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Abstract

We present a data-driven method for learning to generate animations of 3D garments
using a 2D image diffusion model. In contrast to existing methods, typically based on
fully connected networks, graph neural networks, or generative adversarial networks,
which have difficulties to cope with parametric garments with fine wrinkle detail, our
approach is able to synthesize high-quality 3D animations for a wide variety of garments
and body shapes, while being agnostic to the garment mesh topology. Our key idea
is to represent 3D garment deformations as a 2D layout-consistent texture that encodes
3D offsets with respect to a parametric garment template. Using this representation, we
encode a large dataset of garments simulated in various motions and shapes and train
a novel conditional diffusion model that is able to synthesize high-quality pose-shape-
and-design dependent 3D garment deformations. Since our model is generative, we can
synthesize various plausible deformations for a given target pose, shape, and design.
Additionally, we show that we can further condition our model using an existing garment
state, which enables the generation of temporally coherent sequences.

1 Introduction
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Figure 1: Three garment designs 3D garment
deformation model.

Animating cloth is a fundamental prob-
lem in Computer Graphics and a crucial
for creating 3D virtual humans that wear
realistic, deformable garments. While
traditional approaches based on physics-
based simulation [2, 23, 53, 62] have
achieved impressive advances in speeding
up the simulation [6, 47, 50, 67], they re-
main computationally very expensive.

In the last few years, many learning-
based methods [4, 17, 26, 40, 51, 59, 74]
have emerged as an alternative to physics-
based solutions for clothing. These meth-
ods leverage modern machine learning
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tools, such as deep neural networks, capable of modeling highly-dimensional nonlinear
functions from data, allowing them to learn how clothing deforms. Given such a challeng-
ing task, designing an effective representation to encode 3D garments is key for learning-
based models to be successful. To this end, some methods use multilayer perceptrons
(MLP) or graph-based networks to directly infer the 3D vertices position of a predefined
garment [4, 51, 59, 69, 85] or body [40] template, but do not generalize to unseen garment
mesh topologies (i.e., the number of vertices must be fixed).To circumvent this limitation,
some works have explored fully-convolutional graph-based architectures [74], which make
the network agnostic to mesh triangulation, but struggle with local fine-scale wrinkles. Other
approaches model 3D outfits using point clouds [41, 42, 82] or implicit [9, 70] representa-
tions, but detailed and topologically consistent mesh outputs remain challenging.

Instead of working in the 3D domain, some works have explored the use of 2D image-
based representations to encode 3D garments, and to leverage the well-studied deep learning
architectures such as GANs [34, 63, 84] for image processing to model garment details.
However, GANs are difficult to train (e.g., they easily suffer from vanishing gradient [1])
and their expressiveness is limited.

To address the limitations discussed above, we propose a novel method for learning to
deform 3D garments. Our method is based on the recently introduced 2D diffusion mod-
els for image synthesis [18]. Our key idea is to train a conditional diffusion model on 2D
images that encodes 3D offsets with respect to a parametric garment template. To this end,
we first encode into a 2D layout-consistent UV texture a dataset of 3D garments simulated
in different motions and body shapes. Then, we learn a pose-shape-and-design conditioned
diffusion model able to synthesize these 2D textures, which are converted into animations of
3D parametric garments. Since the encoding and inference of the deformations is done in the
UV space, our model is agnostic to the discretization of the garment mesh, while capable of
synthesizing fine-scale wrinkles thanks to the underlying diffusion model. Importantly, we
also propose a solution to condition the model on an existing garment state, enabling the gen-
eration of temporally coherent sequences. We qualitatively and quantitatively demonstrate
that our approach is capable of generating high-quality 3D animations for a wide variety of
garments, body shapes, and motions, outperforming the closest previous works for similar
tasks that are based on graph neural networks or MLPs.

2 Related Work
Deformations in 3D space. Numerous methods use traditional mechanics like solving
ODEs to deform cloth [48]. Some model mechanics at yarn level for realism [8, 28], but
they re computationally heavy for interactivity. Recent GPU-based solutions generate de-
tailed outputs efficiently [76, 78]. Many works attempt to reduce the computational cost
using, for example, position-based dynamics [31, 45, 46], model reduction [11, 13, 21, 64],
or adding detail to low-res simulations [14, 29, 88], but do not scale to dozens of garments.

Physics-based methods like [3, 72] model garment design, simulating user-defined pa-
rameters to compute 3D drape. Our approach predicts 3D drape directly from garment pa-
rameters without simulation, accommodating any design, mesh topology, body shape, or
pose. Recent techniques like differentiable cloth simulation [36] and physics-based meth-
ods [24, 71] show promise in optimizing parameters for desired 3D shapes. However, they’re
expensive, rely on simplified models, and struggle with collision handling.

To circumvent the simulation computational costs, many recent methods have been pro-
posed to learn 3D clothing models from data. Guan et al. [16] first use 3D simulations to
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learn how to deform garments based on body shape and pose, but their linear model struggles
with fine details. Similarly, Xu et al. [79] retrieve garment parts from a simulated dataset
to synthesize pose-dependent clothing meshes, but do not model shape deformations. More
recent methods use machine learning to predict garment deformations as a function of body
pose alone [17], or pose and shape [58], some even capable of learning style [51] or anima-
tion dynamics [85] as a function of fabric parameters [77]. However, these methods require
a regressor for each garment, hindering their deployment to massive use. In contrast, our
method can deform a variety of garments using the same model.

Other works emply graph neural networks to model 3D geometry [15, 17, 35, 40, 55].
Vidaurre et al. [74] propose a similar approach to ours using fully-convolutional graph neural
networks to handle arbitrary mesh topology and parametric designs. However, their approach
is limited to a single pose while we generalize to pose, shape and design.

Deformations in UV space. The bijective mapping between a 3D surface and 2D plane can
be done using UV maps. This representations allows to store 3D vertices in a continous space
suitable to be processed with standard convolutional neural networks. There are several
methods that leverage such 2D representation to encode 3D geometry, either explicitly as
input/output to the system, or implicitly, as an intermediate step followed by neural decoders
[86]. Shen et al. [63] introduce an image-based latent representation for sewing patterns
that are decoded using a generative adversarial network. Su et al. [66] presents a unified
neural pipeline to represent garments that can be animated and parameterized by body shape
and pose. As opposed to ours, they represent the garment as a distance map with respect to
the UVs of the SMPL [37] human body mesh. Xu et al. [80] model the garment geometry
from real photos by estimating the UV textures of a deformed garment template. A common
strategy to modeling wrinkles consists of enhancing the coarse geometry with a network
that outputs a detailed normal map [34], where the material type can be used as additional
cue[84]. Zhang et al. [85] renders detailed geometry of a dynamic sequence by learning deep
features attached to an initial garment template. In a related recent method, Korosteleva et
al. [33] follow a different paradigm to estimate the sewing pattern from a point cloud. Their
method models the sewing patterns in vector space, as opposed to using UV maps.

Diffusion Models for Human Animation. Diffusion models are a type of generative model
trained through the denoising diffusion process. Due to their ability to produce high-quality
results [10, 54, 57], outperforming GANs, they have recently received increased attention
in multiple domains such as image synthesis [56], 3D models [52], or pointclouds [38].
Related to our goal of synthesizing garments, many recent works have explored the use of
diffusion models to generate humans from text descriptions [22, 25, 32, 83]. These works
achieve outstanding results, including photorealistic appearance and 3D details, but they do
not generate pose-dependent deformations. Furthermore, outfit and body 3D details are en-
coded into a single mesh or image, which precludes the explicit manipulation of the garment
layer. In contrast, our approach synthesizes pose-shape-and-design dependent deformations
for explicit 3D garments, enabling the generation of layered clothed humans.

To enable dynamic and animated downstream tasks, diffusion models have been ex-
tended to the temporal domain. For example, they have been explored in the context of
text-to-motion [5, 7, 20, 65, 75], image-to-video [49, 81], point clouds [38], or video syn-
thesis [39, 75, 81]. Diffusion models have also been used to encode human motion from
sparse inputs [12] and from text input [30, 68, 87]. Inspired by Ho et al. [19], we propose to
condition garment deformations on the previous garment state encoded as UV texturemap,
which yields temporally-coherent 3D animation wrinkles and folds.

Citation
Citation
{Xu, Umentani, Chao, Mao, Jin, and Tong} 2014

Citation
Citation
{Gundogdu, Constantin, Seifoddini, Dang, Salzmann, and Fua} 2019

Citation
Citation
{Santesteban, Otaduy, and Casas} 2019

Citation
Citation
{Patel, Liao, and Pons-Moll} 2020

Citation
Citation
{Zhang, Wang, Ceylan, and Mitra} 2021{}

Citation
Citation
{Wang, Shao, Fu, and Mitra} 2019

Citation
Citation
{Grigorev, Thomaszewski, Black, and Hilliges} 2023

Citation
Citation
{Gundogdu, Constantin, Seifoddini, Dang, Salzmann, and Fua} 2019

Citation
Citation
{Larsen, ST1o {}nderby, Larochelle, and Winther} 2016

Citation
Citation
{Ma, Yang, Ranjan, Pujades, Pons-Moll, Tang, and Black} 2020

Citation
Citation
{Ranjan, Bolkart, Sanyal, and Black} 2018

Citation
Citation
{Vidaurre, Santesteban, Garces, and Casas} 2020

Citation
Citation
{Zhang, Ceylan, and Mitra} 2022{}

Citation
Citation
{Shen, Liang, and Lin} 2020

Citation
Citation
{Su, Yu, Wang, and Liu} 2023

Citation
Citation
{Loper, Mahmood, Romero, Pons-Moll, and Black} 2015

Citation
Citation
{Xu, Yang, Sun, Tan, Li, and Zhou} 2019

Citation
Citation
{Lähner, Cremers, and Tung} 2018

Citation
Citation
{Zhang, Wang, Ceylan, and Mitra} 2021{}

Citation
Citation
{Zhang, Wang, Ceylan, and Mitra} 2021{}

Citation
Citation
{Korosteleva and Lee} 2022

Citation
Citation
{Croitoru, Hondru, Ionescu, and Shah} 2023

Citation
Citation
{Ramesh, Dhariwal, Nichol, Chu, and Chen} 2022

Citation
Citation
{Saharia, Chan, Saxena, Li, Whang, Denton, Ghasemipour, Gontijoprotect unhbox voidb@x protect penalty @M  {}Lopes, Karagolprotect unhbox voidb@x protect penalty @M  {}Ayan, Salimans, etprotect unhbox voidb@x protect penalty @M  {}al.} 2022{}

Citation
Citation
{Saharia, Chan, Chang, Lee, Ho, Salimans, Fleet, and Norouzi} 2022{}

Citation
Citation
{Poole, Jain, Barron, and Mildenhall} 2022

Citation
Citation
{Luo and Hu} 2021

Citation
Citation
{Hong, Zhang, Pan, Cai, Yang, and Liu} 2022

Citation
Citation
{Jiang, Yang, Qiu, Wu, Loy, and Liu} 2022

Citation
Citation
{Kolotouros, Alldieck, Zanfir, Bazavan, Fieraru, and Sminchisescu} 2023

Citation
Citation
{Zhang, Chen, Yang, Qu, Wang, Chen, Long, Zhu, Du, and Zheng} 2023

Citation
Citation
{Blattmann, Rombach, Ling, Dockhorn, Kim, Fidler, and Kreis} 2023

Citation
Citation
{Chen, Jiang, Liu, Huang, Fu, Chen, and Yu} 2023

Citation
Citation
{Ho, Salimans, Gritsenko, Chan, Norouzi, and Fleet} 2022{}

Citation
Citation
{Singer, Polyak, Hayes, Yin, An, Zhang, Hu, Yang, Ashual, Gafni, Parikh, Gupta, and Taigman} 2023

Citation
Citation
{Voleti, Jolicoeur-Martineau, and Pal} 2022

Citation
Citation
{Ni, Shi, Li, Huang, and Min} 2023

Citation
Citation
{Yu, Sohn, Kim, and Shin} 2023

Citation
Citation
{Luo and Hu} 2021

Citation
Citation
{Luo, Chen, Zhang, Huang, Wang, Shen, Zhao, Zhou, and Tan} 2023

Citation
Citation
{Voleti, Jolicoeur-Martineau, and Pal} 2022

Citation
Citation
{Yu, Sohn, Kim, and Shin} 2023

Citation
Citation
{Du, Kips, Pumarola, Starke, Thabet, and Sanakoyeu} 2023

Citation
Citation
{Kim, Kim, and Choi} 2022

Citation
Citation
{Tevet, Raab, Gordon, Shafir, Bermano, and Cohen-Or} 2022

Citation
Citation
{Zhang, Cai, Pan, Hong, Guo, Yang, and Liu} 2022{}

Citation
Citation
{Ho, Saharia, Chan, Fleet, Norouzi, and Salimans} 2022{}



4 VIDAURRE, GARCÉS, CASAS: DIFFUSEDWRINKLES

3 Overview
Our goal is to predict 3D garment deformations from body pose, shape, and design param-
eters. In Section 4, we introduce our garment representation: a 3D mesh encoded with an
MLP network for global design, and an image-based method for folds and wrinkles from
body pose and shape. Using a data-driven approach, Section 5 presents our key contribu-
tion—a diffusion-based model for predicting image-based wrinkles. Section 6 showcases our
method’s ability to animate various designs with realistic folds and wrinkles in sequences.

4 Garment Representation
Our garment representation builds on top of the existing 3D parametric human models (e.g.,
[27, 37]), borrowing their shape β and pose θ parameterization. Inspired by previous works
[58, 74], we extend SMPL body model formulation [37] to represent a deformed garment as

Mg(β,θ,p) =W (Tg(β,θ,p),J(β),θ,W), (1)

where W is a skinning function (e.g., linear blend skinning, or dual quaternion), J(β) ∈
R3×24 the body joint positions, andW the skinning weights of a deformable garment Tg(·).
Our key difference with previous works [74] is the representation used to encode and learn
the deformable garment Tg(·), which allows us to learn fine-wrinkle detail while being ag-
nostic to both the template mesh topology and the surface discretization detail. To this end,
we propose a deformable template

Tg(β,θ,p) = Gdesign(p)+φ(Gwrinkles(β,θ,p)) (2)

where the first term models the global deformation of the garment due to the design param-
eter p, which covers variations on the length of the garment, the length of the sleeves, and
the depth of the cleavage, and the second term models the local wrinkle details due to body
pose θ, shape β, and design p. In the rest of this section, we provide more details on how we
model each of these terms.

The Gdesign term models the global design-dependent deformations in T-pose. In prac-
tice, we learn a function Gdesign : |p| −→ Ng× 3+Ng× 2 using a shallow multilayer percep-
tron (MLP) network that outputs Ng 3D vertex positions and their corresponding 2D texture
coordinates of a morphable T-shirt template parameterized by sleeve length, font-and-back
pannel length, and cleavage (i.e., the basic set of design parameters that enable the modeling
of dresses, t-shirt, sweater, tops, and similar garments). Importantly, we design our garment
model such that all designs share the same UV parametrization.

The Gwrinkles is our key contribution to the garment model, and addresses the goal of
adding pose-dependent and/or shape-dependent deformations to the output of Gdesign. In
contrast to previous works, which use displacements encoded in an MLP [58, 60] or graph
neural networks [74], we opt for encoding the deformations in a 2D displacement map stored
as an RGB image (i.e., a UV texture map). The φ : 2−→ 3 operator represents the projection
operator from 2D pixel coordinates to 3D mesh coordinates which, in practice, we imple-
ment using the known mesh surface parameterization implicit in the UV coordinates. A key
design choice of our garment representation is that all Gdesign outputs share a common mesh
parametrization, which means that they all use the same 2D layout despite encoding different
designs. This is a fundamental property of our representation that significantly simplifies the
learning of garment wrinkles since it spatially normalizes our ground truth data.
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5 Data-Driven Diffusion-based Wrinkles
In this section, we describe how we learn the term Gwrinkles of our garment model defined in
Equation 2 using a diffusion model. Diffusion models [18] are a type of generative models
that learn a target data distribution by gradually removing Gaussian noise added by a Marko-
vian process. Furthermore, they can be conditioned on input variables through a conditional
embedding, introduced in different layers via an MLP, as depicted in Figure 2. In the subse-
quent sections, we describe our conditional diffusion model for static scenarios (Section 5.1)
and discuss integrating temporal constraints for generating coherent 3D garment animations
(Section 5.2).

5.1 Pose-shape-and-designed Conditional Wrinkles
Our goal is to learn a conditional diffusion model of the form p(y|c), where y←Gwrinkles(β,θ,p)
is a UVs image representing the displacement vector and c= [β ,θ ,p] is the conditioning vec-
tor that includes shape β , pose θ , and design p parameters. Given Gwrinkles, the deformation
is obtained through Equation 2.

Our diffusion model follows the formulation of Ho et al. [18] that learns to predict the
noise ε added at a certain step t of the markovian chain.

For training, we iteratively add random noise to the ground truth data until convergence,
according to the following loss function:

L(ω) = E
ε,y0,t,c

∥∥∥ε− fω

(
c,
√

ᾱty0 +
√

1− ᾱtε, t
)
)
∥∥∥2

2
, (3)

where fω is the learned neural network, ε ∼N (0,I) is randomly generated Gaussian noise,
t ∼ U({1, ...,T}) is sampled from the Uniform distribution, and y0 the ground truth sample.
Finally, ᾱt = ∏

t
s=1 αs is the aggregated noise variance that can be computed in closed form

at any timestep t [18]. For inference, we perform the reverse process iteratively as:

yt−1 =
1
√

αt

(
yt −

√
1−αt fω (c,yt , t)

)
(4)

At the beginning of the diffusion process (t = T) the initial value for yt=T is virtually in-
distiguishable from Gaussian noise. Then, iteratively, from t = T until t = 1 this image is
denoised by substracting the outputs predicted by the neural network fω until we obtain an
approximation of y0.

5.2 Temporally Coherent Garment Wrinkles
Using the diffusion model described in Section 5.1 we can generate plausible wrinkles con-
ditioned on pose, shape, and design. However, if we sample the model for a sequence of
poses, we will obtain a non-temporally coherent animation: consecutive frames will exhibit
significantly different deformations. This is due to the generative nature of the model, since
we sample it with random noise it can produce different results even for the same condi-
tion. This prevents the conditional model from Section 5.1 to generate temporally coherent
animations of garments.

To tackle this issue, we take inspiration from cascade models for high-resolution image
synthesis that condition a sample on a low-resolution version of the target image to drive
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Conv Block Attention BlockResBlockPositional
Embeddingnoise level t

+
MLP

pose 𝜃𝜃 ∈ ℝ72 shape 𝛽𝛽 ∈ ℝ
design p ∈ ℝ3 MLP

Conditional Embedding Convolution Down/up Attention

UNet

𝑓𝑓𝜔𝜔
𝑦𝑦

+ +

Figure 2: We use a UNet [18] architecture
with six Resnet blocks. The conditioning
vector, aggregated in the ResNet blocks, con-
tains the pose, shape, and design parameters.

conditional embedding
𝒚!

𝑔(𝒚!"#)
Data augmentation UNet

Figure 3: Temporal coherent diffusion
model. To account for temporal consistency
in the generated sequences while varying
pose parameter, we concatenate the output
of the previous frame in the sequence.

the diffusion process towards a specific target [19]. We propose to use a similar strategy to
enforce temporal coherency. To this end, to synthesize the garment deformations at frame
n, we further condition our diffusion model from Section 5.1 on the output image yn−1 of
the previous frame n− 1 of the sequence. In practice, we implement this by adding into
our neural network fω an extra input g(yn−1) that is concatenated to y. To avoid overfitting
this new conditional signal to the training ground truth values of yn−1, we apply several
perturbations g() to the UV images that will be described in the implementation section.
Figure 3 illustrates this process.

6 Results and Evaluation

6.1 Dataset
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Figure 4: Dataset samples. We simulate gar-
ments on different bodies (top), which we con-
vert into a UV image (bottom) that faithfully
reconstruct the original garment (middle).

To train our method, we first build a large
dataset of UV-encoded deformations for a
variety of garment designs worn by differ-
ent body poses and shapes. To this end, we
first manually create a deformable template
of a 3D garment parameterized by length,
sleeve, and cleavage. Importantly, all de-
signs sampled by this parametric template
share the same 3D-to-2D parameterization
(i.e., the same UV layout).

Using a state-of-the-art cloth simula-
tor [47], we statically simulate a wide va-
riety of garment designs worn by different
SMPL [37] body sequences from AMASS
dataset [43]. For each simulated frame,
similar to [58], we project the deformed garment into a canonical state (i.e., T-pose) by un-
posing the mesh using the inverse transform of the skinning weights of the underlying body
pose. We then compute the per-vertex offset between the unposed mesh and the template
mesh and store it as an RGB value of a texture image using the known 3D-to-2D mapping.
Following this strategy and using standard barycentric coordinates, we can assign a value
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to all pixels of the texture map. Generated texture maps effectively encode the 3D garment
deformations in a convenient 2D image format that can be exploited with a diffusion model.
Following the reverse process, we can reconstruct a deformed 3D garment by querying the
UV texture value of each vertex, and then posing the garment using the skinning values of
the target pose, as shown in Equation 1.

Figure 4 depicts a few samples of our dataset including ground truth simulations (top),
the corresponding UV texture encoding deformations (bottom), and the reconstructed 3D
garment from the UV images (middle). In practice, we simulate 17 designs of garments
(7 different garment lengths, 6 different sleeves, and 4 types of cleavage) in 52 sequences,
and generate a 128× 128 pixels UV textures to encode the deformation of each frame. We
train on 11 designs and leave out 6 designs and 5 sequences for validation. Once trained,
our model generalizes to unseen combinations of garment parameters, producing plausible
deformations for new garments.

6.2 Network Architecture and Implementation Details
Our neural network fω from Section 5.1 is implemented as a symmetrical UNet that consists
of six downsampling residual layers. The fifth layer includes a spatial self-attention block,
which has been proven successful in performing global reasoning [73]. Each ResNet layer
has two layers, and the number of output channels for each UNet block is 128, 128, 256,
256, 512, 512. The conditional embedding is implemented as a 2-layer MLP with a 128-
feature vector. We train our model using a batch size of 8 for 100 diffusion steps using a
single NVidia Titan X. Our unoptimized diffusion model can be plugged into recent works
on diffusion distillation techniques [44, 61] to achieve interactive frame rates.

Our temporally coherent diffusion model architecture described in Section 5.2 is analo-
gous to the design of fω described above. The key difference is the input, which is expanded
with the previous frame of the sequence. The architecture does not need to be updated as
both images are concatenated, only changing the depth of the intermediate outputs. Because
at this step the previous frame will already be converged, it will be a strong signal for the
network and potential cause of overfitting. To avoid it, we apply a data augmentation pro-
cess consisting of randomly applying Gaussian blur and color jitter effects. Since we utilize
previous frames from the ground truth during training, they can act as a strong signal for the
network and potentially lead to overfitting. To avoid it, we implement a data augmentation
strategy during training, which consists of randomly applying Gaussian blur and color jit-
ter effects to the previous frame. Furthermore, to prevent the network’s dependency on the
previous frame, we randomly erase portions of the image during training.

6.3 Quantitative Evaluation.
Figure 5 presents a quantitative evaluation of our proposed diffusion model. The blue curve
represents the model conditioned on pose-shape-and-design (Section 5.1), while the red
curve represents our temporally-coherent model additionally conditioned on the previous
state of the garment (Section 5.2). For each model, we plot the per-vertex position error
(left) and the velocity error (right) compared to two ground truth simulations on two valida-
tion garments designs (top and bottom) unseen at train time.

Our temporally-coherent diffusion model consistently outperforms the static model only
conditioned on pose-shape-and-design, delivering lower and much more stable per-frame
vertex error. This is clearly observed at the vertex velocity error plots (Figure 5, right).
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Figure 5: Quantitative evaluation of our temporally-coherent diffusion model (in red) and
per-frame diffusion model (in blue), in two test sequences. Since our temporal model is
conditioned on the previous deformation state of the garment, the resulting animations are
temporally smooth and closer to the ground truth surface.

Figure 6: Qualitative results of five test
garment designs (columns) deformed us-
ing our diffusion-based model driven by a
test motion from AMASS dataset.

Figure 7: Ground truth (top) vs our model
(bottom) on test sequences. Our predictions
closely match the folds and wrinkles obtained
with physics-based methods.

Our temporal model (in red), conditioned on the previous garment state, closely matches the
ground truth velocity, while a static per-frame deformation synthesis (in blue) significantly
and incoherently differs from the ground truth. A qualitative visualization of this plot can be
found in the supplementary video, showcasing smooth surface deformations over time when
using our temporal model.

6.4 Qualitative Evaluation.

Figure 7 compares our diffusion model results (bottom) with ground truth simulations (top)
across diverse garment designs and body poses unseen during training. Despite complex
dynamic deformations and diverse folds, our model accurately matches the ground truth.
Supplementary video provides more animated results.

Figure 6 showcases five validation garment designs worn by differently posed bodies,
exhibiting rich folds and wrinkles that match body pose realistically. This mosaic highlights
the expressive power of our diffusion-based model. Please refer to the supplementary video
for animated results. Similarly, Figure 1 displays natural 3D clothing deformations across
pose, shape, and design during a hip-hop dancing motion from the AMASS dataset.
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Ground truth Ours Vidaurre et al. [74]

Figure 8: Qualitative comparison with [74]
for a garment design unseen at train time.
Our diffusion model predicts 3D deforma-
tions that closely match the ground truth,
while the state-of-the-art method [74] pro-
duces oversmooth deformations.

Ours SNUG [60] HOOD [15]

Figure 9: Qualitative comparison with
SNUG [60] and HOOD [15]. Our method
is on par with their quality, but offers dif-
ferent features. SNUG is limited to a single
garment, and HOOD does not model explicit
garment design parameters

6.5 Comparison to state-of-the-art.

Figure 8 presents a qualitative comparison with the method of Vidaurre et al. [74]. We show
garment deformations obtained by each method for a test design in various body shapes.
Notice that [74] does not model pose-dependent deformations, hence we limit our compari-
son to T-pose avatars. Our method obtains deformations that closely match the ground truth
simulation, which demonstrates that our diffusion-based model is more expressive than the
fully-convolutional graph model of [74].

In Figure 9 and the supplementary video, we present a qualitative comparison of our
method with self-supervised methods SNUG [60] and HOOD [15]. Quantitative comparison
is challenging due to significant differences in representations, models, and objectives. For
instance, SNUG models dynamics but is limited to a single garment, while HOOD produces
compelling results for unseen garments but lacks generativity and explicit incorporation of
design parameters. Despite these disparities, our method demonstrates comparable deforma-
tions to state-of-the-art methods, using a compact image-based representation.

7 Conclusions
We presented DiffusedWrinkles, a method for synthesizing 3D garment deformations based
on pose, shape, and design using a 2D diffusion-based model. Our approach enables rep-
resentation of a wide range of 3D garment designs with consistent 2D layouts, allowing for
image-based diffusion models. We achieve temporally-coherent 3D deformations in anima-
tions through cascade architectures, resulting in compelling results depicting body shape,
pose, and designs.

Despite the step forward of our method in data-driven garment techniques, it has limita-
tions. Similar to [51, 58], body-garment collisions remain a challenge, addressed at inference
by pushing problematic vertices outward. Moreover, the expressivity of the diffusion model
limits generalization; as training samples increase, results may become overly smooth. This
could be improved by employing a Latent Diffusion Model for more expressive image sub-
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spaces. Finally, dynamic effects are currently not modeled. Our approach takes as input the
current state of the garment which yields a temporally-coherent output, but a longer temporal
window and a more complex architecture are needed to model time-dependent effects.
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