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Parametric PatternParametric Avatar Parametric Virtual Try-OnFigure 1: Our method predicts the 3D draping for an arbitrary body shape and garment parameters at interactive rates. From left to right, a
variety of body shapes obtained from a parametric avatar model, different 2D panel configurations of our paremeterized garment types, and
corresponding dressed 3D bodies generated with our novel fully convolutional approach.

Abstract
We present a learning-based approach for virtual try-on applications based on a fully convolutional graph neural network.
In contrast to existing data-driven models, which are trained for a specific garment or mesh topology, our fully convolutional
model can cope with a large family of garments, represented as parametric predefined 2D panels with arbitrary mesh topology,
including long dresses, shirts, and tight tops. Under the hood, our novel geometric deep learning approach learns to drape
3D garments by decoupling the three different sources of deformations that condition the fit of clothing: garment type, target
body shape, and material. Specifically, we first learn a regressor that predicts the 3D drape of the input parametric garment
when worn by a mean body shape. Then, after a mesh topology optimization step where we generate a sufficient level of detail
for the input garment type, we further deform the mesh to reproduce deformations caused by the target body shape. Finally,
we predict fine-scale details such as wrinkles that depend mostly on the garment material. We qualitatively and quantitatively
demonstrate that our fully convolutional approach outperforms existing methods in terms of generalization capabilities and
memory requirements, and therefore it opens the door to more general learning-based models for virtual try-on applications.

CCS Concepts
• Computing methodologies → Animation; Machine learning;

1. Introduction

The digitization of clothing is a long-standing goal in Computer
Graphics and Animation, with important applications in many ar-
eas including garment design, virtual try-on, film visual effects,
and video games. The classic –and still nowadays prevalent– ap-
proach to tackle the digitization of clothing is based on physics-
based methods that simulate the deformations of garments in con-
tact with the body [NMK∗06, NSO12, CLMMO14]. Despite the
tremendous realism achieved with these methods, their high com-
putational cost and potential instabilities hinder their deployment in

everyday applications. Many methods have been proposed to limit
such computational cost, including coarse discretizations of the
cloth [KGBS11, ZBO12], simplified simulation models [MC10],
subspaces [DASTH10, FMD∗19], and tailored GPU-based solvers
[TWL∗18].

As an alternative to physics-based methods, data-driven solu-
tions aim at learning a function that approximates the ground
truth deformations. Initial attempts used linear models [GRH∗12],
which struggle to reproduce the complexity of wrinkles and dy-
namics inherent in clothing. More recently, deep learning methods
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[WCPM18, SOC19, PLPM20, MYR∗20] have demonstrated that it
is possible to learn realistic and highly efficient models for cloth an-
imation. Most of these methods leverage existing parametric human
models [LMR∗15] to use as input the shape and/or pose body pa-
rameters and output the corresponding deformed garment. Despite
the realism of the predicted animations, a common underlying lim-
itation of existing data-driven methods is the dramatic inability to
generalize to new garments and mesh topologies. While physics-
based methods naturally generalize to almost arbitrary combina-
tions of garment meshes, most data-driven solutions are trained for
a specific garment or mesh topology.

The reason for such limitation are the architectures used
in existing solutions, which typically comprise one or more
fully-connected layers (also know as multilayer perceptrons,
MLP) [WCPM18, SOC19]. While this type of layers are known to
be easy to use in any domain (images, meshes, etc.) since input val-
ues (e.g., pixels, vertices, etc.) are just flattened into a vector, they
carry a number of limitations. First, it constrains the size of the in-
put vector to a fixed number, which enforces input meshes to have
always the same topology. Second, it disregards spatial information
due to the flattening vectors as input, which causes the loss of im-
portant local or neighboring information. And third, it requires a
large number of parameters, since all input nodes (or neurons) are
densely connected to each other.

In this work, we address such fundamental limitation in data-
driven cloth by using a fully convolutional graph neural network
(FCGNN). Fully convolutional architectures have shown to be suc-
cessful in Euclidean domains, where the input data is regularly dis-
tributed over 2D or 3D grid. For example in image segmentation
methods that take as input an image or volume of arbitrary size and
produce a correspondingly-sized output with efficient per-pixel in-
ference [SLD17, MNA16]. For non-Euclidian domains such as 3D
meshes, the use of fully convolutional architectures is more chal-
lenging due to the non-trivial definition of a convolution operators
in such irregular domain. To this end, we leverage recent research
that formally defines the required operators for graph-like struc-
tures [DBV16, BBL∗17] and propose a FCGNN that, given a 3D
parametric garment (represented with known 2D panels) with arbi-
trary mesh topology (i.e., random) and a target body shape, outputs
the accurate 3D draped garment.

Under the hood, our novel geometric deep learning approach
learns to drape 3D garments by decoupling the three different
sources of deformations that condition the fit of clothing: garment
type, target body shape, and material. To this end, we initially build
a parametric space for garment design that is capable of represent-
ing a large number of garment types, including loose dresses, shirts,
t-shirts, and tight tops. Using this design space, we create a dataset
of 3D garments and use physics-based simulation [NSO12] to dress
a wide range of body shapes. We use this data to train three different
networks, each of which serves for a different purpose in the virtual
try-on pipeline. First, we learn a regressor that efficiently predicts,
given the garment parameters, the coarse 3D drape of a garment
onto the mean body shape. Then, to provide sufficient surface de-
tail to each garment type, we apply a mesh topology optimization
step that generates a regular and homogeneous size triangular mesh.
Deformations caused by target body shape are modeled in our sec-

ond deformation step, which consists of a regressor that deforms
the topology-optimized mean shape fitted garment as a function
of the body shape. Our final step further deforms the garment to
account for material-specific deformations, which mostly produce
fine-scale wrinkles. Furthermore, we fine-tune our regressors with
a novel self-supervised (i.e., does not require on physically-based
simulated data) strategy that penalizes body-cloth collisions.

All in all, our main contribution is a novel geometric deep learn-
ing framework that is able to cope with parametric garments rep-
resented as predefined 2D panels, arbitrary mesh topology, and
any target body shape. We discuss and evaluate the advantages of
the proposed architecture, and compare with existing methods and
other baselines. To the best of our knowledge, our approach is the
first fully convolutional method (i.e., no fully connected layers are
used) for data-driven cloth.

2. Related Work

The modeling of clothing has been approached in different ways.
Here we discuss existing works by grouping them into simulation,
3D reconstruction, and data-driven models.

Cloth Simulation. Physics-based simulation methods use dis-
cretizations of classical mechanics to deform cloth by solving an
ordinary differential equation [NMK∗06]. Based on this strategy
many approaches have been proposed, with differences in the un-
derlying representation, numerical solution methods, collision de-
tection, and constraints. Despite the high level of realism shown
with these approaches, capable of modeling even yarn mechan-
ics [KJM10, CLMO15], they usually have a significant runtime
computational costs that hinders the use in interactive applications.

A wide variety of attempts exist to limit the computational cost.
For example, using position-based dynamics [MHHR07,KCMF12,
MCKM14], which produce approximated but plausible results, but
may lack the realism needed for real-world applications such as vir-
tual try-on. Other methods use subspaces or model reduction tech-
niques [DASTH10, SB12, HDDN19, FMD∗19] to perform simula-
tion in a reduced space. Projecting the equations of motion into the
subspace is simple, but adding constraints or problem-specific de-
tails is challenging. Alternatively, some methods speed up physics-
based simulation by adding details to low-resolution simulated
meshes [KGBS11, ZBO12, GPV∗15] or simplified physical mod-
els [RPC∗10, MC10].

Physics-based approaches have also been proposed from a de-
sign perspective, where the users specifies garment parameters and
simulation is used to compute the 3D drape [UKIG11, BGK∗13].
We also predict the 3D drape given garment parameters, but we
seek to skip the computationally-expensive simulation step while
being capable of handling any garment designs, mesh topology, and
target body shape. Very recently, physic-based differentiable meth-
ods have been proposed [LLK19], which also enable the efficient
optimization of design parameters to produce the desired 3D drape.

Cloth Reconstruction. As an alternative to simulation, 3D recon-
struction methods aim at recovering the surface of real clothing.
Reconstructed garments can potentially be used later to dress new
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subjects or train data-driven models, as we discuss in the next sub-
section.

Early attempts required customized clothing or special patterns
to capture the deforming surface of a worn garment [SSK∗05,
WCF07]. Subsequent research by Bradley et al. [BPS∗08] suc-
ceed at reconstructing sequences of markerless garments, with rela-
tively low wrinkle level detail, using a multi-view stereo approach.
Notably, their method even achieves temporally-coherent geome-
try by enforcing as-isometric-as-possible inter-frame constraints.
Detail upsampling techniques, similar to those used to enhance
low-resolution simulated meshes, can be used in this context too
[PZB∗09]. Zhou et al. [ZCF∗13] reduced the input requirements
and reconstruct garments from a single image. They automatically
detect the garment outline to roughly create a smooth 3D mesh that
is further refined with shape-from-shading cues. A common limi-
tation of these garment capture methods is their inability or signif-
icant difficulty to manipulate the reconstructed clothing, for exam-
ple, as a function of the underlying body shape for virtual try-on
applications.

A different trend in 3D reconstruction, usually referred to as per-
formance capture, aims at recovering the full body of a dressed
actor while moving [SH07, DAST∗08, VBMP08, XCZ∗18]. Pio-
neering methods use a full-body 3D template of the actor that it
is deformed using an optimization scheme such that it matches im-
ages captured using a multi-camera studio [DAST∗08, VBMP08].
Follow up methods reduced the input requirements by employing
just a single depth camera [ZFYY14, BBLR15], or even a monoc-
ular video [XCZ∗18, YPA∗18]. Recently, template-based recon-
struction methods have also been proposed for outdoor settings
[RCR∗16, XCZ∗18], and for animals on the wild [ZKB18]. Alter-
natively, template-free methods [SH07] combine visual hull-based
techniques with stereo reconstruction to extract per-frame surface
of the actor. Even if re-animation of captured performances is pos-
sible [CVCH14, PKC∗16], the main limitation of these approaches
is the single mesh output used to represent both the human body
and clothing, which hinders the digital manipulation of the cap-
tured garment.

There exist works that address the problem of segmenting re-
constructed 3D meshes into body and clothing layers. Neophytou
and Hilton [NH14] estimate the underlying body shape by fitting a
parametric human model, and learn a clothing deformation model
with the residual of the fit. The learned model can be then used to
dress different body shapes. Similarly, Pons-Moll et al. [PMPH17]
present a remarkable multi-camera system that is capable of recon-
structing the underlying human shape and multiple garment layers,
with fine wrinkle detail, at 60fps. Reconstructed garments can be
transferred to new body shapes, but the dynamics in new sequences
may look unrealistic since they are just a copy of the captured de-
formations. Yang et al. [YFHWW18] go one step beyond and en-
rich the captured dataset with simulated data that exhibits variations
in clothing size and physical materials. This enables the learning of
a richer garment deformation model, capable of representing se-
mantic parameters such as material properties.

Deep learning techniques have also been proposed to address
the 3D reconstruction of garments. These methods circumvent the
need for the error-prone model-fitting or optimization step in pre-

vious methods, and achieve a faster performance. Daněřek et al.
[DDÖ∗17] use synthetic data to train a CNN that regresses 3D ver-
tex offsets to reconstruct a single garment from images. They re-
quire a known 3D template, and a tight crop of the image. Alldieck
et al. [AMB∗19] and Bhatnagar et al. [BTTPM19] learn to re-
construct clothing and hair from video as displacements on top of
SMPL human model [LMR∗15]. DeepWrinkles [LCT18] learns a
3D clothing deformation model from scans that is subsequently
used to regress pose-dependent deformations for a specific gar-
ment. Even if our approach is not aimed for reconstructing tasks,
we also use deep learning to regress 3D garment deformations. In
contrast to these methods, our model generalizes parametric gar-
ments, does not rely on a priori known topology, and generalizes
to different body shapes.

Data-driven 3D Models. Inspired by the success of the exten-
sive literature in statistical 3D human body models learned from
scans [ASK∗05, FCS15, LMR∗15, CCM∗18], with recent works
even capable of learning highly dynamic soft skin deformations
[SGOC20], many methods have proposed to learn 3D clothing
models from data. Guan et al. [GRH∗12] use simulated data to lean
to deform a garment as a function of the shape and pose of the un-
derlying body. However, they rely on a linear model that struggles
to learn fine details. Similarly, Xu et al. [XUC∗14] retrieve gar-
ment parts from a simulated dataset to synthesize pose-dependent
clothing meshes, but shape deformations are not modeled. More
recent methods use machine learning to predict garment deforma-
tions as a function of body pose alone [GCS∗19], or pose and
shape [SOC19], some even capable of learning style [PLPM20] or
animation dynamics as a function of fabric parameters [WSFM19].
A common limitation of these methods is the need to train a regres-
sor for each garment, which hinders their deployment to massive
use. In contrast, our method is able to learn to deform a large vari-
ety of garments using the same model.

The design of garments have been also tacked with data-
driven models. Particularly relevant for us is the work of Wang
et al [WCPM18], who learn a multi-modal subspace that allows
editing the design of a specific garment using both 2D panel size
and a sketch of the desired drape. Given a target body shape, the
method outputs the 3D draped garment according to different in-
put modalities. In contrast, we focus on the virtual try-on scenario
instead of the design aspect. The fully-convolutional machinery of
our method is able to cope with a wider range of clothing variabil-
ity, ranging from tight tops to long loose dresses, using the same
trained model.

Recently, following the success of graph CNNs (GCNNs)
in non-euclidean domains such as triangular surfaces [DBV16,
BBL∗17], some methods have explored the use of GCNN to learn
3D mesh deformations from data. Tan et al. [TGLX18] propose
a mesh variational autoencoder (VAE) to learn an efficient latent
space for 3D surfaces. The generative nature of the subspace en-
ables to sample, interpolate, and explore deformable shapes. In a
similar spirit, Ranjan et al. [RBSB18] use a graph convolutional au-
toencoder to learn a generative model for 3D faces. Closer to ours
are the works that use GCNNs to learn garment deformations. Ma
et al. [MYR∗20] employ a conditional mesh VAE-GAN [LSLW16]
to compute additive displacements that are applied onto a full-body
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Figure 2: Our pipeline for parametric virtual try-on. First, we estimate a parametric 3D mesh T for the mean human shape given a set of
design parameters p. Then, after a topology optimization step that allows us to deal with any input topology and fine geometric details, a
fully convolutional regressor Rsmooth estimates smooth 3D deformationsMsmooth for a target human shape β. Finally, this mesh is further
refined using another fully convolutional regressor Rfine to take into account fine wrinkles and material-specific deformations, represented as
M1 and M2 in the figure.

human mesh. Despite being able to reproduce global and local cloth
deformations, they require a fully-connected layer and a fix size in-
put mesh. Similarly, Bertiche et al. [BME20] propose a model that
is able to learn deformations for a large number of garments, but
cannot cope with varying topology. In contrast, our method is fully
convolutional and, assuming a known garment design space with a
predefined parametric 2D panel layout (see Figure 2 left), we are
able to cope with any mesh topology with arbitrary number of ver-
tices.

3. Overview

Our goal is to predict the accurate 3D draping of garments, worn
by any body shape, for virtual try-on purposes. We put special em-
phasis on the ability to cope with a large variety of garments, a
feature mostly ignored by existing works since it requires a model
that can deal with varying topology input. To this end, we propose
the three-stage approach depicted in Figure 2 that effectively de-
couples (and therefore, eases learning tasks) the different sources
of deformations (e.g., due to garment type, body shape, or mate-
rial) that condition the fit of clothing.

Following the traditional garment design workflow, our first step
(Section 4.1) uses a set of parameters p to define the 2D sewing pat-
terns of a garment (e.g., sleeve length, chest circumference, etc.),
and learns a regressor Rmean(p) = T to estimate the correspond-
ing 3D mesh T draped into the mean human shape. Then, in order
to accurately represent all garments potentially designed with the
parameters p (e.g., from tight sleeveless tops to loose dresses), our
second step (Section 4.2) computes an optimized mesh topology
M from the regressed 3D drape T , and learns a regressor Rsmooth
to predict a smooth (i.e., lacking fine wrinkles) fit Msmooth onto
the target body shape β. Lastly, the third step (Section 4.3) learns
a regressor Rfine that predicts a deformed meshMfine with the re-
alistic draping of the garment into the target body shape β. Im-
portantly, regressors Rsmooth and Rfine are implemented in a novel
fully convolutional graph neural network (FCGNN) that is able to
cope with any combination of garment, topology, and target body.
Furthermore, in order to resolve potential body-garment collisions
due to small inaccuracies when predicting surface deformations
(a common issue in learning-based garment deformation methods,

e.g. [WCPM18, SOC19]), in Section 4.4 we propose a novel self-
supervised strategy to fine-tune the regressor Rfine. The proposed
supervision is based on a geometric definition of the distance be-
tween garment vertices and body faces, and does not require ground
truth data (i.e., avoids the need for expensive cloth simulation).

4. Garment Parametric Virtual Try-On

4.1. Parametric 3D Drape

In order to predict the 3D draping of garments for virtual try-on ap-
plications, we first need to define the actual garment type. Inspired
by the traditional clothing manufacturing workflow, and similar to
existing works [UKIG11, WCPM18], we characterize garment de-
sign properties using 2D sewing patterns. However, our observa-
tion is that we can use a single 2D layout to model a large family of
garments by simply editing the length of some specific parts. For
example, a tight sleeveless top and a long dress can be represented
with the same 2D layout contour, with differences just in terms of
size of each layout part. This is in contrast to the common use of 2D
layouts, which are usually edited only to model size or small style
changes. For example, Wang et al. [WCPM18] only allow minimal
edits in 2D to change the style of the garment, and require indepen-
dent models for dresses and t-shirts.

Based on this observation, our first step is learning to predict a
coarse 3D drape of a garment given a specific 2D sewing pattern. In
particular, we encode the parameters of the 2D layout (e.g., sleeve
length, chest circumference, etc.) in a vector p that is fed into a
non-linear regressor

Rmean(p) = T (1)

that outputs the drape of the garment onto a mean human shape
(note that in the rest of the paper we will use the overline symbol to
refer to mean-shape-related variables). The motivation of this ini-
tial step is twofold: first, it roughly fits the garment on a generic
human subject, which we use later in Section 4.2 to parameter-
ize garment vertices using their closest body skinning weights; and
second, it allows us to disentangle garment type-dependent defor-
mations (i.e., that depend on p) from material-dependent and body
shape-dependent deformations.
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Figure 3: Sewing pattern parameters (rows) used to build our
dataset of garments. Each column shows the effect of the minimum,
mean, and maximum values for each parameter.

To train our regressor Rmean(p) we build a dataset of 3D gar-
ments by manipulating a single 2D layout. Specifically, as shown
in Figure 3, we manually edit parts of the 2D panels to design
a family of garments including tops, t-shirts, sweaters, and short
and long dresses. We then label each sample according to a set of
measurements p in the corresponding 2D representation, and sim-
ulate the sample worn by a mean human shape using a state-of-
the-art physics-based cloth simulator [NSO12], with remeshing op-
tion turned off, until it reaches equilibrium to obtain a 3D mesh T
of the draped garment. We implement the regressor Rmean : RP→
R3×V T

using a fully connected neural network that outputs the
vertices positions of the mesh T with a predefined topology.

4.2. Smooth 3D Body Drape

Mesh Topology Optimization. To accurately represent the drap-
ing of 3D garments with fine-scale detail it is necessary to use a
topology with sufficient resolution (i.e., number of triangles) for
each garment type. Since one of our goals is to build a model that
can predict the deformations for a large family of garments, we
need to adapt the topology of the mesh T depending on the type
of garment. To give a more practical example, we assume that the
number of triangles required to represent high-quality draping of a
t-shirt is smaller than those required for a long dress.

We model such garment type-dependent topology requirement
by applying a remeshing operation to the coarse mean draped gar-
ment T . Specifically, we generate a new mesh

M= φ(T ,p,Tdist,Tarea), (2)

where φ() is a remeshing operation that, given an input mesh T
and the 2D design parameters p, aims at maintaining a (manually
specified) average triangle distortion Tdist and surface area Tarea.

Figure 4: Garment type-dependent topology optimization, here
shown in 2D panel space. Left: the 2D layout of a long dress de-
sign, with the template topology T . Right: the same design after
the topology optimization step, resulting in the meshM with ho-
mogeneous triangle size and without degenerated geometry.

Notice that these parameters are constant for all garments, there-
fore we only need to set them once. We implement φ() based on
the method proposed by Narain et al. [NSO12]. We write the opti-

mized mesh as M = {VM,EM}, where VM ∈ R3×V M
are the

vertices of the optimized surface, and EM the edges of the mesh.
Figure 4 shows an example of the template topology T for a long
dress design, which result in many degenerated triangles, and the
optimized topologyM. In practice, φ() works in the UV-space of
the 2D panels, which are automatically sew together to obtainM.
We have simplified the notation for the sake of clarity. Notice that
the surface ofM and T is analogous, but their topology is differ-
ent.

Shape-Dependent Smooth Garment Deformation. Having the
optimized mesh topologyM computed, in this second step we ad-
dress the modeling of garment deformations caused by the target
body shape. To represent parametric bodies, we use the popular
model SMPL [LMR∗15], which provides a PCA-based representa-
tion of human bodies in T-pose, parameterized by β ∈ R10. We use
the first component throughout the paper, since it encapsulates the
largest variance in body shape. Importantly, SMPL also provides
per-vertex rigging weights wi, which we use later in this section as
a descriptor for garment vertices.

We therefore seek to learn a regressor Rsmooth that deforms the
mean shape garmentM and outputs a mesh that reproduces a
smoothed drape of the garment onto the target body shape β. We
design Rsmooth such that it learns global and smooth deformations,
which has two main advantages: first, it eases the learning task
since it reduces the variance in data and second, it decouples target
body-dependent deformations (i.e., global stretching and draping
effects) from material-dependent (i.e., fine wrinkles) deformations,
which we will learn on a subsequent step. However, formulating
such regression task is not trivial: the topology of the input mesh
M is unknown at train time since we generate it at run time de-
pending on the design parameters p. Therefore, we cannot employ
a fully connected network, where the input is a fix-size vector cor-
responding to the number of vertices of the mesh (a strategy com-
monly used in most of recent learning-based garment deformation
methods [WSFM19, WCPM18, SOC19]) and, instead, we propose
to use a graph-based fully convolutional architecture.

Two key ingredients are required to design the regressor Rsmooth
as a graph-based fully convolutional neural network: first, a convo-
lution operator that is able to deal with graph input and, second, an
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Figure 5: UNet-based architecture for regressors Rsmooth (left) and Rfine (right). Each pooling or upsampling pass reduces or augments the
number of nodes to half or double size. The input number of nodes is the same for both regressors, they differ in the number of intermediate
layers, which is bigger for Rsmooth as it has to learn a broader range of deformations.

efficient graph pooling operator that is able to coarsen the mesh by
clustering together similar vertices. Specifically for this work, for
graph convolutions we use the operator based on truncated Cheby-
shev polynomial proposed by Defferrard et al. [DBV16], which has
shown to be very efficient given its linear computational complex-
ity and constant learning complexity, like classical convolutional
neural networks (e.g., for images or other Euclidean domains).
For mesh coarsening we use the approach proposed by Ranjan et
al. [RBSB18], which consists of precomputing down- and upsam-
pling matrices using a traditional method for surface simplification
by Garland and Heckbert [GH97].

Having the operators defined, we now explain how we design
our fully convolutional regressor Rsmooth. Starting from the mean
shape 3D drape mesh M = {VM,EM}, we first build an anal-
ogous undirected graph G = (N,C), with as many nodes and

edges, as vertices and edges in the mesh, N = VM ∈ R3×V M

and C = EM ∈ R3×E M
, which we wish to use as input to the

graph neural network. However, using vertices position as a de-
scriptor for the graph nodes does not leverage all the information
available in this context. Our key observation is that we can also
append semantic body part information into the graph. To this end,
for each garment vertex vMi we find the closest body vertex vBk ,
and append its associated rigging weights wk into each graph node
descriptor. Additionally, we also append the shape descriptor β to
each node. Therefore, the ith node of the graph G is defined as
ni = {vMi ,wk,β}∈R3+J+|β|, where J is the number of body joints
(24 for SMPL [LMR∗15]), and |β| the number of shape coefficients
(1 for the results shown in this paper).

We then input the graph G into our fully convolutional regressor

Rsmooth(G) = ∆smooth (3)

to predict a vector of 3D displacements ∆smooth ∈ R3×V M
. The

architecture of the network, inspired by the success of fully con-
volutional U-Net [RFB15] for image segmentation, is depicted in
Figure 5. The final deformed mesh of this second stage is then com-
puted by adding the predicted 3D offsets to the mean shape 3D

drape

Msmooth =M+∆smooth. (4)

To train the regressor Rsmooth we create a dataset of ground-truth
deformations of two different materials and a range of body shapes
using the physics-based cloth simulation [NSO12]. We leverage the
whole set of training data without introducing bias due to material-
dependent deformations by first applying a Laplacian smoothing
operator to each generated mesh, and then computing the average
of each corresponding sample (i.e., those with same topology, gar-
ment type, and target shape) before substracting it from the mean
shape to obtain the displacements ∆

GT
smooth. As a loss function we

use the `2-norm of the error between ground truth displacements
and predictions, in addition to the `2 regularization of the network
weights

4.3. Fine 3D Body Drape

The garment meshMsmooth successfully reproduces the global gar-
ment deformations due to target body shape, but lacks fine details
that depend largely on the material. We address such source of de-
formations in this third and last step by further deforming the gar-
ment mesh. To this end, we learn to regress a new set of 3D dis-
placements ∆fine using a fully convolutional network that takes as
input a graph G built from the vertices positions vMsmooth

i and its
associated rigging weights, analogous to the graph G described in
Section 4.2

Rfine(G) = ∆fine. (5)

Our final predicted 3D drapeMfine is then computed by adding the
fine displacements onto the meshMsmooth

Mfine =Msmooth +∆fine. (6)

To train the regressor Rfine we use the same simulated fits as in Sec-
tion 4.2. However, in this case, we take advantage of the material-
dependent deformations and train one regressor per material type.
We generate the ground truth offsets ∆

GT
fine, m per each material m

by substracting the smoothed fits from the simulated fits. As loss
function for Rfine we use the same loss as Rsmooth, with the ground
truth fine-scale displacements ∆

GT
fine, m instead.
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4.4. Self-Supervised Learning of Body-Garment Collisions

The objective losses used to train regressors Rsmooth and Rfine min-
imize the reconstruction error but, due to expected residual errors
in unseen shapes and topologies, this term alone does not guar-
antee predicted deformations to be free of body-garment colli-
sions. This is a common issue in learning based solutions, which
has been address with rendering tricks [DASTH10], postprocessing
steps [SOC19], or explicit collision loss terms [GCS∗19] using su-
pervised training. Inspired by the later, we propose a collision loss
term that we can train in a self-supervised strategy, and therefore
does not require to generate expensive ground truth simulations.
This is a major advantage over previous explicit collision losses.

Specifically, for each vertex of the garment vMi we find the clos-
est body vertex vBk and compute the collision loss as

Lcollision = max(−nBk (v
M

i −vBk ),0), (7)

where nBk is the normal vector of the body vertex. The work of
Gundogdu et al. [GCS∗19] uses this loss to penalize collisions dur-
ing training, but unless the train dataset is exhaustive enough, this
approach does not guarantee collision-free results for unseen in-
puts. In our particular case this is particularly bad, since creating
an exhaustive dataset of cloth simulations is not feasible due to the
arbitrary topology input of our method.

Therefore, starting from network weights trained for Rsmooth and
Rfine, we propose a novel strategy to fine-tune our networks using
Equation 7 to produce collision-free results for arbitrary inputs. The
key insight of our approach is that evaluating the collision loss does
not require ground-truth data. Therefore, we can feed the network
with random inputs and train on the collision loss only until it con-
verges to a value near zero. To this end, during the self-supervised
step we sample random body shapes β and garment topologiesM,
feed them into our pipeline, and use the predicted mesh to fine-
tune Rfine with Equation 7. Thanks to this strategy the number of
collisions has been reduced by 70% during training, and 20% in
validation.

5. Evaluation and Results

In this section we quantitatively and qualitatively evaluate our re-
sults in different scenarios. Specifically, we demonstrate our gener-
alization capabilities, compare with the state-of-the-art method of
Santesteban et al. [SOC19], and with a newly proposed brute force
baseline for parametric virtual try-on.

Dataset and Implementation Details. Our ground truth dataset
has been generated from 19 different garment pattern designs, two
different topologies per design, and 201 values for the body shape β

from the SMPL body model [LMR∗15], uniformly sampled within
the range -3 and 3 (from which 100 have been exclusively used
for test). The resulting meshes have between 1,414 (for the simpler
case) and 3,581 (for long dresses) vertices. T has a fixed size of
403 vertices, value which dynamically change for M depending
on the garment complexity after the topology optimization step. To
generate our data for the first step described in Section 4.1, in order
to avoid potential topology-related problems (e.g., highly distorted
triangles, irregular vertex positions, etc.) at simulation time, we

3 2 1 0 1 2 3

Body shape

0.000

0.005

0.010

0.015

0.020

0.025

0.030

H
a
u
sd

o
rf

f 
d
is

ta
n
ce

Topology 0 (train)
Topology 1 (validation)
Topology 2 (validation)
Topology 3 (validation)

Topology 4 (validation)
Topology 5 (validation)
Topology 6 (validation)
Topology 7 (validation)

Figure 6: Generalization to new topologies. Hausdorff distance be-
tween the predicted and the ground truth meshes for a range of
body shapes and 7 validation topologies. Errors in test topologies
are consistent, demonstrating the generalization capabilities of our
method, and on par to topologies used for training (dashed black).

first use a high-resolution mesh of 17,246 vertices, and then consis-
tently downsample the simulated meshes to 403 vertices. 2D panel
meshes are manually generated on a 3D modeling software, and the
design parameters interpolate between these hand-made panels.

We have implemented our pipeline in TensorFlow for an effi-
cient GPU training and execution. The parametric 3D draping is a
fully connected layer with 3 input neurons (one per design param-
eter) and a single hidden layer (of ten neurons) trained for less than
a minute. Training the fully convolutional networks Rsmooth, and
Rfine took approximately 20, and 14 hours respectively. Fine-tuning
the self-supervised collisions took around one day. Everything was
executed on a NVIDIA Titan X with 12GB.

Evaluation of Generalization to New Topologies. In Figure 6 we
quantitatively evaluate the generalization capabilities of the regres-
sors Rsmooth and Rfine to new topologies. Specifically, for a given
garment parameters p and material for which we have ground truth
simulated data, we randomized the topology (keeping the mean tri-
angle area constant) of the mean shape predicted meshM, and feed
each topology to the regressors Rsmooth and Rfine for a range of tar-
get shapes β. For each predicted mesh, we then compute the Haus-
dorff distance to the ground truth simulations. Results demonstrate
that our method predictions are quantitatively consistent, regardless
the topology and target body shape. Importantly, we also show that
the error of the topologies unseen at train time (i.e., validation set)
is on par with the error of topologies used to train (in dash black).

Comparison with Parametric Fully Connected Baseline. De-
spite the lack of methods than can cope with parametric garments
due to the need for different topologies, an alternative brute-force
approach could be to use a highly-dense topology in M to rep-
resent all garments, followed by a fully-connected end-to-end net-
work that predicts displacements over such mesh. This high dense
topology would provide an over-discretized mesh which, although
unnecessarily complex for small garments such as a t-shirt, would
provide sufficient details for large garments such as dresses, tech-
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Figure 7: Quantitative evaluation of our fully convolutional (solid
blue) approach and the fully-connected baseline (i.e., using the
same highly-dense topology for all garments and a fully-connected
architecture, dashed red), for 6 garment designs not present in the
training set. Our approach consistently outperforms the fully con-
nected baseline since the latter cannot generalize well to unseen
garment types.

nically enabling the use of fully-connected pipelines [SOC19]. We
implemented such solution, which can be considered a baseline for
data-driven parametric garments, and compared it with our fully
convolutional approach.

In Figure 7 we present a quantitative evaluation of the precision
accuracy of our method, and the fully connected baseline. Specifi-
cally, for a given garment design (unseen at training time) we com-
pute the Hausdorff error for a range of target body shapes, and
demonstrate that our predictions Mfine are consistently more ac-
curate. Our hypothesis is that the fully-connected approach can-
not generalize to garment types outside the training set due to the
global nature of the densely connected neurons, that are unable to
learn local features. In contrast, the convolutional nature of our ap-
proach is able to capture local features, and therefore correctly pre-
dicts deformations of garment types unseen at train time but locally
present in train examples.

Furthermore, we also evaluate the memory footprint of each
method, which also results favorable for us. The fully connected
network size is 167 MB, while ours (Rsmooth + Rfine) is 71MB.
This is also expected, since the number of parameters for a fully
connected network is significantly higher in comparison to the pa-
rameters used in the convolutional kernels. Note also that the fully
connected approach needs to be fully trained for any new mate-
rial while our approach enables easier generalization and transfer
learning for new materials through fine-tuning Rfine.

Comparison with Santesteban et al. 2019. In Figure 8 we quali-
tatively compare our results with the state-of-the-art method of San-
testeban et al. [SOC19], which is limited to a single garment. For a
garment design analogous to the t-shirt used to train their method,
we demonstrate that the predictions of both methods are on par
(rows 1 and 2), while we are capable to predict the draping of a
much larger number of garments (rows 3 and 4). This demonstrates
the generalization capabilities of our method to arbitrary parametric
garment design (and therefore, arbitrary topology).

Qualitative Results. In Figure 9 we show qualitative results of our
method, for a variety of body shapes, garment types and topologies,
all of them unseen at train time. Notice how the wrinkles predicted
with our approach naturally match the expected behavior of the gar-
ment, and change for each shape-garment pair. This demonstrates
that our method generalizes well to new garment types, topologies,
and shapes. Check the supplementary video for more qualitative
results.

In Figure 10 we show qualitative predictions of our method, for
two different materials, but the same target body shape and gar-
ment type (both unseen at train time). We demonstrate how our
final step Rfine is able to learn material-specific deformations, re-
sulting in visually different folds and wrinkles. Specifically for this
comparison, the blue t-shirt is train on gray-interlock (60%
Cotton, 40% Polyester) material and the pink on white-dots-
on-black (100% Polyester) from ARCSim materials [NSO12].
See [WOR11] for additional material details.

6. Conclusions

We have presented a method to predict the drape of a predefined
parametric space of garments onto an arbitrary target body shape.
To achieve this, we propose a novel fully convolutional graph neu-
ral network that, in contrast to existing methods, it is not limited to
a single garment or topology. Our novel pipeline, based on U-Net
architecture and efficient graph convolutions, generalizes to unseen
mesh topologies, garment parameters, and body shapes. To the best
of our knowledge, ours is the first fully convolutional approach for
virtual try-on purposes, which opens the door to more general data-
driven cloth animation methods based on geometric deep learning.

Despite our step forward in geometric learning-based solutions
for cloth animation, our approach still suffers from the following
weaknesses that could be addressed by follow up works. Pose-
dependent and material-dependent input parameters are not consid-
ered to our approach, and you need to retrain the model to consider
these configurations. Multi-layer garments and contact with exter-
nal forces are not considered either. Additionally, commercial gar-
ment design probably requires more than 3 parameters. The anal-
ysis of the scalability of the proposed method to a larger garment
space remains open for future research.
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Figure 8: Qualitative comparison with the single-garment and fix topology method of Santesteban et al. [SOC19] and ours. When sampling
the same garment type use to train their method, our results are on par with Santesteban’s (rows 1, 2), while our approach allows for a much
richer space of garment types and topologies (rows 3, 4).

Figure 9: Virtual try-on results with our method, for a variety of
garments (rows), fitted into a range of shapes (columns), both un-
seen at train time. Our method successfully predicts the drape of
the garment, with natural folds and wrinkles at different scales that
depend both on the input garment type and the target body shape.

Figure 10: Deformations regressed by our method for two different
materials, presented in blue and pink. We demonstrate that, given
the same target shape and input garment type, our method (top)
is able to learn material-specific details that produce distinctive
folds and wrinkles, closely matching the ground truth deformations
(down).
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[DDÖ∗17] DANĚŘEK R., DIBRA E., ÖZTIRELI C., ZIEGLER R.,

GROSS M.: DeepGarment: 3D Garment Shape Estimation from a Single
Image. Computer Graphics Forum (Proc. Eurographics) 36, 2 (2017),
269–280. doi:10.1111/cgf.13125. 3

[FCS15] FENG A., CASAS D., SHAPIRO A.: Avatar Reshaping and Au-
tomatic Rigging Using a Deformable Model. In Proc. of ACM SIG-
GRAPH Conference on Motion in Games (2015), pp. 57–64. doi:
10.1145/2822013.2822017. 3

[FMD∗19] FULTON L., MODI V., DUVENAUD D., LEVIN D. I., JACOB-
SON A.: Latent-space Dynamics for Reduced Deformable Simulation.
Computer Graphics Forum (Proc. Eurographics) 38, 2 (2019), 379–391.
doi:10.1111/cgf.13645. 1, 2

[GCS∗19] GUNDOGDU E., CONSTANTIN V., SEIFODDINI A., DANG
M., SALZMANN M., FUA P.: GarNet: A two-stream network for fast and
accurate 3D cloth draping. In Proc. of IEEE International Conference
on Computer Vision (ICCV) (2019). doi:10.1109/ICCV.2019.
00883. 3, 7

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification us-
ing quadric error metrics. In Proc. of the Annual conference on Com-
puter Graphics and interactive techniques (1997), pp. 209–216. doi:
0.1145/258734.258849. 6

[GPV∗15] GILLETTE R., PETERS C., VINING N., EDWARDS E., SHEF-
FER A.: Real-Time Dynamic Wrinkling of Coarse Animated Cloth. In
Proc. of ACM SIGGRAPH / Eurographics Symposium on Computer An-
imation (SCA) (2015). doi:10.1145/2786784.2786789. 2

[GRH∗12] GUAN P., REISS L., HIRSHBERG D. A., WEISS A., BLACK
M. J.: DRAPE: DRessing Any PErson. ACM Transactions on Graph-
ics (Proc. SIGGRAPH) 31, 4 (2012). doi:10.1145/2185520.
2185531. 1, 3

[HDDN19] HOLDEN D., DUONG B. C., DATTA S.,
NOWROUZEZAHRAI D.: Subspace Neural Physics: Fast Data-
Driven Interactive Simulation. In Proc. of ACM SIGGRAPH /
Eurographics Symposium on Computer Animation (SCA) (2019).
doi:10.1145/3309486.3340245. 2

[KCMF12] KIM T.-Y., CHENTANEZ N., MÜLLER-FISCHER M.: Long
range attachments – A method to simulate inextensible clothing in com-
puter games. In Proc. of ACM SIGGRAPH / Eurographics Symposium
on Computer Animation (SCA) (2012), pp. 305–310. doi:10.5555/
2422356.2422399. 2

[KGBS11] KAVAN L., GERSZEWSKI D., BARGTEIL A. W., SLOAN
P.-P.: Physics-Inspired Upsampling for Cloth Simulation in Games.
In Proc. of ACM SIGGRAPH (2011). doi:10.1145/1964921.
1964988. 1, 2

[KJM10] KALDOR J. M., JAMES D. L., MARSCHNER S.: Efficient yarn-
based cloth with adaptive contact linearization. In Proc of ACM SIG-
GRAPH (2010). doi:10.1145/1833349.1778842. 2

[LCT18] LAHNER Z., CREMERS D., TUNG T.: Deepwrinkles: Ac-
curate and realistic clothing modeling. In Proc. of European Con-
ference on Computer Vision (ECCV) (2018). doi:10.1007/
978-3-030-01225-0_41. 3

[LLK19] LIANG J., LIN M., KOLTUN V.: Differentiable Cloth Simula-
tion for Inverse Problems. In Advances in Neural Information Processing
Systems (NeurIPS) (2019), pp. 771–780. 2

[LMR∗15] LOPER M., MAHMOOD N., ROMERO J., PONS-MOLL G.,
BLACK M. J.: Smpl: A skinned multi-person linear model. ACM
Transactions on Graphics (Proc. SIGGRAPH Asia) 34, 6 (2015), 1–16.
doi:10.1145/2816795.2818013. 2, 3, 5, 6, 7

[LSLW16] LARSEN A. B. L., SØNDERBY S. K., LAROCHELLE H.,
WINTHER O.: Autoencoding beyond Pixels Using a Learned Similarity
Metric. In Proc. of International Conference on International Confer-
ence on Machine Learning (ICML) (2016), pp. 1558–1566. 3

[MC10] MÜLLER M., CHENTANEZ N.: Wrinkle meshes. In Proc. of
ACM SIGGRAPH / Eurographics Symposium on Computer Animation
(SCA) (2010), pp. 85–92. 1, 2

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1145/1186822.1073207
https://doi.org/10.1145/1186822.1073207
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1109/ICCV.2015.265
https://doi.org/10.1145/2461912.2461975
https://doi.org/10.1145/2461912.2461975
https://doi.org/10.1145/1360612.1360698
https://doi.org/10.1145/1360612.1360698
https://doi.org/10.1109/ICCV.2019.00552
https://doi.org/10.1109/ICCV.2019.00552
https://doi.org/10.1016/j.cag.2017.11.008
https://doi.org/10.1016/j.cag.2017.11.008
https://doi.org/10.1145/2661229.2661279
https://doi.org/10.1145/2661229.2661279
https://doi.org/10.1145/2786784.2786801
https://doi.org/10.1111/cgf.12296
https://doi.org/10.1111/cgf.12296
https://doi.org/10.1145/1399504.1360697
https://doi.org/10.1145/1399504.1360697
https://doi.org/10.1145/1778765.1778843
https://doi.org/10.1145/1778765.1778843
https://doi.org/10.5555/3157382.3157527
https://doi.org/10.5555/3157382.3157527
https://doi.org/10.1111/cgf.13125
https://doi.org/10.1145/2822013.2822017
https://doi.org/10.1145/2822013.2822017
https://doi.org/10.1111/cgf.13645
https://doi.org/10.1109/ICCV.2019.00883
https://doi.org/10.1109/ICCV.2019.00883
https://doi.org/0.1145/258734.258849
https://doi.org/0.1145/258734.258849
https://doi.org/10.1145/2786784.2786789
https://doi.org/10.1145/2185520.2185531
https://doi.org/10.1145/2185520.2185531
https://doi.org/10.1145/3309486.3340245
https://doi.org/10.5555/2422356.2422399
https://doi.org/10.5555/2422356.2422399
https://doi.org/10.1145/1964921.1964988
https://doi.org/10.1145/1964921.1964988
https://doi.org/10.1145/1833349.1778842
https://doi.org/10.1007/978-3-030-01225-0_41
https://doi.org/10.1007/978-3-030-01225-0_41
https://doi.org/10.1145/2816795.2818013


R. Vidaurre, I. Santesteban, E. Garces, & D. Casas / Fully Convolutional Graph Neural Networks for Parametric Virtual Try-On

[MCKM14] MÜLLER M., CHENTANEZ N., KIM T.-Y., MACKLIN M.:
Strain Based Dynamics. In Proc. of ACM SIGGRAPH / Eurographics
Symposium on Computer Animation (SCA) (2014), pp. 149–157. doi:
10.1145/2343483.2343501. 2

[MHHR07] MÜLLER M., HEIDELBERGER B., HENNIX M., RATCLIFF
J.: Position Based Dynamics. Journal of Visual Communication and Im-
age Representation 18, 2 (2007). doi:10.1016/j.jvcir.2007.
01.005. 2

[MNA16] MILLETARI F., NAVAB N., AHMADI S.-A.: V-Net: Fully
Convolutional Neural Networks for Volumetric Medical Image Segmen-
tation. In International Conference on 3D Vision (3DV) (2016), pp. 565–
571. doi:10.1109/3DV.2016.79. 2

[MYR∗20] MA Q., YANG J., RANJAN A., PUJADES S., PONS-MOLL
G., TANG S., BLACK M. J.: Learning to Dress 3D People in Generative
Clothing. In Proc. of Computer Vision and Pattern Recognition (CVPR)
(2020). 2, 3

[NH14] NEOPHYTOU A., HILTON A.: A layered model of human body
and garment deformation. In Proc. of International Conference on 3D
Vision (3DV) (2014), pp. 171–178. doi:10.1109/3DV.2014.52. 3

[NMK∗06] NEALEN A., MÜLLER M., KEISER R., BOXERMAN E.,
CARLSON M.: Physically Based Deformable Models in Computer
Graphics. Computer Graphics Forum 25, 4 (2006), 809–836. 1, 2

[NSO12] NARAIN R., SAMII A., O’BRIEN J. F.: Adaptive Anisotropic
Remeshing for Cloth Simulation. ACM Transactions on Graphics (Proc.
SIGGRAPH Asia) 31, 6 (2012), 1–10. doi:10.1145/2366145.
2366171. 1, 2, 5, 6, 8

[PKC∗16] PRADA F., KAZHDAN M., CHUANG M., COLLET A., HOPPE
H.: Motion Graphs for Unstructured Textured Meshes. ACM Transac-
tions on Graphics (Proc. SIGGRAPH) 35, 4 (2016). doi:10.1145/
2897824.2925967. 3

[PLPM20] PATEL C., LIAO Z., PONS-MOLL G.: The Virtual Tailor: Pre-
dicting Clothing in 3D as a Function of Human Pose, Shape and Garment
Style. In Proc. of Computer Vision and Pattern Recognition (CVPR)
(2020). 2, 3

[PMPH17] PONS-MOLL G., PUJADES S., HU S., M. J.: Cloth-
Cap: Seamless 4D clothing capture and retargeting. ACM Transac-
tions on Graphics (Proc. SIGGRAPH) 36, 4 (2017). doi:10.1145/
3072959.3073711. 3

[PZB∗09] POPA T., ZHOU Q., BRADLEY D., KRAEVOY V., FU H.,
SHEFFER A., HEIDRICH W.: Wrinkling Captured Garments Using
Space-Time Data-Driven Deformation. Computer Graphics Forum
(Proc. Eurographics) 28, 2 (2009), 427–435. doi:10.1111/j.
1467-8659.2009.01382.x. 3

[RBSB18] RANJAN A., BOLKART T., SANYAL S., BLACK M. J.: Gen-
erating 3D Faces Using Convolutional Mesh Autoencoders. In Proc. of
European Conference on Computer Vision (ECCV) (2018), pp. 725–741.
doi:10.1007/978-3-030-01219-9_43. 3, 6

[RCR∗16] ROBERTINI N., CASAS D., RHODIN H., SEIDEL H.-P.,
THEOBALT C.: Model-Based Outdoor Performance Capture. In Proc.
of International Conference on 3D Vision (3DV) (2016), pp. 166–175.
doi:10.1109/3DV.2016.25. 3

[RFB15] RONNEBERGER O., FISCHER P., BROX T.: U-Net: Convolu-
tional Networks for Biomedical Image Segmentation. In International
Conference on Medical image computing and computer-assisted inter-
vention (MICCAI) (2015), pp. 234–241. 6

[RPC∗10] ROHMER D., POPA T., CANI M.-P., HAHMANN S., SHEF-
FER A.: Animation Wrinkling: Augmenting Coarse Cloth Simulations
with Realistic-Looking Wrinkles. ACM Transactions on Graphics (Proc.
SIGGRAPH Asia) 29, 6 (2010), 1–8. doi:10.1145/1882261.
1866183. 2

[SB12] SIFAKIS E., BARBIC J.: FEM simulation of 3D deformable
solids: a practitioner’s guide to theory, discretization and model reduc-
tion. In SIGGRAPH 2012 Courses. ACM, 2012, pp. 1–50. doi:
10.1145/2343483.2343501. 2

[SGOC20] SANTESTEBAN I., GARCES E., OTADUY M. A., CASAS D.:
SoftSMPL: Data-driven Modeling of Nonlinear Soft-tissue Dynamics for
Parametric Humans. Computer Graphics Forum (Proc. Eurographics)
39, 2 (2020). doi:10.1111/cgf.13912. 3

[SH07] STARCK J., HILTON A.: Surface Capture for Performance-Based
Animation. IEEE Computer Graphics and Applications 27, 3 (2007),
21–31. doi:10.1109/MCG.2007.68. 3

[SLD17] SHELHAMER E., LONG J., DARRELL T.: Fully Convolutional
Networks for Semantic Segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 39, 4 (2017), 640–651. doi:10.
1109/TPAMI.2016.2572683. 2

[SOC19] SANTESTEBAN I., OTADUY M. A., CASAS D.: Learning-
Based Animation of Clothing for Virtual Try-On. Computer Graph-
ics Forum (Proc. Eurographics) 38, 2 (2019). doi:10.1111/cgf.
13643. 2, 3, 4, 5, 7, 8, 9

[SSK∗05] SCHOLZ V., STICH T., KECKEISEN M., WACKER M., MAG-
NOR M.: Garment Motion Capture Using Color-Coded Patterns. Com-
puter Graphics Forum 24, 3 (2005), 439–447. doi:10.1111/j.
1467-8659.2005.00869.x. 3

[TGLX18] TAN Q., GAO L., LAI Y.-K., XIA S.: Variational Autoen-
coders for Deforming 3D Mesh Models. In Proc. of Computer Vi-
sion and Pattern Recognition (CVPR) (2018), pp. 5841–5850. doi:
10.1109/CVPR.2018.00612. 3

[TWL∗18] TANG M., WANG T., LIU Z., TONG R., MANOCHA D.: I-
Cloth: Incremental Collision Handling for GPU-Based Interactive Cloth
Simulation. ACM Transactions on Graphics (Proc. SIGGRAPH Asia)
37, 6 (2018). doi:10.1145/3272127.3275005. 1

[UKIG11] UMETANI N., KAUFMAN D. M., IGARASHI T., GRINSPUN
E.: Sensitive couture for interactive garment modeling and editing. ACM
Transactions on Graphics (Proc. SIGGRAPH) 30, 4 (2011). doi:10.
1145/2010324.1964985. 2, 4

[VBMP08] VLASIC D., BARAN I., MATUSIK W., POPOVIĆ J.: Artic-
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