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Figure 1: Anisotropy (y axis) and Nd (x axis) variations for
fixed parameters of: roughness 20, pure red RGB0, and pure
blue RGB90. Observe how increasing Nd (from left to right)
reduces the effect of RGB0 and RGB90 as more (white) light
is reflected.

1. Dependency between parameters.

The definition of the BRDF model causes some depen-
dencies between parameters. Figure 1, shows how increas-
ing the value of Nd affects the influence of the albedo values
in the final appearance. Materials with R (roughness) set to
a high value are lambertian by definition, canceling the im-
pact of all parameters but RGB0.

In Figure 2 we can observe how the network has captured
these dependencies. The accuracy for RGB0 increases with
roughness, as it has a greater influence in the appearance
of the material (especially when roughness>90), while the
opposite happens as expected, for RGB90 in the same range
of values, when the specular component is minimal. Note
that, when the material is very specular, the values of RGB0
are irrelevant in the final appearance.

Figure 2: Average prediction error for different values of R
of RGB0 (left) and RGB90 (right).

2. Qualitative Evaluation on Synthetic Data
Figure 3 shows a qualitative evaluation of our method on

the test set. We show random target materials and their cor-
responding prediction, rendered from the same viewpoint.
For each target, we input to the network the 30◦ and 60◦ ho-
mographies and obtained a material prediction. This qual-
itative analysis confirms that our method can successfully
capture complex reflectance behaviors.

We additionally tested the generalization of the predicted
material to novel viewpoints. In Figure 4, we render the pre-
dicted material, computed using the two viewpoints high-
lighted in green, from the 14 viewpoints of our complete
dataset. The pixel-wise visualization of the renders demon-
strates how well the predicted material from just two views
generalizes to new views.

3. Comparison with State of the Art [1]
In Figure 5 we qualitative compare our results with the

results obtained by the method of Li et al. [1] in our syn-
thetic test set. We want to remark that the significant differ-
ences between the two methods prevent to obtain conclusive
comparisons. Li’s method predicts a per-pixel simplified
BRDF from a single image, which enables the computation
of reflectance models of textured objects. In contrast, we
obtain a unique BRDF for the entire material from two im-
ages, but ours is a richer model. For fairness, we only show
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Figure 3: Qualitative evaluation on our synthetic test set. Although our network only needs the input of two views, we
evaluate its performance using all of the 14 views.
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Figure 4: All 14 views of our dataset (top), our prediction (middle) and the L2 error per pixel (bottom). Note that we only use
as a input the homographied views highlighted in green, the rest of original views are only showed to assess the generalization
of the predicted material to new views.
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Figure 5: Qualitative comparison of our predicted albedo
(RGB0) and Li et al. [1] on our testset. Li’s method han-
dles well almost diffuse materials, but fails in computing
the albedo in highly specular and anisotropic materials.

the results of the albedo predicted by Li and the RGB0 of
our model. Results show that Li’s method can cope with
our dataset when the material properties correspond to an
almost diffuse material. In the case of highly specular ma-
terials or anisotropic materials, Li’s method tends to merge
the specular component into the albedo component. In con-
trast, our method effectively predicts the albedo in isolation.

Figure 6: Pairs of target and matched images with SQP. The
leftmost two pairs are Lambertian (R = 100), affected only
by RGB0 values. The rightmost pair has a roughness R
value below 90.

4. Optimization Strategy
Following previous work [3] we performed an experi-

ment: our goal was to fit the three RGB0 albedo values
of a diffuse material by means of a standard non-linear se-
quential quadratic programming solver (SQP) ([2]) with a
pixel-wise least squares error function, comparing the tar-
get and the rendered image. In Figure 6 we can observe that,
for a limited set of parameters, the results are compelling.
However, the presence of an additional specular component,
mostly white, biases the result of the RGB0 parameters to-
wards a desaturated value. As the number of parameters in-
creased, the optimizer results became more unstable in our
experiment, discouraging further exploration.
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