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Fig. 1. Our tactile rendering method in action. A virtual hand follows the user and interacts with virtual objects. On each frame, we compute the tactile
stimulus (i.e., skin stress) in this simulation, and use it to find the tactile device configuration that produces the best-matching stimulus (see insets). Then, we
render this device configuration to the user.

We present a method to render virtual touch, such that the stimulus produced
by a tactile device on a user’s skin matches the stimulus computed in a vir-
tual environment simulation. To achieve this, we solve the inverse mapping
from skin stimulus to device configuration thanks to a novel optimization
algorithm. Within this algorithm, we use a device-skin simulation model
to estimate rendered stimuli, we account for trajectory-dependent effects
efficiently by decoupling the computation of the friction state from the opti-
mization of device configuration, and we accelerate computations using a
neural-network approximation of the device-skin model. Altogether, we en-
able real-time tactile rendering of rich interactions including smooth rolling,
but also contact with edges, or frictional stick-slip motion. We validate our
algorithm both qualitatively through user experiments, and quantitatively
on a BioTac biomimetic finger sensor.
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1 INTRODUCTION
Tactile rendering stands for the computer-based generation of vir-
tual touch sensations on the skin. Most works in haptic rendering
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simulate tool-based interaction using robotic devices, which produce
kinesthetic stimulation of muscles, tendons and joints. In contrast,
tactile rendering simulates direct touch interaction, by stimulating
skin mechanoreceptors directly. Progress on different tactile actua-
tion technologies in the last ten years has opened the door to virtual
reality experiences where users touch virtual environments (VEs)
directly with their hands [Otaduy et al. 2016].
Most research in tactile haptics has aimed at the design of actu-

ation devices, with little attention to the design of rendering algo-
rithms for VEs. In previous methods, tactile rendering is simplified
by approximating VE interaction to some primitive with the same
degrees of freedom (DoFs) as the device. However, tactile percep-
tion is a very high-dimensional spatiotemporal process, where the
stimuli of mechanoreceptors are mapped to high-level percepts in a
complex and yet largely unknown way. By limiting the interaction
with VEs to simple primitives, previous tactile rendering methods
limit the ability to explore the richness of tactile perception. To
name some examples, with wearable thimbles, each finger pad is
approximated as one 3D point, and the interaction of this point is
directly programmed as a force vector or a surface orientation [Mi-
namizawa et al. 2007; Prattichizzo et al. 2013; Solazzi et al. 2011];
active surfaces are programmed to reproduce predefined geometric
shapes [Leithinger et al. 2015; Stanley and Okamura 2015]; and air
jets or ultrasound haptics are programmed to produce touch sen-
sations at target locations in space [Long et al. 2014; Sodhi et al.
2013].

We follow a different approach to tactile rendering. We simulate
a realistic interaction in the VE, using a model of the user’s hand
and fingers, and thus we compute a rich target stimulus on each
simulation frame. Once a target stimulus is computed, we solve an
inverse mapping to the tactile device configuration, and we render
this configuration to the user. We choose a mechanical characteriza-
tion of tactile stimuli, using the stress distribution in the skin, and
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we formulate and solve the inverse mapping as skin stress optimiza-
tion. To the best of our knowledge, we propose the first method
that formulates and solves tactile rendering as the optimization of
a mechanical characterization of tactile stimuli. Nevertheless, the
optimization of the stress distribution in the skin is not trivial; we
face four major challenges, which we solve through corresponding
major contributions.

i) Due to hardware limitations, a tactile device can explore only a
subspace of the tactile stimuli computed in a VE simulation, hence
the inverse mapping from tactile stimulus to device configuration
is unfortunately not well defined. To solve this issue, we formulate
a constrained optimization to search the device configuration space,
while producing the best-matching stress.

ii) The full stimulus, i.e., the stress distribution, produced by a
tactile device on the user’s skin cannot be directly measured. As an
alternative, we embed a skin simulation model within our solution.
Then, in the context of numerical optimization, we estimate the
skin stress distribution for a particular device configuration using a
simulation of device-skin interaction.
iii) The skin stress produced by a tactile device is trajectory-

dependent, due to device-skin friction. To address this challenge, we
stagger the computation of friction state and device configuration.
On each rendering frame, we first search for an optimal device
configuration while considering the friction state from the previous
frame as a known input, and next we update the friction state while
considering the device configuration fixed.
iv) The optimization must be executed at tens of frames per sec-

ond to produce a smooth rendering output, and each optimization
requires the evaluation of multiple device-skin simulations while
searching for the optimal device configuration. To avoid the high
computational cost of full device-skin simulations, we have designed
a data-driven model of skin mechanics. This model takes as input
the device configuration and the friction state, and outputs the skin
stress distribution. We implement the data-driven model using a
neural network, trained on simulated device-skin interactions.
Our novel tactile rendering formulation is general, but some

choices of feature descriptors and system components are moti-
vated by the capabilities of the particular device being used. We
have tested our tactile rendering algorithm using a type of thimble
tactile device [Chinello et al. 2015], which is capable of rendering
smooth geometry under interactions of low temporal bandwidth.
In Section 3 we provide detailed descriptions of the main input-
output variables of our algorithm, namely the device configuration,
the device-skin friction state, and the tactile stimulus (i.e., the skin
stress distribution), for our benchmark tactile device.
In Section 4 we describe our data-driven model of skin biome-

chanics, and in Section 5 we provide the full description of our
optimization algorithm for tactile rendering. In Section 7 we dis-
cuss multiple examples of tactile rendering simulations. We have
tested contact with smooth and sharp features, frictional contact,
and interactions that range from exploration to fine grasping. Fig. 1
depicts example VE interactions, the device configurations that pro-
duce best-matching skin stress, and the actual rendering with the
physical device. In contrast to previous tactile rendering methods,

our approach enables a rich VE interaction and maximizes the ren-
dering capabilities of the tactile device. We have validated these
conclusions through two perceptual discrimination experiments.
To evaluate quantitatively the accuracy of our tactile rendering

algorithm, we have also tested it on a BioTac [Syntouch 2018], a
biomimetic finger-shaped tactile sensor with distributed force mea-
surement. We have recorded interactions of the BioTac with various
shapes, and we have then rendered those same interactions using
our algorithm and the thimble tactile device. As discussed in Sec-
tion 6, we demonstrate that the stimuli produced by the device
match closely the original stimuli recorded when interacting with
real-world objects.

2 RELATED WORK
Haptic Rendering. Haptic rendering can be largely classified into

two categories: tool-based and direct-touch interaction. The first
category has dominated algorithmic research, due to the availability
of stylus-type devices to render tool-based interactions with VEs.
Tool-based rendering algorithms control the mechanical impedance
(position or force) displayed to the user, and they are subject to stabil-
ity constraints due to the delay introduced between the kinesthetic
action of the device/algorithm and the action of the user [Colgate
and Brown 1994]. Most algorithms approach the design of stable
rendering by coupling the action of the user through a virtual spring-
damper system to a virtual tool in contact with the rest of the VE.
Stability is easily enforced by limiting the stiffness of the virtual
coupling spring [Colgate et al. 1995], while the maximum allowed
stiffness, and hence the rendering quality, can be increased by max-
imizing the update rate of the rendering algorithm.

Many tool-based rendering algorithms have been proposed, cov-
ering interaction with rigid objects [McNeely et al. 1999], but also
deformable objects [Barbič and James 2008; Duriez et al. 2006], and
differences are discussed in a survey on the topic [Otaduy et al.
2013]. Recently, research attention has been devoted to maximizing
the performance and quality of the virtual tool simulation through
various collision detection and resolution techniques [Wang et al.
2013; Xu and Barbič 2017; Zhao et al. 2018]. The virtual-tool ren-
dering methodology has also been explored to provide kinesthetic
interaction on the hand through exoskeletal gloves, by simulating a
virtual replica of the user’s hand [Garre et al. 2011].

In direct-touch interaction, skin is stimulated directly, using a
large variety of stimulation technologies. Three prevalent technolo-
gies are active surfaces, ultrasound devices, and wearable thimbles.
Note that we focus on technologies capable of rendering shape, and
we leave out other vibrotactile devices [Choi and Kuchenbecker
2013], which aim at rendering surface texture or friction, or even
shape, contact, and friction in a combined manner [Yem et al. 2016].
The spatiotemporal bandwidth of device-skin mechanical interac-
tion in vibrotactile devices is beyond the scope of our work.

Active surfaces expose a deformable surface, composed of an array
of vertical pins [Leithinger et al. 2015], or pushed by pneumatic
actuators and hardened through particle jamming [Stanley and
Okamura 2015]. For the latter case, Stanley and Okamura [2017]
designed a pre-processing optimization method to approximate a
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desired output surface using a mechanical simulation model of the
device.
Ultrasound devices modulate the activation of an array of ultra-

sound transducers to create focal pressure points in space. Inoue et
al. [2015] studied methods to pre-process the activation patterns of
the transducers to optimize the pressure amplitude of pre-defined
focal points, and thus reproduce the touch sensation of 3D shapes.
Long et al. [2014] found a more efficient solution to this optimization
problem, allowing for real-time definition of the location and ampli-
tude of the pressure focal points. Barreiro et al. [2019] developed
a method to optimize dynamically these focal points based on the
pressure exchange with a fluid simulation.
Wearable thimbles move a small end-effector against the finger

pad, producing a local sensation of touch. Due to hardware limita-
tions, they offer a small number of DoFs, between one and three.
The choice of DoFs favors different types of dominant feedback sen-
sations, such as one-line contact location [Provancher et al. 2005],
surface orientation [Chinello et al. 2015; Frisoli et al. 2008; Prat-
tichizzo et al. 2013] or sliding contact and friction forces [Gleeson
et al. 2010; Leonardis et al. 2015; Minamizawa et al. 2007; Schorr
and Okamura 2017]. To provide virtual touch interaction with a
VE, the device is mapped to a virtual point, and the position, force
magnitude, and/or force direction of this virtual point are directly
commanded to the device. Such simplistic rendering algorithms
ignore the full stimulus produced by the device on the user’s skin.
Therefore, a device with one dominant feedback sensation fails to
render other sensations, e.g., a device designed for rendering contact
orientation [Chinello et al. 2015] fails to render sliding contact, and
similarly a device designed for rendering sliding contact [Schorr
and Okamura 2017] fails to render surface orientation. In our results,
we demonstrate that a device designed to render surface orienta-
tion [Chinello et al. 2015] can also produce other sensations, such
as sliding frictional contact, when the full stimulus on the skin is
accounted for.

Some aforementioned tactile rendering methods share with ours
the methodology of computing the device command by solving
an optimization problem. In addition, Perez et al. [2017] proposed
a timid approach to controlling a thimble device by optimizing
contact conditions. They approximated with a thimble device the
local contact geometry around a simulated finger. However, they did
not account for the mechanical interaction between device and skin,
and hence completely ignored aspects such as trajectory dependency
or contact stiffness. Our method optimizes instead the tactile stimuli
produced by the device on the skin, which is a far more complex
problem. To the best of our knowledge, ours is the first solution that
solves tactile rendering by optimizing stimuli of the skin, accounting
for mechanical device-skin interaction.
With wearable thimbles and ultrasound devices, haptic stimula-

tion is limited to the passive outer layer of skin. Under this condition,
tactile rendering is not subject to stability problems due to latency;
therefore, the update rate of the rendering algorithm affects the
bandwidth of the interactions that can be rendered, but it does not
affect stability as in kinesthetic rendering. This is an important
aspect for the design and refresh rate of our algorithm.

Inverse Modeling and Motion Control. Our overall computational
problem can be characterized by an outer optimization loop and an
inner mechanical simulation model. Such nested problems are not
unfamiliar to computer graphics, and arise at least in mechanical
parameter estimation works, computational design for fabrication
of objects with desired mechanical properties, or motion control
of animations or robots. Since the problems may vary strongly,
so do the particular solutions, but we borrow from the general
knowledge in these areas to design our tactile rendering algorithm.
There are two general strategies that are often applied, and which
we also apply: approximation of mechanical models and staggered
optimization.

Staggering is applied when the optimization must solve different
sets of variables, e.g., model parameters and deformation. The op-
timization algorithm iterates solving for one variable set at a time,
keeping the rest fixed. In our work, we apply a staggering approach
to compute friction forces and the device configuration separately,
and thus we handle trajectory dependency efficiently.
The use of approximate mechanical models accelerates com-

putations within the optimization loop. Moreover, the use of the
model for a particular application often enables the design of highly
efficient, application-specific approximations. There are multiple
approaches to the design of approximate models, mainly numeri-
cal coarsening, subspace model reduction, and data-driven models.
Some example applications of model approximation in inverse mod-
eling ormotion control are numerical coarsening for fast optimization-
based design of objects [Chen et al. 2017], subspace model reduction
for fast interactive design of animations [Barbič et al. 2012; Hilde-
brandt et al. 2012], or subspace model reduction for the design of
heterogeneous deformable objects [Xu et al. 2015]. We devote to
data-driven models a subsection of their own below.

In our work, we solve a new optimization problem per rendering
frame, on the fly. Therefore, the approximate mechanical model
is subject to extreme efficiency requirements. We opt for a highly
efficient data-driven model based on neural networks.

Data-Driven Models. The high computational power of modern
neural networks has opened the door to accurate and efficient data-
driven deformable models. The application of neural networks to
accelerate deformable simulation includes approaches such as learn-
ing of constitutive material models [Wang et al. 2019], learning
nonlinear corrections to linear deformations [Luo et al. 2018], and
the design of nonlinear subspace deformation models using autoen-
coders [Fulton et al. 2019].
Another relevant use of data-driven models is hand and grasp

animation. Examples include the use of handmotion data to initialize
animations followed by physics-based control [Zhao et al. 2013],
the animation of fingers using motion segments from pre-recorded
databases [Jörg et al. 2012], or the creation of tentative data-driven
grasping animations followed by spacetime optimization [Ye and
Liu 2012].

To conclude, we highlight two works that build data-driven meth-
ods from tactile stimuli recorded with BioTac sensors. One is a
method to predict stability of robotic grasping [Garcia-Garcia et al.
2019]. The other one is a method for vibrotactile feedback during
teleoperation [Pacchierotti et al. 2016]. We perform a quantitative
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Fig. 2. The 3 DoFs thimble tactile device used as a testbed in this work. It
allows control of the pitchψ and roll θ angles, together with the distance z
of a disk oriented against the finger pad.

validation of our algorithm using BioTac measurements to represent
tactile stimuli, and to this end we also build a data-driven model of
BioTac response.

3 DEVICE, SKIN AND FRICTION DESCRIPTORS
Our tactile rendering algorithm takes as input a target tactile stimu-
lus, and computes as output a device configuration that produces
the best-matching stimulus. Internally, the algorithm staggers the
computation of the device configuration and the friction state, to
handle efficiently the dependency between the device trajectory
and the resulting stimulus. Furthermore, the algorithm leverages
various device-skin simulation models to produce computational
descriptors of tactile stimulus and friction state. Before describing
the algorithm in full detail, in this section we motivate and discuss
its major elements. We start with a description of the tactile device
we use as testbed, and we continue with the reference skin mechan-
ics model. Then, we motivate the choice of stress distribution as
descriptor of tactile stimulus, as well as the choice of friction force
distribution as descriptor of friction state.

3.1 Tactile Device
We denote with x the controlled DoFs of a tactile device. These
DoFs may describe a kinematic configuration (as in the case of our
testbed device, which we discuss next), forces, or some other type
of command. We also consider arbitrary workspace constraints of
the type c(x) ≥ 0.

We have used as testbed a thimble tactile devicewith 3DoFs [Chinello
et al. 2015], shown in Fig. 2. Its end effector is a disk that is pressed
and oriented against the finger pad, and it is controlled in pitchψ
and roll θ angles, together with the distance z from the finger pad.
We formally define the DoFs of our tactile rendering problem as
x = (θ ,ψ , z) ∈ IR3, with a reference system fixed on the nail.

The disk is actuated through a parallel mechanism, with three
servomotors. The motors are placed on the fixed part of the device,
which rests on top of the nail. The three servomotors are connected
through articulated links to the end-effector disk, and they are con-
strained to rotations of ±40 degrees. Due to the parallel nature of the
device mechanism, inverse kinematics are expressed in closed-form,
and the rotational constraints of the servomotors can be expressed
as 6 explicit constraints c(x) ≥ 0. The full kinematics of the device
are described by Chinello et al. [2015].

3.2 Hand and Finger Simulation Models
Since skin stress cannot be directly measured, we leverage instead a
skin mechanics model to estimate skin stress in the various compo-
nents of the rendering algorithm. In particular, we use two different
models: a full-hand model in the VE simulation, to define the target
tactile stimulus; and a finger-device contact model in the numerical
optimization, to evaluate the stimulus produced by tentative device
configurations.
The first step in the rendering algorithm is to simulate the in-

teraction of skin with the objects in the VE, and thus estimate the
target stress. We adopt a full-hand simulation method [Verschoor
et al. 2018], where the virtual hand follows the tracked hand of the
user, and the interaction with virtual objects is computed by solving
frictional contact mechanics in real time. The hand is composed of
an articulated skeleton and surrounding soft tissue. The skeleton
consists of 16 bones and 70 constraints, while the soft tissue is mod-
eled as a linear corotational material discretized into 1474 tetrahedra
and augmented with strain-limiting constraints. Contact is modeled
using the penalty method and springs with sliding anchors to model
Coulomb friction. The full-hand simulation is computed at a visual
rendering rate (30 fps), and outputs the target tactile stimulus to our
tactile rendering algorithm.
In the computation of the optimal device configuration, we esti-

mate tentative rendered stimuli by simulating contact between a
finger skin model and a model of the tactile device. In this context, it
is sufficient to simulate the proximity of skin that is in contact with
the device. Specifically, we use a portion of the full model described
earlier, limited to the distal phalanx of the index finger. This local
model contains a single bone and is meshed with 154 tetrahedra.
It is fixed in the nail area, to represent the mounting of the tactile
device. We compute skin-device interactions by modeling the de-
vice end-effector as a rigid disk, and simulating frictional contact
mechanics between this disk and the local finger model, using the
same method of Verschoor et al. [2018] as mentioned above. In our
staggered optimization, we use two different instances of the skin-
device simulation model. A full instance of the model computes the
friction state given an optimal device configuration. A data-driven
approximation of the model allows fast evaluation of the rendered
stimulus within the numerical optimization loop. This data-driven
approximation is described in detail in Section 4.

The testbed tactile device, described above, is capable of rendering
smooth geometry under interactions of low temporal bandwidth.
Then, our soft-tissue simulation model provides a good compromise
between visuo-haptic fidelity and real-time constraints. It captures
the relevant nonlinear behavior of skin, represents well deforma-
tions of low spatial and temporal bandwidth, and handles friction
smoothly. The model is, however, not suited for vibrotactile ren-
dering, which would require much higher spatial and temporal
bandwidth, and is out of the scope of this work.

3.3 Skin Stress as Descriptor of Tactile Stimuli
Four types of mechanoreceptors characterize glabrous (i.e., hair-
less) skin: Merkel cells, which respond to static indentations or
slowly moving stimuli; Ruffini corpuscles, which respond to skin
stretch; Meissner corpuscles, which respond to low-frequency skin
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Fig. 3. Visualization of the stimulus descriptor, a.k.a. 3-PCA stimulus viz.
Each dot corresponds to the 3 main PCA components of an instance of
stress descriptor. The dots have been generated by simulating device-skin
interactions that span the workspace of the device, and their color represents
the device configuration. The green trajectory is the 3-PCA stimulus viz for
a finger simulation generated by touching a virtual object, not the simulated
device. It becomes apparent that, in this case, the stimulus descriptor reaches
well outside the range produced by the device.

vibrations and movements across the skin; and Pacinian corpus-
cles, which respond to high-frequency vibrations and finely tex-
tured surfaces [Bensmaia and Manfredi 2012; Yau et al. 2016]. These
mechanoreceptors are distributed throughout different parts of the
skin of the finger pad: Merkel cells cover most of the base of in-
termediate epidermal ridges; Ruffini corpuscles are detected at the
base of finger nails; Meissner corpuscles arise mainly in dermal
papillary ridges; and Pacinian corpuscles are sparsely distributed
in the deep dermis [Nolano et al. 2003; Paré et al. 2002]. When re-
stricted to interactions of low temporal bandwidth, it is sufficient
to consider slow adapting mechanoreceptors, i.e., Merkel cells and
Ruffini corpuscles.
The response of mechanoreceptors is induced by their local de-

formation, which is a result of the combined forces applied on the
finger. The full connection between the spatiotemporal distribution
of skin deformation and the cognitive response to tactile perception
is arbitrarily complex, and still unknown, but previous works have
documented the influence of skin stress on the activation of both
Merkel cells [Gerling et al. 2014] and Ruffini corpuscles [Grigg and
Hoffmann 1982]. Furthermore, several studies on the neuroscience
of touch suggest that similarity of skin stress (not necessarily an
exact match) leads to perceptual similarity. In particular, similarity
in the evolution of the skin deformation field has explained the
perceptual similarity between different types of interactions, which
induces tactile illusions. These include: the haptic barberpole illu-
sion where diagonal stripes moving in one direction are perceived
as moving in a different direction [Bicchi et al. 2008], and the illu-
sion of finger motion resulting from changes of fingertip contact
area [Moscatelli et al. 2014]. For these reasons, without loss of gen-
erality, we select the full distribution of stress on the finger pad
skin as descriptor of tactile stimuli. Our rendering method could be

A

B

C

A→C with
friction

A→C no 
friction

B→C with
friction

B→C no 
friction

Fig. 4. 3-PCA stimulus viz of two device trajectories with and without
friction. One trajectory starts from configuration A (green) and the other
one from B (dark blue), and they both reach C (yellow). Without device-skin
contact friction, the stress at C is the same in both cases. With friction, on
the other hand, the final stress depends on the path followed by the device.

easily adapted to account for perceptually inspired weighting of the
stress distribution.

In practice, we sample the stress field of the finger pad. Given the
soft-tissue simulation of the finger, described above, we evaluate
the stress tensor on each element of the local finger mesh, rotated to
the local reference frame of the nail, and we concatenate all stress
tensor values (6 per element for a symmetric stress) into a large
vector σ .

Throughout the paper, we show several visualizations of the stim-
ulus descriptor. To generate the visualizations, we first execute a
large number of device-skin simulations (see more details in Sec-
tion 4.1), we record the stress descriptors, and perform PCA on the
data. Then, we plot a stimulus descriptor as a 3D point, by clamping
it to its 3 main components. We refer to this visualization as the
3-PCA stimulus viz. Note that tactile stimuli cannot be well repre-
sented with just 3 PCA components, and in our optimization-based
formulation we use a much more accurate approximation of the full
stimulus, but this simple visualization suffices to convey differences
across methods and settings.

Fig. 3 shows the 3-PCA stimulus viz for multiple device-skin sim-
ulations that span the workspace of the device, with the 3D points
color-coded according to the device configuration x. The limits of
the workspace are evident in the plot. Fig. 3 also shows, in green, the
3-PCA stimulus viz for a finger simulation generated by touching a
virtual object, not the simulated device. It becomes apparent that
the stimulus descriptor reaches well outside the range produced by
the device, hence the inverse mapping from stimulus descriptor to
device configuration is undefined. As anticipated, we formulate and
solve this inverse mapping as an optimization problem.

3.4 Friction
The stress field generated by the device depends on the current
device configuration, but also on its trajectory. For low-bandwidth
deformations, i.e., neglecting skin vibration, trajectory-dependent
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effects are dominated by contact friction. In other words, frictional
contact plays a dominant role in determining the quasi-static equi-
librium configuration [Ly et al. 2018], and hence the internal skin
stress. Fig. 4 shows the influence of device-skin friction on a 3-PCA
stimulus viz. Two trajectories start from different device configura-
tions and reach the same final configuration. Without friction, the
final skin stress is the same in both cases. With friction, on the other
hand, the final stress depends on the path followed by the device.

We identify the friction state as a notable descriptor of the effect
of the device trajectory on the tactile stimulus. Specifically, using
the local finger model described above in Section 3.2, we compute
the friction forces between the device and the finger at any given
device state. And we use as friction descriptor f a concatenation
of the contact forces at all the surface nodes of the finger model,
rotated to the local reference system of the nail.
The skin stress and the friction forces at an instant t depend on

the full previous device trajectory, which we can formally express as
(σ (t), f(t)) = f (x(0), . . . x(t)). However, using a staggered strategy,
if we assume that the friction state is known, we can consider the
skin stress an instantaneous function of the device configuration
and the friction state, i.e., σ (t) = f (x(t), f(t)). In essence, the effect of
the device trajectory is embedded in the friction state. We leverage
this staggered strategy in our algorithm to efficiently evaluate skin
stimuli.

4 DATA-DRIVEN SKIN MODEL
The finger simulation model described in Section 3.2 provides the
right accuracy for tactile rendering, but its high computational cost
makes it impractical for our optimization-based algorithm. Instead,
we observe that, for a given device configuration and friction state,
we can safely ignore skin dynamics, and then the deformation of the
finger, and hence its stress distribution, can be well approximated
through a quasi-static function. We propose to model this function
in a data-driven manner, using a neural network.

4.1 Data Collection and Subspace Projection
To train the data-driven model, we have used simulation data from
device-finger interactions under random device trajectories. To gen-
erate each trajectory, we sample a pair of device configurations
(xa, xb ) by drawing randomly from a uniform distribution of the
device DoFs, and we discretize the path in between. We discard
trajectories where the initial configuration xa is in contact. For
each step along a trajectory, we simulate device-finger contact, and
if contact exists we store the device configuration xi , the friction
descriptor fi , and the stress descriptor σi . We stop a trajectory if
a maximum contact force is reached. Our data set contains 28279
samples generated from 2400 trajectories, and we have used half of
the data for training and half for testing.
Since the device visits only a subspace of the stress and friction

distributions, as shown in Fig. 3, we propose to project the stress
and friction descriptors to respective subspaces. In this way, the
data-driven skin model becomes compact and can be learned more
effectively.
Given all stress descriptor samples {σi }, we execute PCA, and

retain the main components that satisfy a predefined accuracy (10%

in our experiments). We downscale the stress descriptor from a
full-space of size 924 to a subspace of size 10. Similarly, we execute
PCA on the friction descriptor samples {fi }. We downscale the
friction descriptor from a full-space of size 1182 to a subspace of size
15. Without loss of generality, in the rest of the paper we rename
the stimulus and friction descriptors σ and f to represent their
corresponding subspace projections.

4.2 Neural Network Model
As discussed in Section 3.4, the friction state embeds information
about device trajectory. Then, we can model skin deformation as
a quasi-static problem, considering the friction state as boundary
conditions. Using a neural network, we learn the function σ (x, f),
which approximates quasi-static finger deformation mechanics. It
takes as input the device configuration x and the (subspace) friction
descriptor forces f , to compute an estimate of the (subspace) stress
distribution σ . We choose a fully-connected single-layer neural
network in our implementation. For the particular problem at hand,
the dimensions of the network are: 18 inputs (3 for x and 15 for f),
10 outputs (for σ ), and 260 neurons in the hidden layer.

Given the full set of precomputed device-finger simulations, we
have used half to train the neural network and half to test its ac-
curacy. We achieve an error of 4.2% on the reconstruction of the
test skin-stress data set. We have also compared the accuracy of an
alternative data-driven model σ (x), which ignores the influence of
the device trajectory on the resulting stress due to friction. In this
case, we reach an error of 7.4% on the test skin-stress data set. As
observed in Section 3.4, the influence of friction is confirmed, and it
translates into a less discriminative neural network when friction is
ignored.

Our numerical optimization algorithm requires the evaluation of
the gradient of stimulus estimates w.r.t. device configurations, ∂σ

∂x .
To ensure that the neural network is differentiable w.r.t. its inputs,
we have chosen softplus as the nonlinear activation function, as a
smooth counterpart to the common ReLU unit.

5 SKIN STRESS OPTIMIZATION ALGORITHM
Once all the pieces of our tactile rendering approach are defined,
we present the runtime optimization algorithm. The key insight
of our algorithm is to apply the staggered strategy discussed in
Section 3.4, and decouple the update of device configuration and
friction state. We first describe the overall algorithm, and then the
numerical optimization within.

5.1 Overall Algorithm
Fig. 5 depicts schematically our rendering algorithm. On each frame,
we perform a simulation of contact interaction with a VE, using the
full-hand model described in Section 3.2. Thanks to this simulation,
we obtain the stress distribution on the finger, which defines the
target stimulus σ ∗.
Given the target stimulus, we stagger the computation of the

friction state and the optimal device configuration. To compute the
friction state, we use a simulation of contact between a model of the
tactile device and a local finger model, also described in Section 3.2.
Using the device configuration x from the previous rendered frame,
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Fig. 5. Overview of our tactile rendering algorithm. On every frame, we obtain a target stimulus σ ∗ (i.e., skin stress) from the VE simulation. Using the device
configuration x from the previous frame, we also compute a friction state f . Using both as input, we search for the device configuration that produces the
best-matching stimulus. This search is formulated as a constrained optimization, which evaluates a data-driven model of skin mechanics on each iteration.

we simulate the deformation of the finger and compute the current
friction state descriptor f . Assuming high temporal coherence of
the friction state, we apply our proposed staggered strategy, and
we can estimate tactile stimuli (i.e., skin stress) σ for various device
configurations using the friction state as known external forces.

In our rendering algorithm, we search for the device configuration
whose tactile stimulus matches best the target stimulus. To search
efficiently for such device configuration, we leverage the data-driven
skin model σ (x, f) described in Section 4. Formally, we formulate
the search for the optimal device configuration as the constrained
optimization problem

x = argmin
��σ (x, f) − σ ∗�� , s.t. c(x) ≥ 0, (1)

where c(x) ≥ 0 are device workspace constraints as described in
Section 3.1.

The stress and friction descriptors in (1) are expressed in the PCA
subspace. Thanks to orthonormality of the PCA subspace projection,
the result to the optimization (1) is exactly the same if the stimulus
error is formulated in the subspace or in the full space of the stress
descriptor. Therefore, at the beginning of each rendering frame we
project the target stimulus from the VE simulation to the subspace,
and then we perform the optimization directly in the subspace, with
no need to lift stress descriptors to the full space.

5.2 Numerical Optimization Method
We solve the constrained nonlinear least-squares problem (1) us-
ing an active-set Gauss-Newton method. On each Gauss-Newton
iteration, we start by identifying the active constraints, and then
we linearize both the estimated stimulus and the active device con-
straints. As a result, we solve the iteration as a quadratic program
with Lagrange multipliers. This problem has a guaranteed unique so-
lution, as the constraint set is always feasible and the Gauss-Newton
approximation of the Hessian ensures a convex quadratic objective.

Given the tentative step, we apply line-search to ensure that the
cost function is reduced. At the first Gauss-Newton iteration of each
rendering frame, we perform a warm start by initializing the device
configuration to the result of the previous frame.

The linearization of the estimated stimulus requires the gradient
∂σ
∂x . To this end, we execute the differentiation of the neural-network
data-driven skin model, as discussed in Section 4.2.

6 EVALUATION WITH A BIOTAC SENSOR
We have validated our rendering algorithm, both qualitatively and
quantitatively, using a BioTac [Syntouch 2018] in combination with
the testbed thimble tactile device. The BioTac is filled with a conduc-
tive fluid, and it contains a set of 19 electrodes that detect impedance
changes as the sensor is deformed. The electrode signals form a
descriptor of tactile stimulus that is comparable to the skin stress
distribution, yet it can be physically measured for validation pur-
poses.

6.1 Quantitative Validation
We have followed the same procedure as in Section 4.1 to generate
training data of the interaction between the thimble device and a
BioTac sensor. We have computed a subspace representation for
tactile stimuli consisting of 10 PCA components (with 5% error,
compared to the original 19 electrode signals). Then, we have trained
a neural network that allows us to efficiently estimate tactile stimuli
from device configurations.

For validation, we have captured a set of test sequences by manu-
ally interacting with real-world objects (See Fig. 6) using the BioTac
sensor, while recording sensor readings. We have fed these values
(i.e., the target stimuli) into our tactile rendering optimization-based
pipeline to obtain optimal device configurations. Finally, we have
inserted the BioTac sensor into the thimble device, played back the
optimized device sequences, and compared the produced stimuli
with the target stimuli.

Results of the validation procedure described above are presented
in Fig. 7, where we use the 3-PCA stimulus viz to compare the target
(i.e., ground truth) and obtained stimuli of 4 different sequences. As
discussed earlier in Section 3.3, color dots represent training sam-
ples for the data-driven BioTac model, and are also useful to depict
the limit capabilities of the used thimble device: the dotted area
is the range capable of being reproduced by our tactile device. In
each subfigure, the green curve represents the sensor measurements
when interacting with real world objects (i.e., the target values), the
red curve represents the estimated best-matching sensor readings,
and the blue curve represents the actual readings of the BioTac sen-
sor produced by playing the optimized tactile rendering sequence
with the thimble device. Notice that for a training sequence (i.e.,
for target stimuli produced with the device itself), the curves al-
most overlap. For interactions outside the workspace of the device,
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Fig. 6. Qualitative validation of tactile rendering on a BioTac sensor. We use the BioTac to interact with a set of real objects (from to top to bottom: a cylindrical
foam, a cup, and a box) to obtain a sequence of target tactile stimuli. Then, we run our optimization-based algorithm to compute tactile device configurations
that best match those stimuli. We show side-by-side comparisons of the rendered device configuration next to the real-world interaction that generated
each target stimulus. We trained the rendering algorithm using only interactions of the BioTac with the tactile device, yet it succeeds to produce plausible
renderings for unseen situations, such as contact with edges or deformable objects.

(a) Device (b) Flat surface (c) Curves and edges of a cup (d) Foam

Fig. 7. Quantitative validation using the BioTac sensor. 3-PCA stimulus viz for interactions of the BioTac with 4 different objects. The curves show: target
stimuli recorded during real-world interaction (green), best-matching stimuli produced by our rendering algorithm (red), and actual stimuli measured by the
sensor when playing back the optimal device configurations (blue). For data in the training set (Device), the stimuli are almost identical. And even for data far
from the training set (Edge of a cup), not reachable within the workspace of the device, our algorithm produces a best-matching approximation.

our optimization produces best-matching values. The relative RMS
errors between target (green) and rendered values (blue) on the 4
cases are: 7.9% (device), 9.6% (flat surface), 33.7% (cup), and 7.4%
(foam). Notice also that the error between the estimated result and
the actual rendered result is very small. Differences are due to a
combination of error of the neural network and the PCA projection,
sensor noise, and difficulties to exactly reproduce the mounting of
the thimble device.

Overall, we show that the stimuli produced by the device match
closely the target stimuli recorded when interacting with real-world
objects, which effectively validates our method. Importantly, notice
that our method also succeeds in highly challenging scenarios where
the target stimulus is far from the capabilities of the device, as shown
for the interaction with the edges of a cup.
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Fig. 8. Even if the testbed thimble device cannot move laterally, our ren-
dering algorithm succeeds to approximate tangential forces through rolling
motion. The arrows show the direction of motion of the box.

6.2 Qualitative validation
For the same interactions reported above, we have also carried out
qualitative evaluations by observing side by side the target inter-
actions with the real-world objects and the rendering interactions
with the tactile device. As shown in Fig. 6, our algorithm succeeds to
produce plausible renderings for complex unseen situations which
cannot be exactly reproduced by the device, such as contact with
edges or deformable objects.

One particular phenomenon where our algorithm produces inter-
esting rendering results is sliding frictional contact, or even sticking
contact with skin sliding. The testbed thimble device is simply not
designed to render tangential forces. Other thimble devices replace
the pitch and roll DoFs with two translational DoFs tangent to the
finger pad, to produce lateral skin stretch by pulling [Leonardis
et al. 2015]. However, the stimuli produced by pushing laterally on
skin (or the BioTac in this case) thanks to a change in roll angle
are similar to those produced by pulling. Since such data is present
in the data-driven model, our optimization algorithm succeeds to
approximate purely tangential forces through rolling motion of the
device. An example is shown in Fig. 8.

7 VIRTUAL ENVIRONMENT RENDERING
We have also evaluated our algorithm’s ability to render diverse
virtual interactions. After a discussion of runtime performance, we
present results of two user experiments where we compare the
discrimination ability of our method and two other methods. To
conclude, we discuss qualitative results during free interaction with
virtual objects.

7.1 Performance
We have carried out all experiments on a 3.38 GHz Intel Core i7-
4720HQ CPU with 16 GB of RAM, with the VE simulation running
in parallel to the optimization algorithm. We use TensorFlow [Abadi
et al. 2016] on the CPU for neural-network implementation, and a
Leap Motion to track the user’s hand.
We run the VE simulation, including frictional contact with the

full soft hand of Section 3.2 at 30 fps. We do this in parallel to the
actual rendering algorithm, which renders the simulation result

Fig. 9. Schematic representations of the contact scenarios presented to
subjects of the experiments. The first two images indicate contact on the
back and the front of the finger pad respectively. The last two images
indicate pressing versus sliding contact.

from the last available simulation frame. The rendering algorithm
computes the optimization of the device configuration, followed
by the update of the friction state, as shown in Fig. 5. The finger
simulation for the friction update takes just 5 ms.
Recall that the nonlinear constrained optimization problem for

our testbed is of size 3 (x), with 6 constraints, and each iteration
requires the evaluation of a neural network with 18 inputs (x and f ),
10 outputs (σ ), and 260 hidden neurons. Keeping the problem size
compact enables successful completion of the optimization for real-
time tactile rendering. Per rendering frame, the optimization takes
on average 7.5 ms (std. dev. = 3.8, max = 21) and 6.3 iterations
(std. dev. = 3.7, max = 16). Within each optimization iteration, the
evaluation of the neural network takes on average 0.22 ms, and the
evaluation of its Jacobian takes 0.57 ms.
A full simulation-based optimization would require multiple ex-

ecutions of the finger simulation per rendering frame. Our Gauss-
Newton optimization would require a minimum of 4 executions per
optimization step to evaluate the stimulus error in (1) and its Jaco-
bian using finite differences. Moreover, given that the optimization
converges on average on 6.3 iterations, a full simulation-based opti-
mization would require 126 ms on average per rendering frame. This
is in contrast to the 12.5 ms (optimization plus friction update) of our
data-driven approach. The error incurred by our approach, on the
other hand, amounts to 10% due to PCA compression (Section 4.1)
and 7.4% due to the neural network (Section 4.2).

7.2 User Experiments
We have evaluated our rendering algorithm on two user experi-
ments, and we have compared it to two other methods. One method
is a downgraded version of our algorithm, where the skin stress
descriptor is replaced by the total contact force on the finger pad,
with the rest of the pipeline left unchanged. This method falls in
the category of approaches that limit interaction to simple primi-
tives, e.g., [Prattichizzo et al. 2013]. The other method is a geometric
optimization of the contact interaction [Perez et al. 2017].

The experiments test the ability of methods to discriminate con-
tact scenarios. The first experiment evaluates the success rate of
discrimination of contact location (dependent variable) vs. rendering
method (independent variable). The experiment displays to the user
a contact with a thin cylinder at the back or at the front of the finger
pad, as shown in the two leftmost images in Fig. 9. The second ex-
periment evaluates the success rate of discrimination of pressing or
sliding contact (dependent variable) vs. rendering method (indepen-
dent variable). The experiment displays to the user a contact with
the same cylinder, either as a simple press and release, or as a lateral
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Fig. 10. Front and side visualizations of the tactile thimble device when performing a sliding finger motion in the scenario shown on the left. Ignoring friction
in the data-driven skin stress model (bottom), the tactile rendering method cannot reproduce path-depending deformations of the finger; therefore, the tactile
device remains quasi static. In contrast, our model accounts for friction and is capable of modeling path-depending deformations, and hence the device rolls to
approximate the sliding sensation (top). Please see the supplementary video.

sliding motion, as shown in the two rightmost images in Fig. 9. In
both experiments, we have tested three conditions, i.e., the three
rendering methods, but we only compare our method separately to
the other two methods, not all three conditions to each other.
In both experiments, subjects followed the same protocol. First,

the device was calibrated to determine the angles and normal dis-
tance of first contact with each subject’s finger pad. Then, subjects
performed some free exploration of the ball scene (Fig. 11-left),
with visual and haptic feedback, to get familiar with the device.
Then, they executed both experiments, first contact-location and
then press-vs-slide, with only one of the methods. We decided to
design the experiments as independent measures (a.k.a. between
groups) because, during pilot tests, we observed confounding effects
of mixing the various methods for the same subject, as detectable
differences between the methods could lead to erroneous cues.

In each experiment, each subject was presented with 2 tests, cor-
responding to the 2 stimuli to discriminate, with 8 slightly different
repetitions each. All the 16 tests of each experiment had roughly the
same duration, around 3 seconds, and they were presented in ran-
dom order. Subjects were instructed to keep their hand and finger
approximately still, and the stimuli were presented to themwith hap-
tic feedback but no visual feedback. For each test, the experimenter
asked one of two possible questions: “Did you experience contact at
the back of the finger pad?” or “Did you experience contact at the
front of the finger pad?” in the contact-location experiment, and
“Did you experience a pressing contact?” or “Did you experience a
sliding contact?” in the pressing-vs-sliding experiment. The ques-
tion was accompanied of a schematic image of the scenario on a
monitor. The four schematic images are shown in Fig. 9. Subjects
took typically less than 5 seconds to answer, and the experimenter
annotated the responses.
Thirty (30) people participated in the experiments, 10 with each

method. The majority of the participants were computer science
students, with no previous experience with haptic devices. Table 1
shows the success rate per experiment and method. We have used

Welch’s t-test to compare statistically the success rate of our method
vs. the other two methods. Table 1 also shows the statistical signifi-
cance (p-value) of the comparisons. The results validate our initial
hypotheses, and confirm the strong improvement in rendering qual-
ity achieved by ourmethod. The use of total contact force as stimulus
descriptor fails to provide any ability to discriminate the pairs of
scenarios. The answers of participants are close to random. The geo-
metric optimization method [Perez et al. 2017] performs well for the
discrimination of contact location, but fails completely for the dis-
crimination of pressing vs. sliding contact. This is no surprise, as the
contact-location experiment is dominated by geometric information,
whereas in the press-vs-slide experiment the skin stress distribution
can vary strongly for the same contact geometry. Our method ex-
hibits high success rates, slightly better for contact-location, which
is an experiment that exploits better the degrees of freedom of the
device. In this experiment, performance is slightly higher than with
geometric optimization, but not statistically significant.

Ours Force p-val Geometry p-val
contact loc. 82% (11%) 51% (8%) 4e-9 78% (11%) 0.17
press/slide 73% (14%) 53% (14%) 8e-4 53% (9%) 4e-5

Table 1. Comparison of success rates of three renderingmethods on two sub-
jective discrimination experiments (‘contact location’ and ‘press vs. slide’).
The columns show the average success rate per participant (and standard
deviation) for our method, total contact force optimization, and geometric
optimization [Perez et al. 2017]. The columns also include p-values compar-
ing the performance of our method vs. the other two.

7.3 Additional Experiments
We have also performed experiments to test our tactile rendering
algorithm on diverse exploratory procedures [Klatzky and Lederman
2003]. Fig. 1 shows camera recordings of live demos, while Fig. 10,
Fig. 11 and Fig. 12 show screen captures of real-time interactions.
Please see the supplementary video.
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Fig. 11. Tactile exploration of objects. Our rendering algorithm is responsive to subtle changes in the stimuli computed in the VE, as shown in these two
interactions with a round object and an edge. The ball is a best-case scenario for the testbed tactile device, as the interaction is dominated by the location and
direction of contact. The edge, on the other hand, is a worst-case scenario, as the target stimulus falls well outside the workspace of the device. Even in such
challenging case, our algorithm succeeds to approximate the stimuli, with the pitch of the device changing to render a rounded edge effect.

Fig. 11 and Fig. 12 demonstrate that our rendering algorithm is
responsive to subtle changes in the stimuli computed in the VE. The
scenarios include less challenging cases such as rolling the finger
on a round object, but also challenging ones such as sliding over an
edge, changing the grasping pose, or shaking a grasped object. These
examples demonstrate that our rendering algorithm extrapolates
beyond the expected operational space of the device, and hence it
maximizes its rendering capabilities.
Fig. 10 demonstrates that the device is capable of approximat-

ing the stimuli perceived during frictional sliding motion in a VE,
similar to the results found with the BioTac (See Fig. 8). Moreover,
in this example we compare the rendering quality when friction
is not accounted for as part of the algorithm. As discussed in Sec-
tion 4.2, the neural-network data-driven model is less discriminative
when friction is omitted, and in the example this translates into less
smooth device motion.

8 LIMITATIONS AND FUTURE WORK
We have presented the first method to render virtual tactile stimuli
by matching the stimuli computed in a simulation of a VE. Our
method is based on a numerical optimization formulation, and lever-
ages important observations about frictional contact and quasi-static
deformations to achieve very high computational performance un-
der good accuracy. We show that, with our method, even a simple

3-DoF tactile device can approximate complex contact situations
such as interaction with edges, deformable objects, or sliding fric-
tional contact.
Our work is not free of limitations, and they set interesting av-

enues for future work. Although our method is general, we have
demonstrated it only on a device of low dimensionality, and it re-
mains to test how it scales as the dimensionality of the device grows.
However, note that, even though the device has only 3-DoFs, our
data-driven skin model is of higher dimensionality, as we account
for the friction state too. With multiple devices, one per finger, ac-
curacy would be the same and the cost would simply scale linearly;
such extension would enable tactile feedback of full grasping. The
method could also be extended to ultrasound devices, which exhibit
higher dimensionality, but the extension would require the addition
of pressure-based skin deformation.
The data-driven skin deformation model relies strongly on pre-

processing. Moreover, since the finger model should be adapted to
each user for maximum accuracy, the training step should be re-
done. Statistical hand models [Romero et al. 2017] are an interesting
complement, which could simplify preprocessing for multiple users.
In our experiments, we have carried out quantitative validation

of the approach on the BioTac sensor. Quantitative validation on
users is complex, as it would require defining meaningful metrics
that can be simulated but also measured. Our work could be further

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.



1:12 • Mickeal Verschoor, Dan Casas, and Miguel A. Otaduy

Fig. 12. Grasping objects. Our rendering algorithm succeeds to provide key tactile feedback when grasping and lifting objects. In the cylinder example, subtle
changes in grasping pose produce smooth device motion. In the block example, shaking the object produces changes in friction forces and hence device motion.

extended, however, through perceptual evaluation. We have limited
the evaluation to simple cases because, as shown by the results, they
help to clearly extract the benefits of the method. Our experience
is that the method notably outperforms other methods in full 3D
interactions, such as the ones shown in the video.We did not identify
cases where our method fails, but the response cannot be considered
realistic when the target stimuli extend far beyond the capabilities
of the device. This limitation could distort evaluation experiments
on complex tasks. Perceptual evaluation could also help refine the
descriptor of tactile stimuli, e.g., by weighting the stress tensor in a
spatially-varying or task-dependent manner, by accounting for the
stress distribution on a time window, or to search for alternative
descriptors of stimuli.
Our method is limited to render effects of low spatial and tem-

poral bandwidth, resulting from quasi-static simulation in the VE.
Higher spatial bandwidth would require a finer and more accurate
simulation model, probably with better handling of local nonlinear-
ities. The subspace representations of the descriptors would also
need to be lifted to higher dimensionality. Higher temporal band-
width imposes even more severe computational difficulties, as the
model should account for vibration and dynamic effects. Altogether,
the extension of our approach to vibrotactile feedback, of high spa-
tiotemporal bandwidth, is nontrivial.
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