible, we assign a constant value to all pixels).
Note that each pixel in the output can thus be seen as member of
an ensemble. Analogous to the intra-hand relative depth, we also
normalize the inter-hand distance with the size of the hand for
training. We summarize the ensemble with one relative distance
value dh per hand by calculating the median over all pixels that are
predicted to belong to the respective hand based on the segmentation
mask S, i.e.

dh = median
γ ∈Γ,S(γ )=h

Dinter(γ ) . (17)
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Fig. 4. Visualizaiton of network outputs. From left to right: 2D keypoints, segmentation, dense matching map, inter-hand distance, intra-hand relative depth.

Fig. 5. Dense matching encoding of MANO model, front and back.

We set the robust relative distance dinter = mean(dleft,−dright).
When the two hands are close, dleft and dright can be degenerate and
have the same sign. In this case,dinter is set to 0. For themodel fitting,
we can then define the metric absolute distance qinter := α · dinter
(cf. Equation 8).

2D Keypoints. Let Jtotal be the set of all 12 keypoints, namely the
fingertips and wrist of each of the two hands. We formulate the
2D keypoint estimation as heatmap regression task. The network
outputs heatmapsH ∈ Rh ×w ×|Jtotal | , a one-channel image for each
of the keypoints. Each ground-truth heatmap contains a Gaussian
with radius 0.07 · rc, where rc is the edge length of the larger edge of
a tight hand crop, scaled to have maximum value 1, centered at the
2D keypoint position. Note that the ground truth is also provided for

occluded keypoints which enables the network at test time to predict
keypoint locations under strong occlusions which are common for
two-hand interactions. We extract the maximum location of each
predicted heatmap as

γmax
j = argmax

γ ∈Γ
H(γ , j) . (18)

We use a threshold th to filter out low-confidence estimates and
obtain the 2D keypoint location as

Qkey(j) =

{
γmax
j , ifH(γmax

j , j) > th

∅ , otherwise
. (19)

5.2 Network Architecture and Training

Our network consists of several subnetworks as shown in Figure 2.
Each subnetwork is a U-Net [Ronneberger et al. 2015] with 4 layers
for down-sampling and 4 layers for up-sampling, resulting in a bot-
tleneck resolution of h

16 × w
16 . We use skip connections between

layers of the same resolution in the down- and up-sampling stream
to better preserve local information. We employ instance normal-
ization instead of batch normalization at every layer as proposed
by Ulyanov et al. [2016].

We use the softmax cross-entropy loss for the segmentation pre-
diction and ℓ2-losses for all other outputs. For real data, we use a loss
mask to disable the losses for holes in the annotations, which are
present due to the projection between the depth and color channel.
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Appendix A describes the annotation transfer from the depth to
the color image. We train the whole network end-to-end for 400k
iterations using Adam with a learning rate of 0.001 and a beta of
0.9. We perform data augmentations on-the-fly to further increase
the diversity of our training set (see Appendix B).

6 TRAINING DATA

For training our regressor in a supervised manner, for a given RGB
image containing two potentially interacting hands, we ideally re-
quire a ground-truth relative depth map DGT

intra, the relative inter-
hand distance map DGT

inter, a dense matching imageMGT, and 2D
joint position heatmaps HGT. Existing datasets like the Rendered
Hands Dataset (RHD) [Zimmermann and Brox 2017] or Panoptic
[Joo et al. 2017] only provide a subset of the required annotations
(see Table 1) and, in particular, do not have dense matching an-
notations. The former does also not show realistic and physically
plausible close two-hand interactions, an important requirement
for our setting. The recent FreiHand dataset [Zimmermann et al.
2019] provides crops of single hands with annotated MANO fits,
sometimes even with objects, but no two-hand frames. Generating
synthetic interacting hands images from these would require com-
positing and would lead to unrealistic interaction. Therefore, since
manual annotation of the labels we require is impossible, we pro-
pose a new set of strategies to obtain annotations for both real and
synthetic images. We add the existing datasets RHD and Panoptic

to our own real and synthetic datasets to increase data diversity
and hence improve generalization. Table 1 presents a summary of
the different datasets used for training, and gives details about the
ground-truth annotations available in each of them. In the follow-
ing, we describe the procedure for creating our own synthetic an
real datasets. Furthermore, in Sec. 7.2 we present an ablation study
that demonstrates how our real data (with slightly noisy annota-
tions) helps bridge the real-synthetic domain gap, and the perfectly
annotated synthetic data mitigates influence of noise.

Real Data. We leverage the state-of-the-art depth-based two hand
tracker of Mueller et al. [2019] to track sequences of two hands in
interaction with an RGB-D sensor that captures synchronized color
and depth images. We record in front of a green screen to enable
background augmentation as post-processing. Mueller’s approach
outputs MANO [Romero et al. 2017] per-frame shape β and pose θ
parameters, which, in combination with the extrinsic parameters
of the RGB and depth sensors of the camera, allows us to reproject
the surface of the tracked hand to the RGB image. For details on
the reprojection see Appendix A. Subsequently, we are able to com-
pute relative depth maps DGT

intra, inter-hand relative distance maps
DGT

inter, and dense matching images MGT from the real RGB image.
Additionally, we use 2D keypoint positions from [Joo et al. 2017] to
construct heatmaps HGT for supervision. Since tracking a single
hand is usually more robust and accurate than tracking two inter-
acting hands, we also include single-hand sequences in our data. We
then employ depth-based compositing to obtain images depicting
two hands, see Appendix B. Note that we manually cleaned bad
tracking results and 2D keypoint predictions by visual inspection
to ensure reasonable quality in our real data annotations.

Table 1. Available annotations in existing hand tracking datasets and ours.

Se
gm
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ion

De
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orr
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Int
ra-
Ha
nd

Int
er-
Ha
nd

2D
Ke
yp
oin
ts

Our (Synth) ✓ ✓ ✓ ✓ ✓

Our (Real) ✓ ✓ ✓ ✓ ✓

RHD [Zimmermann and Brox 2017] ✓ ✗ ✓ ✓ ✓

Panoptic [Joo et al. 2017] ✗ ✗ ✗ ✗ ✓

Synthetic Data. The above-described approach to annotate real
data is not perfect. In some poses the depth-based tracker may ex-
hibit tracking errors. Also, the RGB-D camera has separate depth
and RGB optics which are apart by a small baseline. The resulting
parallax leads to some occlusion-disocclusion-related holes in the
annotations when reprojecting them from the depth channel to the
color channel. This makes our real data not sufficiently accurate
and unable to produce annotations for highly-challenging poses.
We address this issue by complementing our real dataset by syn-
thetically generating images with their corresponding annotations.
To this end, and similar in spirit to Zhao et al. [2013] and Mueller
et al. [2019], we employ a motion capture-driven physics-based sim-
ulation to generate physically-correct hand sequences (e.g., without
self-collisions, with accurate inter-hand contact, and with a soft-
skin layer) where two hands realistically interact in a large variety
of poses. To increase the realism and variety of simulated hand
sequences, and in contrast to existing approaches that use a hand
template of fixed shape and appearance in the simulation frame-
work, we extend the surface-based parametric model of MANO
to a volumetric representation that is subsequently fed into the
simulation [Verschoor et al. 2018]. This allows us to synthesize com-
plex hand motions driven by a motion capture sequence, including
2D keypoint positions and heatmapsHGT, dense correspondence
images CGT, relative depth mapsDGT

intra, and relative inter-hand dis-
tance mapsDGT

inter, with varying subject identities. We can therefore
generate data with varying hand shapes.

Additionally, we further extended the MANO model with photo-
realistic appearances by a standard texture mapping approach. Hand
textures were generated by reprojecting multi-camera imagery into
a still hand image to which the MANO model was fitted. In practice,
we generate 10 different hand textures, which include a variety of
actors of different ethnicities, genders, and hand shapes. The ability
to render physically plausible two-hand interactions for various
hand shapes and appearances enables our approach to generalize
better to real world scene diversity.

7 EXPERIMENTS

In this section we experimentally evaluate our proposed RGB two-
hand tracking approach in order to demonstrate its merits. We first
introduce the datasets and metrics used in our evaluation. Subse-
quently, we conduct an ablation study that evidences the importance
of the individual components. Afterwards, we compare our method
quantitatively and qualitatively to other related works. Moreover,
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box is greater than a certain threshold (x-axis).

we present additional qualitative two-hand tracking results. We
refer the reader to our supplementary video for animated results.

7.1 Datasets and Metrics

Although the dataset by Tzionas et al. [2016] is commonly used to
evaluate two-hand tracking methods, we have found that it is not
well-suited for evaluating two-hand tracking methods with strong

interactions. This is because in their dataset only very few frames
actually exhibit close two-hand interactions. For a more compre-
hensive evaluation of challenging interaction settings, we therefore
introduce a new benchmark dataset, RGB2Hands, which exhibits
stronger interactions and more overlap between the left and right
hand. In Fig. 6, we illustrate that our RGB2Hands dataset contains
more frames with stronger hand-hand interactions compared to the
dataset by Tzionas et al. [2016], which we measure in terms of the
overlap of the bounding box from the left and right hand.
In the following, we present details of both datasets as well as

the evaluation metrics.

Tzionas Dataset. The Tzionas dataset contains 7 two-hand se-
quences with a total number of 1,307 RGB-D frames. 2D annotations
on the depth image are provided every 5th frame for the 14 interior
joints of each hand when visible. The camera calibration can be
used to obtain 3D annotations by backprojection.

RGB2Hands Dataset. Our new dataset RGB2Hands has a total
of 1,724 frames which are divided into 4 sequences, where each
sequence contains between 316 and 572 frames. To enable 3D evalu-
ation, we recorded synchronized depth data. Using the depth camera
calibration, 3D annotations can be obtained for the visible keypoints
by backprojection. For quantitative comparisons, out of the 4 se-
quences, at least every 5th frame was annotated starting from the
beginning of the interaction, resulting in a total of 319 annotated
frames. The annotation was performed manually, where annotators
were asked to identify the 14 interior joints of each hand as done for
previous datasets [Tzionas et al. 2016]. If the location of an occluded
joint could be inferred with high confidence, annotators marked
this location while also flagging the occlusion to signify that depth

cannot be recovered for 3D evaluation. If no reliable guess was pos-
sible, this joint was not annotated. Note that this is an advantage
over the Tzionas dataset where only visible joints are annotated.

Metrics. For our quantitative comparisons in 2D and 3D we use
two metrics to compare the errors between the annotated ground-
truth keypoints and corresponding estimates obtained by our (or
other) methods. First, we use the mean per-keypoint error in pixels
for 2D or inmillimeters for 3D. Second, to enable amore fine-grained
analysis, we also employ the Percentage of Correct Keypoints (PCK)
metric in 2D and 3D. A keypoint estimate is counted as correct if
its distance from the ground truth is less than tPCK. By varying the
threshold tPCK on the horizontal axis, and showing the respective
value on the vertical axis, a PCK curve is plotted. To address the
inherent depth-scale ambiguity of RGB images in the 3D evaluation,
the estimated keypoints were aligned to the ground truth using
Procrustes analysis without rotation. Note that the alignment is
performed for both hands jointly, i.e. a single translation and scale
value is estimated for both. Hence, our aligned 3D error still captures
the quality of the relative hand placement in 3D.

7.2 Ablation Study

For our ablation experiments we consider different settings, which
we evaluate based on our RGB2Hands dataset. To be more specific,
we analyze the effects of
(i) the individual terms in our fitting energy f in (2),
(ii) the importance of using our real and our synthetic dataset.

Fitting Energy Terms: In Fig. 7 we show PCK curves across all
sequences when leaving out one of the terms in our fitting function,
compared to using the whole function in Equation 2. All of the terms
improve the 3D error. It is notable that the silhouette term improves
the 3D error at the cost of 2D keypoint error. We hypothesize that
the energy function without silhouette term has local minima with
accurate 2D keypoints, but inaccurate 3D pose, which the silhouette
term helps to escape from. Additionally, in Fig. 10 and in the supple-
mentary video we present qualitative results of this ablation study.
To this end, we show tracking results with and without individual
terms of our optimization problem.

Importance of Our Datasets: Additionally, we have analyzed the
behavior of our hand tracker when training our prediction net-
works either without our real dataset, or without our synthetic
dataset, respectively, see Fig. 8. When not using our real dataset, or
when omitting our synthetic dataset, the PCK curves drop substan-
tially (see green and orange lines in Fig. 8), compared to using both
datasets (blue line).

7.3 Comparison to Other Methods

In this section we perform a comparison of our method to existing
depth-based as well as RGB-based methods on the RGB2Hands and
the Tzionas dataset. Specifically, for depth-based methods, we show
comparisons to Tzionas et al. [2016] and Mueller et al. [2019]. For
RGB-based methods, since there is no hand tracking system that was
explicitly designed for such input modality for the scenario of two
closely interacting hands, we show comparisons to the single-hand
method by Boukhayma et al. [2019]. For a fair comparison, we follow

ACM Trans. Graph., Vol. 39, No. 6, Article 218. Publication date: December 2020.



RGB2Hands: Real-Time Tracking of 3D Hand Interactions from Monocular RGB Video • 218:11

0 5 10 15 20 25 30
Aligned 2D Error (pxl)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f C
or

re
ct

 K
ey

po
in

ts

Avg. Keypoint Error 2D

RGB2Hands AUC:0.58
w/o Keypoint AUC:0.57
w/o Inter Dist AUC:0.56
w/o Intra Depth AUC:0.56
w/o Silhouette AUC:0.63

0 10 20 30 40 50
Aligned 3D Error (mm)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f C
or

re
ct

 K
ey

po
in

ts

Avg. Keypoint Error 3D

RGB2Hands AUC:0.61
w/o Keypoint AUC:0.57
w/o Inter Dist AUC:0.54
w/o Intra Depth AUC:0.57
w/o Silhouette AUC:0.55

Fig. 7. Energy term ablation study on the

RGB2Hands dataset. All terms except the silhou-
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of 2D error. We hypothesize that it reshapes the

energy landscape to have fewer local minima with

accurate 2D but inaccurate 3D pose.
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Fig. 9. Quantitative comparison of our method to

Boukhayma et al. [2019] and OpenPose on the

RGB2Hands dataset. Our method significantly out-

performs the method by Boukhayma et al. Both

obtain dense 3D results whereas OpenPose only

estimates sparse 2D keypoints and exhibits higher

per-frame maximum keypoint error (dotted lines).

their procedure of cropping the image around the hand based on
OpenPose keypoint predictions [Cao et al. 2018; Simon et al. 2017],
and subsequently estimate MANO pose and shape parameters, the
2D location in the image, and the weak-perspective scale. We apply
this approach for each hand independently, horizontally flipping
the left hand images since their method was designed for right
hands only. Although OpenPose does not respect a valid 3D hand
geometry, and merely obtains 2D keypoint positions, for the sake of
completeness we also compare to the plain OpenPose predictions.

Comparison on Tzionas Dataset. In Table 2 we show quantita-
tive comparisons to Tzionas et al. [2016], Mueller et al. [2019],
Boukhayma et al. [2019], and OpenPose. Although in terms of mean
error our method performs worse than the depth-based method by
Tzionas et al., we emphasize that theirs is an offline method that is
about 100 times slower than ours. However, our result is close to the
depth-based real-time method by Mueller et al., despite the fact that
they use much richer input data that contains 3D information. In
comparison to the RGB-only method by Boukhayma et al. [2019], in
terms of mean error we achieve results that are on par, while their
method is significantly slower and thereby not real-time capable. In
contrast to all other methods, the RGB-based OpenPose is trained to
regress 2D keypoint locations which exactly matches the evaluated
metric and hence yields a better result. However, we point out that
such 2D predictions generally do not represent plausible hand poses,
which we will also highlight in the subsequent comparison using

our RGB2Hands dataset. Contrary to our full-frame method, the
other two RGB-only methods require bounding boxes to obtain a
hand crop. In consequence, there are 13 frames in the dataset for
which no estimates are available due to missing bounding box de-
tection. Our method also outputs global 3D pose and shape (up to
a single scale factor) and runs much faster compared to the other
RGB-only methods. As shown in Fig. 6, the Tzionas dataset does
not contain many frames with strongly interacting and overlap-
ping hands. This is the main reason why the evaluated crop-based
single-hand RGB methods succeed on this dataset. The advantages
of our method become more apparent when compared on more
challenging interaction scenarios, which we present next.

Comparison on RGB2Hands Dataset. We created the RGB2Hands
dataset to enable evaluation of more challenging hand interactions
than previously seen in other datasets. In Fig. 9 we show quantitative
results, where it can be seen that our method (blue line) leads to
substantially better PCK curves than themethod by Boukhayma et al.
[2019] (orange line). Although OpenPose appears to produce good
results in terms of the percentage of correct individual keypoints
(Fig. 9, solid line), its percentage of correct frames (PCF), where a
frame is considered correct if the maximum keypoint error is under
a threshold, is substantially lower compared to others (Fig. 9, dotted
line). This confirms that OpenPose is often accurate for some of
the keypoints in a frame while producing large errors for harder
(e.g., occluded) keypoints in the same frame. This in turn is a strong
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Table 2. We compare the mean error and properties of our method to several depth-based and RGB-based hand pose estimation methods on the Tzionas and

the RGB2Hands datasets. Note that our method performs on par with the depth-based real-time method by Mueller et al. [2019], despite the significantly

richer 3D information that the depth-based method uses. The other RGB-only methods require hand crops and hence miss frames due to failed detections.

Please note that the mean errors are calculated over all detected keypoints and hence do not include a penalty for missed frames. Furthermore, the other

RGB-only methods are slower and thereby not applicable to the real-time tracking settings. We note that OpenPose offers parameters that enable faster

processing. Although in this case it is able to run at 13 FPS, it is significantly less reliable and leads to a total of 156 missed frames on RGB2Hands (opposed to

20 missed frames when running at 2 FPS).

Method
Tzionas Dataset RGB2Hands Dataset Properties

2D Error Missed 2D Error 3D Error Missed Input Output Runtime
(pixels) Frames (pixels) (mm) Frames (ms/frame)

Tzionas et al. [2016] 5.04 0 - - - Depth global 3D 4960
Mueller et al. [2019] 10.80 0 - - - Depth global 3D 33

Boukhayma et al. [2019] 12.91 13 19.31 27.47 20 RGB weak-persp. 3D (516) + 16
OpenPose [Cao et al. 2018] 9.68 13 13.32 - 20 RGB 2D keypoints 516
Ours 13.31 0 13.43 20.02 0 RGB global 3D (up to scale) 47

(a) Without silhouette (b) With silhouette

(c) Without 2D keypoints (d) With 2D keypoints

(e) Without inter-hand distance (f) With inter-hand distance

(g) Without intra-hand distance (h) With intra-hand distance

Fig. 10. Qualitative results for the energy term ablation study.

indicator that the predicted 2D hand keypoints do not constitute a
plausible hand pose due to the missing 3D model constraint. This
can also be seen in Fig. 11, where we show qualitative results. In
addition, OpenPose and hence also the method by Boukhayma et al.
[2019] fail to detect the hands completely in several frames (see
Table 2). Lastly, since competing methods do not perform temporal
filtering, we show that our method without temporal smoothing
(“w.o. Smoothing” in Fig. 9) still outperforms the competitors.

This evaluation on our RGB2Hands dataset validates the need
for methods that are specifically tailored to handle two strongly
interacting hands. Running single-hand methods on crops of the
two hands individually cannot jointly reason about the two hands,
which is crucial for effectively dealing with close interactions.

Qualitative Comparison to SMPLify-X. In Fig. 13, we compare
qualitatively to SMPLify-X [Pavlakos et al. 2019] which fits a full
human body model to monocular RGB images. Such methods rely
on the estimated body pose to detect the hand and to regularize
the hand orientation. As such, our method is more stable when
the body is not fully visible. SMPLify-X does not explicitly address
overlapping or interacting hands and hence also fails when the hand
detection and orientation are correctly estimated.

7.4 Additional Qualitative Results

Next, we demonstrate the global 3D tracking of two interacting
hands in various involved settings. The purpose of this section is
to demonstrate the generality and the wide scope of hand tracking
scenarios and non-trivial two-hand interactions that our method
is capable of handling in real time. We also show results on single
hand scenes to emphasize that our formulation does not require
both hands to be present. The results are shown in Fig. 1, Fig. 12,and
Fig. 14 as well as the supplementary video.

8 DISCUSSION & FUTURE WORK

Overall we have presented compelling 3D tracking and reconstruc-
tion results on challenging sequences of two interacting hands. One
important property of our approach is that it directly works on
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Fig. 11. Qualitative comparison of our RGB2Hands approach to Boukhayma et al. [2019] and OpenPose.

Fig. 12. Additional results of our RGB2Hands method.

the full input image, rather than explicitly localizing a hand first,
and then using a cropped image for further processing. This is
in contrast to existing single-hand methods, both RGB-based and
depth-based, which could in principle also be applied to the tracking
of two hands (by localizing and processing each hand individually).

However, these methods oftentimes fail in the case of heavy hand-
hand interactions, since in this case it is not possible to obtain a
reliable crop, or the visibility of parts of the other hand lead to errors
due to severe self-similarities.
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Fig. 13. Qualitative comparison to SMPLify-X [Pavlakos et al. 2019]. SMPLify-X fails when not the entire body is visible since it fits a full body model which

implicitly regularizes the rigid hand pose (left). However, even when the hand orientation is estimated correctly, it still fails because it does not explicitly

consider overlapping and interacting hands. Note that we render only the hand vertices of the full body mesh model estimated by SMPLify-X.

Fig. 14. Results of our RGB2Hands method on single hand scenes.

Despite the overall good performance of our method, particularly
for close hand-hand interaction settings, there are also some down-
sides that we aim to address in the future. Currently, our method
may not always be able to correctly track very fast hand motions,

since in this case motion blur may lead to unreliable predictions
of the neural network. One potential way to address this is to also
include data with simulated motion blur, so that the neural network
is able to deal with such cases. Moreover, it is difficult to find a good
trade-off between the MANO pose prior and the other energy terms,
so that one has to sacrifice either pose variability or pose plausibility.
This is most noticeable for thumb articulations (Fig. 15, left). This
could for example be addressed by equipping the MANO model
with a kinematic skeleton, and then enforcing explicit joint limit
constraints while still using the pose space to capture correlations
in joint articulations. Due to inherent depth ambiguity, our method
may also have difficulties reconstructing interactions where high
precision in relative hand positioning is required; e.g. slotting a ring
onto a finger (see Fig. 15, right). For such tasks, additional cues from
a depth sensor or a stereo camera might be requires. It would be
interesting as well to explore the explicit use of the temporal dimen-
sion, so that for example hand shape information can be integrated
over time, in a similar spirit to bundle adjustment in multi-view
reconstruction. Moreover, temporal neural network architectures
can be used to obtain temporally smoother predictions and thus fur-
ther improve temporal tracking consistency. Another open point is
optimizing for person-specific hand textures based on a parametric
hand texture space.

9 CONCLUSION

We have presented the first approach that is specifically tailored
towards tracking and reconstruction of two hands in interaction in
global 3D from only RGB images. A major challenge in this setting
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Fig. 15. Example Failure Cases

are depth ambiguities, which we have addressed by combining two
strong priors, one in form of a parametric 3D hand model, and the
other one in form of a multi-task neural network predictor that is
trained based on a large body of real and synthetic training data.
For training, we have proposed to combine existing datasets with
two datasets that we created specifically for our task. The first one
is a real dataset for which (potentially noisy) annotations were
obtained based on RGB-D frames. It is complemented by a new
synthetic dataset that models physically correct hand interactions
while taking hand variability in terms of shape and appearance into
account. Moreover, we have introduced a new benchmark dataset,
RGB2Hands, that contains annotated sequences showing signifi-
cantly stronger interactions between two hands in comparison to
previous benchmarks. We demonstrated that our proposed approach
outperforms previous RGB-only methods in complex hand-hand
interaction settings, both quantitatively and qualitatively, and even
performs on par with a state-of-the-art depth-based real-time ap-
proach. In summary, we have presented the first real-time approach
that captures 3D motion and geometry of difficult two-hand inter-
actions from monocular color video.
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A ANNOTATION TRANSFER FROM DEPTH TO RGB

Here, we describe how we transfer annotations from the depth
image to the RGB image, where both were acquired with a calibrated
RGB-D camera (cf. Sec. 6). To this end, based on camera calibration
parameters of the depth and RGB cameras, we first transfer points
on the depth image to 3D, and then project these onto the RGB
image. However, discrepancies exist between the two images due to
an offset between the sensors (baseline), and due to object boundary
artifacts of the structured-light depth sensor. To prevent the neural
network from learning this, we employ a foreground mask in the
respective loss. The final foreground mask is based on computing
the intersection of two masks; a foreground mask obtained from the
depth image, and a foreground mask that is obtained from the RGB
image. For obtaining the former, the depth image is first thresholded,
and subsequently processed by a morphological closing operation
to correct for boundary artifacts. The foreground mask of the RGB
image is obtained by color thresholding, which is straightforward
due to our green-screen setup. By using such a mask, for training
the multi-task CNN we only penalize those regions that we trust,
while not penalizing regions with potentially missing annotations.

B DATA AUGMENTATION

Our real dataset contains sequences of single-hand tracking scenar-
ios with a green-screen to allow background augmentation. Addi-
tionally, a color-based segmentation is performed to separate hand
and body. For compositing two-hand scenes, two masked hand
images from the same person are chosen at random, and flipped
accordingly to obtain a pair of left and right hands. The hands are
then independently translated from their initial location. Whenever
the two hands are overlapping, the depth channel is taken into ac-
count to ensure a plausible occlusion when the hands project onto
the same location in the image.

C HYPERPARAMETERS

In the following, we provide the values of hyperparameters: λd =
0.003, λsil = 0.0045, λkey = 0.005, λintra = 0.3, λinter = 0.1, λβ =
0.025, λθ = 0.0375, λτ = 0.3, λsym = 0.5, λN = 4.6 · 105, λs = 103,
tθ = 0.1, tr = 2.3, tc = 0.04, th = 0.7, µ = 1.

D AUTOMATIC ERROR RECOVERY

Due to the severe ambiguities in monocular RGB data, like the
concave-convex ambiguity, the optimization of the parameters ν
does not always yield a correct result. Instead, fingers might get bent
in the wrong direction to fit the projection in the input. These poses
are difficult to escape using a local optimizer. Hence we detect these
unnatural poses by observing the magnitude of θh,h ∈ {left, right}.
If this magnitude exceeds the threshold tr , we reset the pose param-
eters to the closest pose that is still within the threshold.
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