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Abstract

Clothing is fundamental in society, serving as both physical protection and a means
of communication, impacting how we are perceived and interact with others. The
fashion industry, a major global economic force, benefits from the rise of digital
fashion, which allows for the design of virtual garments for avatars and enhances user
experiences in entertainment. Digital cloth simulation can revolutionize the industry
by enabling designers to visualize and modify garments in virtual space, thus
speeding up the design process and reducing waste. Virtual try-on applications offer
significant advantages for online shopping, providing convenience, personalized
recommendations, and reducing returns, contributing to a more sustainable fashion
industry.

In this context, animating clothing remains a longstanding goal in Computer Graph-
ics. While traditional physics-based simulations achieve realistic results, they are
computationally expensive. Recent advances in data-driven models offer faster
alternatives but face challenges in handling 3D garment representations. This thesis
addresses these limitations by exploring the use of deep learning architectures for
cloth animation that are agnostic to mesh discretization and that generalize across
different designs and body shapes.

To this end, we propose two novel approaches to generate cloth deformations.
Our first contribution provides a fully-convolutional pipeline that fits garments
from a parametric design space to a target body shape. The convolutional nature
of the method enables the optimized generation of draped garments to various
body types and designs without predefined topologies. Our second contribution
takes advantage of successful generative models that work on image domains to
generate displacement maps encoding deformations, which enables the creation of
high-frequency details. This model, conditioned on body shape, pose, and design
parameters, produces temporally-coherent deformations for animation sequences.
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Our methods show the potential of data-driven models to generalize to different
garment designs. Such technologies offer a solution for scalable and efficient
simulation of 3D clothing.
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Introduction
1

Clothing plays a crucial role in our society. Although it started as a form of physical
protection and comfort, it soon developed into a way of communication. How we
dress substantially impacts how we are perceived, and consequently how we interact
and connect. From a single glance at a person, thanks to how the person is dressed,
we can identify, for example, status, intentions, cultural background, profession, and
even creativity. Altogether, our clothes are a way to express our individual and social
identity, and they are a key ingredient of our interactions with our community.

Given the importance of clothing in our society, it is to be expected that the fashion
industry is a significant part of the global economy. It is not casual, that some of
the wealthiest people in the world started their fortune as clothing retailers. The
production, distribution, and consumption of clothing contribute to economic growth
and employment opportunities worldwide.

Virtual clothing refers to a digital representation of cloth. The virtual garment
doesn’t necessarily exist as a physical object but as a visual representation created
with computer graphics. Given the impact of clothing and fashion in our world, we
can only imagine the potential benefit of virtual clothing.

Digital fashion is emerging as the design of clothes to dress virtual avatars, allowing
personal expression and identity in the online world. In the field of entertainment,
virtual garments can significantly enrich the user experience. Not only does it
improve the immersion, but it can also be very decisive in the creation of believable
characters, by providing them with a context and an identity. In movies and video
games, costumes are a crucial part of the setting, and they greatly affect the viewer’s
feeling of immersion. Therefore, the design and simulation of virtual clothing are
very important for games, animation, and VFX production. For animated films, it is
paramount to get visually pleasing and realistic simulations, while video games will
look for scalability, responsiveness, and interactivity. Efficiency in the simulation
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is then crucial in some environments, especially in virtual and augmented reality
scenarios.

Digital cloth simulation has the potential to revolutionize the fashion industry, as it
allows designers to visualize garments in virtual space. Prototyping with physical
clothes can be time- and resources-consuming. At the same time, with simulations,
they can tweak fabrics, fits, and cuts and see how it will affect the final product in
almost real-time, thus accelerating the design process and reducing waste. Accuracy
is crucial in this kind of application, as simulations need to be as close to real-world
fabrics as possible.

On the other end of the fashion industry, with the rise of online shopping, virtual
try-on applications allow customers to see how clothes fit their bodies. Physical try-
on requires customers to visit stores and involves searching for garments with their
style and size, changing between the store and the fitting rooms, and often waiting
in lines. While some customers enjoy it, this process can be time-consuming and
inconvenient, especially for people living in remote areas, or with uncommon sizes
or necessities, that may have difficulties finding clothes that fit them. Meanwhile,
virtual try-on allows customers to try garments from the comfort of their homes,
eliminating the need to travel to the shop, thus saving time and money. It also has
the potential to create recommendations based on style and shape, giving a more
personal experience, and simultaneously encouraging the users to experiment with
their styles. Seeing the actual fit of the garment increases confidence in online
shopping and greatly reduces returns, benefiting both customers and companies.
Besides, having a unified inventory reduces the need for physical samples and the
waste of unsold garments, thus helping make the fashion industry a little bit more
sustainable.

The simulation of virtual clothing has been a longstanding goal in the field of
Computer Graphics, due to its wide range of applications. For some applications,
like virtual try-on, the simulation needs to be fast, adaptable, and accurate.

The traditional approach to tackle this problem is physics-based simulation (PBS).
The idea behind this approach is to discretize the objects in the scene and time and
use physical laws to predict, at each timestep, how the system will evolve. Physical
simulation of cloth can range from a simple mass-spring system to a yarn-level
simulation. These solutions have been shown to achieve incredibly realistic results,
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but they also have some drawbacks. On one hand, the physical parameters that
determine the material behavior are difficult to tune and need expert supervision.
On the other hand, the quality and realism of a simulation increase with its degrees
of freedom, and so does its computational cost. Plus, the simulation must be run
again to adapt to any change in the scene.

Recently, data-driven models have emerged as a faster alternative. Instead of
explicitly programming the task, these methods receive large amounts of data
and learn patterns and relationships from them. They usually require the most
resources for data collection and preparation, as well as in training and tuning
the model. However, once trained, they can potentially perform very complex
tasks more efficiently than physics-based methods. Such benefits have led the
scientific community to the exploration of using deep learning methods to approach
all kinds of tasks, allowed by the increasing amount of data and computational
power. Cloth modeling is not an exception. Deep learning models can register,
reconstruct from images, and simulate clothes, but they present some notorious
downfalls. While they work perfectly in structured data like Euclidean domains
(2D/3D grids, fixed size embedding vectors, sequences,...), they struggle with
generalizing to new unseen structures. Unfortunately, 3D garments are represented
as 3D meshes with irregular sampling and different connectivity, which hinders the
adoption of data-driven models for 3D clothing. Some methods try to circumvent
this issue with alternative representations, like implicit fields [Tiw*21; San*22],
point clouds [Ma*21a; Zak*21], or displacement maps [LCT18], but these methods
often struggle with obtaining consistent meshes and fine wrinkles. Alternatively,
other approaches that work directly on meshes are generally limited to a single
garment or discretization.

The main goal of this thesis is to address these limitations, by exploring ways to ex-
tend data-driven methods, so they can cope with a diverse range of garment designs
and triangulations. We will investigate how to extend the convolutional networks
to work with unstructured data and to solve their limitations in the regression of
deformations.
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1.1 Objectives and Contributions

This thesis is aimed at developing a data-driven framework for accurate 3D garment
draping. We see a significant potential in Machine Learning as a fast and expressive
tool for cloth modeling. Compared to PBS, Deep Learning methods are in general
faster at runtime and have the capability of scaling better. We strongly believe that
the generalization capabilities of convolutional filters and generative methods can
be leveraged to improve data-driven cloth deformations.

At the beginning of this research, our first observation was that most methods that
applied Deep Learning on 3D meshes werebased on fully-connected architectures.
Fully-connected networks are a type of artificial neural networks that consist of the
concatenation of densely connected layers (meaning that each neuron in one layer is
connected to every neuron in the next layer). These networks can approximate any
function, but they have a high number of weights and they tend to overfit. They also
require fixed size input, which, in the context of 3D cloth, means that these models
cannot generalize to garments with different triangulations (e.g. different surface
discretizations). Alternatively, convolutional models are designed to handle spatial
data. In the image domain, their local connectivity and shared weights make them
more efficient and effective at capturing features such as edges or patterns, leading
to better results. Additionally, they require fewer parameters and don’t need a fixed
size input. For these reasons, we decided to address these limitations by exploring
the extension of convolutional filters to the mesh domain.

First, the thesis introduces a novel approach that uses fully-convolutional graph
neural networks to model 3d clothing. This method introduces a parametric garment
space, generating a range of garments, and manages to deform them to fit different
body shapes, without relying on a given topology (in the context of this thesis, by
topology we mean a given surface discretization). To do so, we decouple three
sources of deformation: garment design, body shape, and garment material. At each
step of the pipeline, a different network is trained to predict the overall garment
shape, a smooth fit, and the material-specific wrinkles respectively. Altogether,
we get a full framework that returns a fitted garment, given the design and shape
parameters, some examples are shown in Figure 1.1. Note that the resulting mesh
has a different optimized topology for each garment and that the method works for
new and unseen designs.
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Parametric PatternParametric Avatar Parametric Virtual Try-On

Parametric PatternParametric Avatar Parametric Virtual Try-On
Figure 1.1: Our first contribution based on graph convolutional networks predicts the 3D

draping for an arbitrary body shape and garment parameters at interactive rates.
From left to right, a variety of body shapes obtained from a parametric avatar
model, different 2D panel configurations of our parameterized garment types,
and corresponding dressed 3D bodies generated with our fully convolutional
approach.

This contribution led to the following publication:

• Raquel Vidaurre, Igor Santesteban, Elena Garcés, Dan Casas. “Fully Convo-
lutional Graph Neural Networks for Parametric Virtual Try-On”. Computer
Graphics Forum (2020) [Vid*20]

Despite its novelty and power, the method has some limitations. Mainly, it requires
long training times and high-frequency details are lost. This was especially notice-
able when we started working with pose-dependent deformations. Meanwhile, in
the image domain, generative models were becoming really popular. Denoising
Diffusion Probabilistic Models (DDPMs) are a class of generative models that can
produce high-quality images. They involve a forward diffusion process (where noise
is added to a clean image) and a reverse denoising process (where the model is
trained to remove the noise). Once trained, the network can synthesize high-quality
images by iteratively denoising Gaussian noise. These models outperform previ-
ous generative models (such as the popular Generative Adversarial Networks, also
known as GANs), and, unlike GANs, they don’t suffer from training instability
issues. Given their amazing results, we decided to encode wrinkles in the image
space so that we could use this powerful tool for wrinkle synthesis.

In the second contribution of the thesis, we propose a bijective mapping between
3D deformations and displacement maps, that encode wrinkles as 3D offsets in
RGB values. This representation allows us to employ a generative model based
on DDPMs to generate images of such displacement maps conditioned by the
design and pose parameters. These maps can be used to generate animated 3D
garments that present fine-scale wrinkles (see Figure 1.2) indeed. Notably, the
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Figure 1.2: Our second contribution based on garment deformations encoded as displace-
ment maps enables the use of 2D diffusion models to generate 3D deformations.
Here we can see three garment designs animated with our method

method remains agnostic to discretization and we offer a solution to condition the
model on the previous garment state, enabling the generation of temporally-coherent
sequences.

This contribution led to the writing of the following publication that is currently
under review:

• Raquel Vidaurre, Elena Garcés, Dan Casas. “DiffusedWrinkles: A Diffusion-
Based Model for Data-Driven Garment Animation”.

1.2 Outline

This thesis is organized as follows:

• Related Work. Chapter 2 gives an overview of the research that has been
done around virtual cloth representation and has inspired this thesis. The
methods are grouped in physics-based simulation, 3D reconstruction and
data-driven methods. We highlight the contributions, but also the limitations
that motivate this research.

6 Chapter 1 Introduction



• Background. Chapter 3 covers some basic information that is important for
the understanding of the thesis. We also define some notation and concepts
that will be used throughout the technical chapters.

• Fully Convolutional Graph Neural Networks for Parametric Virtual Try-
On. Chapter 4 describes our first technical contribution, which consists of a
fully-convolutional framework to model cloth deformations in a parametric
design space. We introduce our full approach, define our dataset, and evaluate
its performance.

• DiffusedWrinkles: A Diffusion-Based Model for Data-Driven Garment
Animation. Chapter 5 presents our second contribution. We define our 2D
representation of deformations and the diffusion-based model. Finally, we
evaluate the resulting deformations.

• Conclusions. Chapter 6 offers a discussion about the methods developed in
the thesis. We summarize the key findings of the thesis and reflect about how
they contribute to the field, as well as their limitations, potential applications,
and future work.

1.2 Outline 7





Related work
2

Cloth digitization remains a key challenge for the Computer Graphics community,
due to its wide range of applications, where the ability to accurately reproduce the
movement of fabrics can really enhance realism in computer-generated environ-
ments. This chapter aims to discuss the diverse existing ways to simulate cloth, as
well as the technical advancements that push the evolution of cloth simulation.

These advances are strongly pushed by the requirements of industry. The film
industry requires high-quality, realistic, high-resolution, and visually pleasing simu-
lations, while video games and VR applications seek interactivity, scalability, and
efficiency. Alternatively, design-oriented applications require accurate simulations,
that reproduce real-world behavior as closely as possible. Differentiable applications
may also be useful for inverse design applications.

We focus especially on virtual try-on applications, that should provide a reliable
preview of clothes. Cloth simulation needs to be accurate to ensure that virtual
garments behave as they would in the real world. Besides, the simulation needs to
be efficient, as interactivity can really enhance the virtual experience, especially in
virtual reality settings. It also should be scalable as multiple customers may want
to fit clothes simultaneously.

Existing methods can be roughly split into the following categories, which we
briefly define below and extensively discuss in the rest of this chapter:

Physically-based simulations (PBS) have been the classical approach to tackle the
virtual modeling of cloth movement. This family of methods uses mathematical
models and computational techniques to simulate how cloth drapes, folds, and inter-
acts with the body and other objects. PBS can produce highly realistic and dynamic
visual effects, but their accuracy comes at the cost of increasing computational
resources and time.
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Cloth reconstruction involves capturing and reproducing the appearance and
behavior of real garments. These methods usually use 3D scanning technology
and imaging techniques to create digital models, and they are especially useful for
applications where the goal is to replicate existing garments accurately but struggle
with generalizing to new settings or body shapes.

Data-driven models leverage machine learning algorithms and large datasets to
generate and predict cloth behavior. By training models, these methods can learn to
produce plausible cloth dynamics in real-time. Data-driven approaches are particu-
larly suitable for applications where efficient and scalable solutions are required,
such as virtual try-on, as they offer a balance between realism and computational
cost.

In the following chapter, we will overview the current solutions for cloth modeling.
We will discuss the strengths of physically-based simulations, cloth reconstruction
methods, and data-driven models, as well as their limitations.

2.1 Traditional Cloth Simulation

The traditional approach to model the behavior of cloth in computer graphics is
physically-based simulation. It involves using mathematical models and physical
laws, such as Newton’s laws of motion and Hooke’s law to simulate how cloth
moves, folds, stretches and interacts with other objects [Nea*06]. The seminal paper
on deforming objects using physics by Terzopoulos et al. [Ter*87] established the
mathematical framework for physically-based modeling of elastical surfaces. They
layed the foundation for believable cloth simulation, that responds to forces like
gravity, wind and collisions in a natural way.

Mass-spring networks are one of the most popular ways to model cloth. The main
idea is to discretize cloth into a set of particles connected with different types of
springs to model the structure and elasticity of the cloth, as well as resistance to
bending and shearing [Pro*95]. The simulation process consists of computing
the forces on the particles, updating their positions and velocities based on the
calculated forces, and detecting collisions to adjust the resulting forces. Mass-spring
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Figure 2.1: Cirio et al. propose an efficient yarn-level simulation. Source: [CLO15]

systems are intuitive, easy to model, and efficient, but they lack accuracy and the
behavior depends heavily on the mesh resolution and topology. Multiple advances
have been made to enhance mass-spring models, like introducing deformation
constraints to avoid unrealistic deformation for rigid cloth simulation [Pro*95],
robust contact handling [BFA02], techniques to improve the wrinkling behavior of
cloth [BMF05] and numerical stability and robustness [CK05]. Despite the advances
made, the efficient computation and the great realistic looking results, mass-spring
networks still fail to accurately reproduce real world cloth deformations, making
them unsuitable for virtual try-on applications.

In contrast, some approaches attempt to accurately reproduce cloth behavior by
representing cloth as a continuous surface, which is then discretized to solve numer-
ically the differential equations that represent the mechanics of the given surface.
The continuum fundation of Finite Elements Methods (FEM) enables the simula-
tion of anisotropy and irregularities, while being resolution-independent [Mül*02;
Gri*03; EKS03]. Others get as far as to simulating the cloth at yarn-level as rods
interacting with each other [KJM08; KJM10]. Despite efforts made to accelerate
this simulation by assuming that the rods are in persistent contact [Cir*14; CLO15]
these simulations remain computationally expensive.

Performance is one of the main limitations of accurate cloth simulation, leading
to numerous efforts to improve its efficiency. Baraf and Witkin [BW98] proposed
implicit integration methods to allow for larger time steps. A very popular approach
to create fast, stable and controllable simulations is Position Based Dynamics
(PBD) [Mül*07; KCM12; Mül*14]. PBD methods offer robustness and speed,
which makes them suitable for interactive environments like video games or virtual
reality. However, they lack the accuracy needed for virtual try-on and they require
expert tuning of parameters [Ben*14]. Similarly, Projective Dynamics (PD) offers a
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Figure 2.2: The method proposed by Narain et al. dynamically refines and coarsens the
simulated mesh to conform to the details of the cloth Source: [NSO12]

robust framework where deformations are treated as a sequence of local projections
[Bou*14; Ly*20]. Additionally, some works have developed model reduction
techniques [De *10; SB12] such as subspace simulation with the help of machine
learning [Hol*19; Ful*19]. Another approach is to add details to enrich coarse
simulations. These wrinkles can be learned by example from other high-resolution
simulations [Wan*10; Kav*11; ZBO12] or computed at runtime on top of the coarse
simulation [MC10; Roh*10; Gil*15]. Moreover, adaptative models attempt to
provide the best compromise between speed and accuracy by self-adapting at space
and time based on the state of the simulation [Man*17]. Concretely, some works
provide solutions to dynamically refine and coarse areas of the mesh depending on
how smooth or complex the deformations are [Lee*10; NSO12]. Others combine
triangle-based with yarn-level simulation to enhance detail in some areas. GPU-
based solvers have also been proposed to optimize simulations [Tan*16; FTP16;
Tan*18b; Wan21; WWW22].

Beyond the primary goal of improving the accuracy of cloth simulations, there
are several other significant applications in this field. One important area is the
design and creation of digital garments. Some works explore the transformation
from 2D patterns to 3D garments [Ber*13] and include pattern adjustment features
[Ume*11; Bar*16], even automatic adjustment to fit a certain body [Wol*21].
Other approaches manage to generate a garment directly from sketches [Li*17a;
Wan*18].

Another crucial application is the estimation of cloth parameters. While most simu-
lations require expert parameter tuning, they don’t necessarily reflect the physical
characteristics of real-world fabrics. Accurately estimating these parameters is
crucial for virtual try-on and design applications. To solve this problem, some
works propose methods to estimate the parameters from video [Bha*03; Bou*13] or
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from multi-view video [Sto*10]. Recently, multiple approaches have tackled the
challenge of capturing parameters from video using data-driven models [Bou*13;
Wu*16; YLL17; Ras*20; Run*20]. Alternatively, some methods use differentiable
simulation to obtain the parameters that fit a target 3D shape [LLK19; Hu*20;
Um*20]. Recent approaches go as far as optimizing body, design, and material
parameters to fit the multi-view capture of a garment[Li*23].

Despite the significant advances in cloth simulation, traditional approaches face
several limitations, especially in the field of virtual try-on applications. A notorious
challenge is the accurate replication of diverse fabric behaviors, which is hindered
by a need for extensive parameter tuning. Besides, physically-based simulation
methods often struggle to meet real-time requirements, as high-fidelity simulations
come at the cost of prohibitive computational costs. Furthermore, traditional simu-
lations lack the ability to adapt dynamically, so usually changes in fabric or design
require reconfiguration. It becomes especially challenging in the case of complex
designs where we want to simulate the effect of additional design features like
seams, zippers, pockets, elastic bands, etc. These limitations highlight the need for
further research and for the integration of innovative techniques.Instead of solving
a complex system of non-linear equations, data-driven methods are models with
a big amount of parameters, that are optimized at training to solve a problem but
only need to be evaluated once at runtime, which makes them very suitable for
virtual try-on applications. Data-driven methods need data, and garment capture
can potentially help us to get real-world fabric behavior, which (as we saw) is quite
challenging for cloth simulation.

2.2 Cloth reconstruction

We refer to cloth capture as the process of capturing detailed data about real-world
cloth, like texture, shape, and movement of fabrics. This information is then used to
create a 3D model that reproduces the cloth’s behavior. The precise reconstruction
of the surface and properties of the garment can potentially be used later to dress new
subjects or train data-driven models. Consequently, cloth capture and reconstruction
techniques can be crucial for virtual try-on applications.
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Early attempts managed to capture the surfaces of moving garments using color-
coded patterns that can be aligned with a multi-view setting [Sch*05; WCF07].
For the first time, Bradley et al. [Bra*08] succeeded at reconstructing sequences
of markerless garments, with relatively low wrinkle-level detail, with a multiview
stereo algorithm. Notably, their method even achieves temporally coherent geometry
with isometric cross-parameterization. To circumvent the challenge of capturing
high-frequency details, Popa et al. [Pop*09] propose a method to add wrinkles
to low-frequency captures, similar to the ones menti oned for simulation. The
work presented by Zhou et al. [Zho*13] further reduces the input requirement
and manages to reconstruct garments from a single image. By estimating the
outlines of the garment, they create a smooth 3D model, that is further refined with
shape-from-shading techniques.

While these methods effectively capture garment motion and surface details, they
face a significant limitation in translating the captured data to new, unseen scenarios.
Adjusting the fit of the garment to a wide variety of body shapes, while maintaining
the fabric’s behavior, remains an unsolved challenge.

Alternatively, some methods aim at recovering the complete body and sequence of
motions of a dressed actor. Early methods for performance capture require an initial
template and a multi-camera setting [De *08; Vla*08]. The mesh is optimized to
fit the input images. Later, approaches appeared that capture performance from a
single depth camera [Zha*14; Bog*15], a monocular video [Yan*18b], and even in
outdoor settings [Rob*16; Xu*18]. Although re-animation of captured performance
has proven to be feasible [Cas*14; Pra*16], all of these methods represent both
body and garment with a single mesh. This approach clearly limits the application
and extension of these garments to fit different body shapes.

More interestingly, some approaches attempt to reconstruct the body and cloth
separately as distinct layers. Neophytou et al. [Nea*06] propose a three-layered
model, by fitting the pose and shape parameters of a parametric human model to a
sequence of meshes of a dressed human. Then, they estimate cloth as a residual of
the body. This approach allows for parameter manipulation, so a new subject can be
dressed with the obtained cloth and animated. Similarly, Pons-Moll et al. [Pon*17]
present a remarkable work to reconstruct the underlying body shape and multiple
garment meshes with fine detail from 4D scans, which can be transferred to new
body shapes. Despite their notorious advances in terms of capturing deformations,

14 Chapter 2 Related work



Figure 2.3: PERGAMO offers a data-driven framework to reconstruct garments from
monocular RGB videos and to train a network using the obtained data to
animate an avatar. Source: [CCC22]

the retargeted sequences may look unrealistic as they are just a copy of the captures,
and they don’t account for garment size and fit to completely different body shapes.
Yang et al. [Yan*18a] take it a little bit further and analyze the motions of the
obtained cloth layers to regress semantic parameters, such as material properties
and garment size, enabling the representation of a richer garment model.

Some models apply deep learning techniques to enhance garment capture, like the
work by Daněřek et al. [Dan*17], which consists of using Convolutional Neural
Networks (CNN) to recover the 3D displacements of a garment from one or more
images. However, this method is limited to a fixed garment template, which restricts
its applications. A different approach uses 3D video scans to learn a statistical
model of low-resolution deformations, combined with a Generative Adversarial
Network (GAN) to create a high-resolution normal map encoding wrinkles [LCT18].
This method allows retargeting the scanned garment to new body shapes. Casado-
Elvira et al. [CCC22] propose a method to, first, reconstruct the deformations
of a garment from monocular RGB videos, and then, train a network with the
reconstructed garments to estimate garment deformations from pose sequences.
Other works [All*19; Bha*19] reconstruct hair and clothing on top of the parametric
human SMPL model from several images of a dressed person.

In conclusion, while existing methods for cloth capture and reconstruction have
made significant advances in capturing and retargeting real-world garments, they
often fall short in generalizing the captured properties to different garments and
accurately adapting the fit of the captured garment to different body morphologies.
This limitation is due to their reliance on fixed templates and specific input data.
On the other hand, deep learning models, which can learn complex patterns, offer
a potential solution for generalizing garment fit and behavior across various sce-
narios. We believe that future research should focus on developing sophisticated
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and adaptable learning algorithms, leveraging captured cloth data to build models
that can handle multiple garments and realistically fit any body shape. In our work,
we use synthetic data, however, data-driven models can potentially be trained using
captured garments and learn to reproduce real-world cloth behavior.

2.3 Data-driven cloth modeling

Data-driven models are computational models that rely on data to learn patterns
and make predictions. Unlike traditional models, which are often based on explicit
mathematical equations derived from theoretical principles, data-driven models use
statistical and machine learning techniques to infer relationships directly from data.
In cloth modeling, data-driven methods typically aim to estimate the function that
computes a desired output (e.g. a deformed 3D cloth) given a determined input (e.g.
pose parameters).

Deep Learning (DL) is a specific type of data-driven model, characterized by the
use of artificial neural networks. These networks are proficient in processing data
and consist of multiple layers of interconnected nodes. The key advantage of DL
models is their ability to automatically extract complex patterns from large amounts
of data, and they are truly revolutionizing not only the scientific community but the
whole world.

DL applications have been successful in numerous fields, such as Computer Vision.
They have been applied with groundbreaking results to many tasks (even surpassing
human performance in some of them!), including image classification [He*16],
object detection [Red*16], face recognition [SKP15], or image generation [Rad*21;
AI23]. They also excel at Natural Language Processing, where they have managed
to improve the understanding and generation of human language, enabling the
development of applications for translation and chat bots [Dee17; Ope22a]. Despite
their well-known impact in these fields, their range of applications is countless,
from autonomous driving to healthcare or finances. Seeing the performance of
these technologies in very complex tasks, that would be unthinkable without Deep
Learning, we think that it offers promising solutions to the challenges of cloth
modeling.
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Figure 2.4: SMPL model is trained with a wide variety of body shapes and poses.
Source: [Lop*15]

Data-driven models have been used to solve some problems related to deformation
modeling. Quite popular are the statistical 3D human body models [Ang*05;
FCS15; Lop*15; Che*18], which not only help in the creation of realistic virtual
representations of human bodies but are also crucial for the reconstruction of
complete body shapes from incomplete captured data. Particularly interesting to us
is SMPL [Lop*15], which we use for our work. Their model provides a standardized
parametrization of human body shapes and poses, essential for accurate 3D garment
animation. On top of these models, even the addition of skin deformations has been
reproduced with DL models [San*20b]. Some approaches use autoencoders on 3D
meshes to model latent spaces to encode and generate deformations on meshes with
fixed topology [Tan*18a; Ran*18].

A particularly interesting line of work is the use of data-driven models to accelerate
or estimate physics-based simulations. Early works showed the potential of machine
learning models to simulate fluids by using a regression forest to estimate the
movement of particles [Lad*15] or by predicting the evolution of the system in
a latent space [WBT19]. Sanchez-Gonzalez et al. [San*20a] propose a machine
learning framework for particle simulation based on graph networks.

In the field of cloth modeling, data-driven strategies have been proposed to solve
multiple tasks, such as clothed-human reconstruction [All*19; Sai*19; Sai*20],
garment design [Wan*18; SLL20], animation [Wan*19; Hua*20; Ber*21] or virtual
try-on [Gua*12; SOC19; Zha*21b].

Early data-driven models learned to deform garments as linear combinations of
examples in a training set [Gua*12; Xu*14]. Later, deep-learning-based methods
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explored the solution to estimate deformations as a function of pose [Gun*19],
of shape and pose [SOC19; Gun*20], of shape, pose and style [PLP20], of pose
and garment authoring [Wan*19], and of size [Tiw*20]. The design of garments
has also been tackled with data-driven models. Particularly relevant for us is the
work of Wang et al. [Wan*18], who learn a multi-modal subspace that enables the
edition of a garment design using both the 2D pattern panels and a sketch of the
desired drape. The method outputs the 3D draped garment according to different
input modalities given a target body shape. Recent approaches use DL methods to
reconstruct the sewing patterns of a garment given a point cloud [KL22] or a single
RGB image [Liu*23].

Ma et al. [Ma*20] propose a probabilistic model for clothing that builds on top of
SMPL. The different garments are represented as additive displacements that are
applied to the full-body mesh of SMPL, and they employ a conditional VAE-GAN
[Lar*16] to generate new garments. Despite their generative approach, which can
reproduce global and local cloth deformations, they require a fully connected layer
and the mesh has a fixed size and topology. Similarly, Bertiche et al. [BME20]
learn a latent space for multiple garments and deformations. Their model is able
to generate new garments for any pose and shape. However, it cannot cope with
varying topology.

While most of these methods predict cloth deformation as 3D displacements at
each vertex from a triangular mesh [Gun*19; SOC19; PLP20], this is not the only
kind of virtual representation of garments. Some works represent cloth with point
clouds [Ma*21a; Zak*21; Ma*21b], implicit representations [Tiw*21; Cor*21;
San*22; De *23] or sketches [Wan*18]. Some methods approach the challenge
of clothing humans from an image-based perspective. Their goal is to generate
images of dressed humans without dealing with an underlying 3D representation of
the garment [HSR13; Han*18; Yan*20; Zhu*23]. Despite the outstanding results
of these methods, they don’t account for the size of the garment, so the fit is not
accurate, and they are usually trained with images of professional models, so their
generalization to diverse body shapes is still a challenge.

We find another representation of deformations especially interesting. UV maps can
be used to create a mapping between a 3D surface and an image. This representation
allows us to store geometry information in a format that is suitable to be processed
with standard convolutional networks. Given a garment, as long as UV maps are
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aligned, the deformation reconstruction is agnostic to the mesh triangulation. Shen et
al. [SLL20] introduce an image-based latent representation for sewing patterns. This
representation enables them to generate deformations using a generative adversarial
network (GAN) for the reconstruction of arbitrary garments. In the same line, Su
et al. [Su*23] present a unified pipeline to deform garments with varying designs
that can be parameterized by body, and shape. They represent these garments as
distance maps of the SMPL vertices, employing the UV coordinates of SMPL.
A common strategy for modeling wrinkles consists of adding detail to a coarse
geometry. Lähner et al. [LCT18] combine a low-resolution statistical model that is
then enhanced with high-resolution normal maps generated by a conditional GAN.
Later works [Zha*21a] extend this approach to handle different materials.

Datasets are very important for data-driven models, as they can only be as good
as the data you feed them. Some methods [LCT18; Tiw*20; Ma*20] use high-
quality scans of dressed people. Capturing and reproducing the deformation of
real clothes is a desirable capability of virtual try-on, but the acquisition process is
challenging and expensive. Alternatively, some works [SOC19; Gun*19; PLP20;
Gun*20; San*21] use synthetic data generated with physics-based simulators. This
methodology enables the generation of custom data, correctly labeled in a controlled
setting. Moreover, there is no need to have an expensive setup to get new data. For
these reasons, we decided to use synthetic datasets to develop our frameworks.

Self-supervised methods use implicit metrics of the training data as supervision,
instead of relying on labeled input data. Thus, they present an interesting alternative
to avoid the challenges of creating a dataset. Although most learning-based method
for cloth modeling are supervised, in the later years some works have explored the
creation of self-supervised methods. The first approach is the one presented by
Bertiche et al. [BME21], where the loss is computed as a sum of potential energies,
instead of an error between predictions and ground truth. They formulate their
network as the concatenation of a Multilayer Perceptron (MLP) to encode pose and
non-linearities in an embedding space and a deformations matrix that returns the
deformations of the unposed garment when multiplied with the pose embedding.
Their method doesn’t work with varying shape and a specific network needs to
be trained for each garment and body, and their method is essentially static, so
dynamic behaviours are impossible to model. Similarly, Santesteban et al. [SOC22]
propose a method that builds upon the same idea. However, their regressor takes
dynamics into account, as well as the shape body parameter of SMPL. Besides, a
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more complex model of material results in more realistic deformations, but they need
to train a regressor for each topology/garment. Recently, Grigorev et al. [Gri*23]
take this idea even further and use Graph Neural Networks to create a garment-
agnostic regressor, that estimates deformations for any garment depending on shape,
pose, size, and material properties. Despite the great potential of self-supervised
methods, the research conducted in this thesis is within the framework of supervised
learning.

Dense networks (also known as fully-connected networks) have been widely used in
machine learning applications due to their simplicity and flexibility. In the context of
data-driven cloth modeling, these networks have been shown to learn to predict rich
cloth deformations from synthetic datasets [Dan*17; SOC19; PLP20; San*21], real
cloth captures [LCT18; CCC22], and self-supervised strategies [BME21; SOC22].
However, they present some intrinsic limitations. One major drawback is their
inability to generalize to different discretizations of the cloth mesh.

In recent years, graph convolutions have emerged as a powerful tool in the field
of machine learning. The main idea behind graph convolutions is to leverage the
connectivity patterns of graphs to perform convolution operations. Graphs are
represented as sets of nodes (entities) and edges (relationships) and graph convo-
lution operators aggregate information from each node’s neighbors to update its
feature representation. Graph convolutions have become quite popular because
data of multiple irregular domains can be represented with graph structures. Some
well-known examples are social networks [HYL17], molecules [Gil*17], recommen-
dation systems [Yin*18a], traffic data [Li*17c], and, of course, 3D meshes [Mon*17;
VBV18]. Recently, some works have proposed graph-based networks to predict
cloth dynamics [Pfa*20; Gri*23].

In the field of generative models, Denoising Diffusion Probabilistic Models (DDPMs)
have been especially impactful, because of their ability to produce high-quality
images and their stable training. Ho et al. [HJA20] set their formulation and, since
then multiple works have improved their architecture, performance, and sampling
efficiency [SME20; ND21; Ho*22a; Bla*23]. They are at the core of popular
text-to-image synthesis models like DALL-E [Ope22b] or Stable Diffusion [AI23].
We will discuss DDPMs in detail in Chapter 5, as they are an important part of our
model.
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Our goal was to extend existing methods to work with arbitrary triangulations.
The first contribution (Chapter 4) uses graph convolutions, that effectively handle
irregular mesh structures by operating directly on the graph representation of the
cloth. This ensures the underlying structure of the cloth is preserved regardless of its
discretization. In the second contribution (Chapter 5) we explore the use of DDPMs
to generate rich and detailed displacement maps in the UV space.
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Background
3

This chapter covers some basic knowledge that can be useful for understanding
the technical contributions presented in Chapters 4 and 5. First, I’m introducing
parametric human models, which are crucial for our work, as they build on top of
SMPL, a prevalent model.

3.1 Human model. SMPL

Human parametric models are statistical models designed to represent human body
shapes and poses in a flexible and scalable manner. These models allow for the
generation and manipulation of a wide range of bodies, by using a reduced set of
parameters that define various aspects of the human body (usually, shape and pose
parameters). This allows for easy manipulation of body shapes and animation of
characters. Another key advantage is that they provide a reduced space of solutions
for some tasks, like motion capture.

Early attempts interpolated between manually sculpted shapes [SRC01]. Allen et al.
[ACP02] pioneered modeling bodies from scanned data, as a function of shape with
an articulated template. However, it wasn’t until SCAPE, the work by Anguelov
et al. [Ang*05], that there was a full model of body deformations as a function of
shape and pose. This work has several downsides (e.g. it has no skeletal structure),
so many follow-up data-driven methods have been proposed. The most popular
model is SMPL [Lop*15], which has become a standard for estimation, synthesis,
and a great variety of applications. It is based on blend shapes and skinning and
covers a wide range of body shapes. Later, it was extended to model hands [RTB17],
faces [Li*17b], and hands and faces [Pav*19]. And then, they proposed a reduced
and improved version of SMPL [OBB20].
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In our work, we use SMPL [Lop*15] to represent human bodies. SMPL is a
parametric model based on Principle Component Analysis (PCA) that represents
the human body compactly and expressively with 2 sets of parameters. The shape
of the human is parametrized by a low dimensional vector β ∈ R10, the principal
components of PCA applied to the per-vertex deformation of a huge amount of 3D
scans with multiple body shapes [Rob*02]. Note that they encode the deformations
per-vertex, unlike its predecessor SCAPE [Ang*05], which is based on triangle
deformations. The pose space is represented with the θ joint angles. Altogether, we
assume that the body is defined as a mesh

M(β, θ) = W (T (β, θ),β, θ,W), (3.1)

where W is a skinning function that deforms the unposed mesh T (β, θ) depending
on the pose parameters, θ, that correspond to the joint angles, the shape parameters,
β, that determine the position of the joints, and the skinning matrixW . Note that
the unposed mesh T (β, θ) depends on both β and θ as offsets that depend on both
sets of parameters are added to the original template (see Figure 3.1 for clarity.).

Figure 3.1: SMPL full model. a) Template with the color-coded skinning weightsW and
the original joints represented by white dots. b) Template with the shape-
dependent deformations and joints corrected. c) Unposed mesh T (β, θ) with
shape- and pose-dependent deformations. d) Deformed vertices M(β, θ)
reposed by the skinning function. Source: [Lop*15]

In the first contribution of this thesis (Chapter 4), we are interested in studying
garment deformations that do not depend on pose (but on design, shape, and
material). Thus there is no need to apply the skinning function, θ is set to 0,
and the body mesh remains unposed. However, we will use the skinning weights
as a semantic descriptor to enhance the capabilities of the network to reproduce
local-specific deformations. For the second contribution (Chapter 5), we estimate
deformations that depend on body pose and shape. Both β and θ parameters are
used as input to condition the network. Similarly to SMPL, the deformations will
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be added to an unposed template mesh, that can be transformed to pose space with
a skinning function.

3.2 Baseline

The works presented in this thesis are heavily inspired by the work of Santesteban et
al. [SOC19], who pioneered in investigating deep learning methods to model cloth
deformation. Their model is built on top of SMPL and formulates the deformations
of the garment in unposed space. Similarly to SMPL itself, they compute the
deformed mesh as a sum of the garment template and the result of 2 regressors.
The first regressor estimates per-vertex 3D offsets due to shape parameters, and
the second computes the deformations caused by pose and shape parameters. The
deformed cloth is then skinned and a post-process is applied to avoid penetrations
with the body mesh.

Figure 3.2: Santesteban et al. propose a data-driven method for cloth modeling that serves
as baseline for our work. Source: [SOC19]

Similar to SMPL, they formulate the garment mesh as

Mc(β, θ) = W (Tc(β, θ), J(β), θ,Wc), (3.2)

where the unposed garment template is computed as

Tc(β, θ) = T + RG(β) + RL(β, θ) (3.3)
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by summing the offsets estimated by their regressors to the initial template.

The main limitation of their method is that it is garment-specific, meaning that any
change in the design or discretization would require the training of a new network.
In both of our works, we have a similar formulation, with the only difference being
that we try to overcome their limitation by building regressors that work for several
designs. Thus, in our methods, the garment is formulated as

Mg(β, θ, p) = W (Tg(β, θ, p), J(β), θ,W), (3.4)

where p is a vector containing the design parameters, and the unposed deformed
garment mesh Tg(β, θ, p) is what we try to estimate in our proposed methods.
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Fully Convolutional
Graph Neural Networks
for Parametric Virtual
Try-On

4

The goal of this thesis is to explore data-driven methods for virtual try-on applica-
tions that generalize to different designs and topologies.

At the beginning of this thesis, most of the approaches that used learning-based
models to predict cloth deformation were limited to a single garment. The reason
for that is they were using networks with fully-connected layers. While these
architectures are easy to work with, they carry some limitations. The first one is
that they lose spatial information, as the triangular mesh representing the garment
is flattened into an array, the network doesn’t have any neighboring information.
Secondly, they are densely connected, so they are big and have a large number of
parameters, which increases the computational and storage cost, but also the chance
of overfitting. Last but not least, they need to receive a vector of a fixed size as
input.

Alternatively, convolutional layers learn filters that are applied across Euclidean
domains. These filters can be used in tensors of arbitrary shape. By sliding the
filters along the image, parameters are shared across the entire input, drastically
reducing the total number of parameters and inherently accounting for neighboring
information. This parameter sharing makes the filters translation-invariant and
allows them to capture local dependencies while keeping the network smaller
and increasing its generalization capabilities. Additionally, convolutional layers
enable the creation of hierarchical structures, combining smaller features to detect
more complex features, and fully-convolutional architectures (i.e. architectures
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that don’t have fully-connected layers) are not limited to a fixed input size. In the
image domain, fully-convolutional networks are quite common (e.g. for image
segmentation tasks) and they run with images of any size and shape.

However, while convolutions have proven to be very efficient and successful in
grid-like domains, their extension to more complex structures (like 3D triangular
meshes) is not trivial. In pursuit of this objective, we draw upon recent research
that defines the necessary operators for graph-like structures [DBV16]. We propose
a FCGNN (Fully Convolutional Graph Neural Network), which, when provided
with a 3D parametric garment featuring arbitrary mesh topology and a desired body
shape, yields precise 3D draped garment output.

Our geometric deep learning method operates by decoupling three distinct sources of
deformations crucial for clothing fit: garment type, target body shape, and material.
We start by building a parametric space for design. Using this design framework,
we create a dataset of 3D garments and employ physics-based simulation [NSO12]
to dress multiple body types. This dataset serves to train three different networks.
First, we develop a regressor to predict the coarse 3D draping of a garment on an
average body shape given its design parameters. Then, the surface of the garment
is refined to produce a uniform triangular mesh, and the deformations due to the
target body are estimated with a second regressor. Next, our final step adds the
material-specific deformations, particularly fine-scale wrinkles. This regressor is
further refined with a self-supervised strategy, that penalizes body-cloth collisions
without the need for training data.

Altogether we built a full framework that copes with multiple parametric garments
with arbitrary topology and fits them to a variety of body shapes.

4.1 Background

Before diving into the specifics of our method I would like to stop and explain some
of the model’s building blocks. We designed our FCGNN to have a U-Net archi-
tecture [RFB15], which was originally designed to segment medical images. This
architecture consists of a contracting path - where convolutional and down-sampling
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layers are concatenated - and an expanding path - that is almost symmetrical, and
consists of a concatenation of convolutional and up-sampling layers. Intuitively, the
contracting path provides context and the expanding path enables precise localiza-
tion. To create this architecture there are two key ingredients: the convolutional
operator and the pooling operator.

Figure 4.1: U-Net architecture was
designed for biomedi-
cal image segmentation.
Its main advantage is
that it can capture in-
formation at different
levels, while maintain-
ing spatial information.
Source: [RFB15]

4.1.1 Graph convolutions

Graph convolutions extend convolutions to graph-like structures, which makes
sense because convolutions have some desirable properties. To do so, we treat the
mesh as an undirected graph, where the vertices are the nodes and the edges are
the links. Classical convolutions are clearly defined and easily parallelizable, but
they only work for grid-like domains. The problem is that there isn’t a standard
way to extend their definition to irregular graph structures, see Figure 4.2 to get an
intuition. We decided to use as our convolutional operator the truncated Chebyshev
polynomial proposed by Deferrad et al. [DBV16], which is inspired by spectral
graph filters. This operator shares some of the main qualities that we desire from
classical convolutions, like looking at the local neighborhood, shared weight learning
and generalization to new nodes, permutation invariancy, all of it while maintaining
linear computational complexity.

Our definition: The normalized Laplacian is defined as L = In − D− 1
2 AD− 1

2 ∈
Rn×n where A is the adjacency matrix of the graph (Aij = 1 if there is an edge
between vertices i and j, Aij = 0 otherwise) and D is the diagonal degree matrix
(Dii = ∑

j Aij and Dij = 0 if i ̸= j).

4.1 Background 29



Figure 4.2: Intuition on convolutional operators. Top: Convolutions on Euclidean do-
mains are well defined. The filter slides over the image, and the filter’s weights
are used to aggregate the neighbors’ information for each pixel. Bottom: Con-
volutions in the graph domain are not so clear. Note how the neighborhoods
have different sizes for each node.

The Chebyshev polynomial of order k, Tk(x) can be recursively computed by

Tk(x) = 2xTk−1(x)− Tk−2(x) (4.1)

with T0(x) = 1 and T1(x) = x. The polynomial parametrization for spectral
localized filters that we use as our convolutional filters is then defined as

y = gθ(L)x =
K−1∑
k=0

θkTk(L̃)x, (4.2)

where L̃ = 2L/λmax − In is the scaled Laplacian(λmax is the principal eigenvalue
of L) and θk ∈ RFout×Fin are the learnable parameters (Fout and Fin are the size of
out and in feature vectors respectively).

Defining xk = θkTk(L̃)x, we can make use of recurrence to compute xk = 2L̃xk−1−
xk−2 with x0 = x and x1 = L̃x. Then, y = gθ(L)x = [x0, x1, ..., xK−1]θ, which
can be efficiently computed.

Our early experiments showed that very big K didn’t really improve the results
while increasing the complexity and execution time of the operator, so we settled at
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K = 3. Intuitively, this means that the output features corresponding to applying a
convolutional filter on a vertex is influenced by its 2-ring neighborhood

4.1.2 Down- and Up-sampling

The pooling operation is again not trivial for such irregular domains. We decided
to take an approach that makes sense from a geometrical point of view and was
proposed by Ranjan et al. [Ran*18]. The key idea to their down-sampling operator
is to pre-compute for each mesh the transform matrices Qd ∈ {0, 1}(n×m) and
Qu ∈ R(m×n), where m > n and m is the number of vertices in the original
mesh and n is the number of vertices of the pooled mesh. To produce the down-
sampling matrix, Qd, we used the quadric error metrics algorithm [GH97]. Using
quadric matrices, we estimate the surface error introduced by contracting each
pair of vertices and iteratively decide which vertex to eliminate, until there are
only n vertices left. The elements of the matrix are then set as Qd(i, j) = 0
∀i = 0, 1, ..., n − 1 if the vertex vj is discarded and Qd(i, j) = 1 if vj is the i-th
kept vertex (Qd(k, j) = 0 ∀k ̸= i).

The up-sampling matrix Qu is built at the same time as the down-sampling matrix
Qd. For each vertex vj that is kept in down-sampling is reset with the up-sampling
matrix (Qu(j, i) = 1 ⇐⇒ Qd(i, j) = 1). Eliminated vertices are projected into the
closest triangle of the down-sampled mesh and the barycentric coordinates of the
projected vertex are used to build the up-sampling matrix. Mathematicaly, if a vertex
vj is discarded in the down-sampling preprocess, we search for its closest triangle
in the coarse mesh, (va, vb, vc), and we obtain the projection of vj onto the triangle,
v̄j . The barycentric coordinates are found, such that v̄j = wava + wbvb + wcvc

and wa + wb + wc = 1. Then, Qu(j, a) = wa, Qu(j, b) = wb, Qu(j, c) = wc, and
Qu(j, i) = 0 ∀i /∈ {a, b, c}

Additionally, the Laplacian of the down-sampled mesh is computed in the pre-
process, as it is going to be required by the convolution operator in the deeper
steps of the network. Note that all of these computations need to be done for
each topology that is inputted to the Fully Convolutional Graph Neural Networks
(FCGNN) used in our work. However, it only needs to be computed once, and the
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Figure 4.3: Intuition behind the pooling operator. (a) Given an initial template, (b) some
nodes (red) are eliminated through matrix multiplication with Qd, (c) the
feature representations of the remaining nodes (blue) are modified by the
network, (d) and the eliminated nodes are reconstructed as linear combinations
of the remaining nodes, via matrix multiplication with Qu. Source: [Ran*18]

Figure 4.4: Overview of our full pipeline.

down and up-sampling operators are very efficient operations at runtime, as they are
just multiplications by sparse matrices.

4.2 Method

Our objective is to accurately predict the 3D draping of garments, adaptable to any
body shape, in the context of virtual try-on applications. We particularly focus on
handling a diverse range of garment types, as most existing works overlook this
feature due to the challenge of dealing with varying topology inputs.

To achieve this, we propose a three-stage approach outlined in Figure 4.4 that
disentangles the different sources of deformations (due to garment type, body shape,
and material) influencing clothing fit. Next, we will overview the different steps
that build our pipeline.
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Following the traditional garment design process, our initial step (Section 4.2.1) uses
a set of 3 parameters p to define the 2D sewing patterns of a garment (sleeve length,
chest circumference, and garment length), and learns a regressor Rmean(p) = T
to estimate the corresponding 3D mesh T of the garment draped into an average
human shape. The first regressor returns a template with a fixed topology and a low
dimensionality representing a wide range of designs (from tops to dresses, from
short to long sleeves). To properly represent any garment, our second step (section
4.2.2) computes an optimized mesh topologyM for each garment, with uniform
vertex distribution and triangle size. This new mesh with a new topology is then
passed to our second regressor, Rsmooth, to predict a smooth fit, given a target body
shape β. The last step of the pipeline is a material-dependent regressor Rfine that
produces a deformed mesh Mfine with a realistic draping of the garment on the
target body shape with fine wrinkles. Both Rsmooth and Rfine are implemented with
(what we call) an FGCNN architecture, that copes with any garment design, shape,
and (importantly) mesh topology. Furthermore, to avoid body-garment collisions in
section 4.2.5 we introduce a novel self-supervised strategy to fine-tune the regressor
Rfine. This approach incorporates a geometrically defined loss term that penalizes
penetrations between the body and the garment, eliminating the need for costly
ground truth data.

4.2.1 Parametric 3D Drape

To achieve accurate predictions of 3D draping for virtual try-on applications, it is
essential to establish first the garment type. Inspired by the traditional clothing
manufacturing processes, we propose a strategy based on 2D sewing patterns to
characterize garment design properties. Our observation is that we can use a single
2D layout to effectively model a diverse range of garments by simply editing the
length of some parameters. In fact, we can change from a short top to a dress, by
changing the height of the front and back body panels. Similarly, adjusting the
height of the sleeve panels can modify the length of the sleeves, and so does the
height of the cleavage with a slight alteration of the front body panel.

Building upon this observation, we train a model to predict the coarse 3D drape of a
garment based on a specific 2D sewing pattern. Here, we encode the parameters
that define the 2D layout in a vector p that is fed into a non-linear regression
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Rmean : R|P | → R3×|V (T )| that outputs the drape of the garment on a mean human
shape Rmean(p) = T denoted by the overline symbol (we will consistently use the
overline to signify mean-shape-related variables.

Figure 4.5: Sewing pattern parameters (rows) used to build our dataset of garments. Each
column shows the effect of the minimum, mean, and maximum values for
each parameter.

The motivation for this initial step is twofold: first, it roughly fits the garment
on a generic human subject, which we use later in Section 4.2.2 to parameterize
garment vertices using their closest body skinning weights; and second, it allows us
to disentangle garment type-dependent deformations (i.e., that depend on p) from
material-dependent and body shape-dependent deformations.

To train our regressor Rmean(p) we build a dataset of 3D garments by manipulating a
single 2D layout. Specifically, as shown in Figure 4.5, we manually edit parts of the
2D panels to design a family of garments including tops, t-shirts, sweaters, and short
and long dresses. We then label each sample according to a set of measurements p

34 Chapter 4 Fully Convolutional Graph Neural Networks for Parametric
Virtual Try-On



in the corresponding 2D representation and simulate the sample worn by a mean
human shape using a state-of-the-art physics-based cloth simulator [NSO12] (with
remeshing option turned off) until it reaches equilibrium to obtain a 3D mesh T
of the draped garment. We implement the regressor Rmean : RP → R3×V T using a
fully connected neural network that outputs the vertices positions of the mesh T
with a predefined topology.

4.2.2 Mesh Topology Optimization

To accurately represent the draping of 3D garments with fine-scale detail it is
necessary to use a topology with sufficient resolution (i.e., number of triangles) for
each garment type. Since one of our goals is to build a model that can predict the
deformations for a large family of garments, we need to adapt the topology of the
mesh T depending on the type of garment. To give a more practical example, we
assume that the number of triangles required to represent high-quality draping of a
t-shirt is smaller than those required for a long dress.

We model such garment type-dependent topology requirement by applying a remesh-
ing operation to the coarse mean draped garment T . Specifically, we generate a
new mesh

M = ϕ(T , p, Tdist, Tarea), (4.3)

where ϕ() is a remeshing operation that, given an input meshT and the 2D design
parameters p, aims at maintaining a (manually specified) average triangle distortion
Tdist and surface area Tarea. Notice that these parameters are constant for all garments,
therefore we only need to set them once. We implement ϕ() based on the method
proposed by Narain et al. [NSO12]. We write the optimized mesh as M =
{V M, E M}, where V M ∈ R3×V M are the vertices of the optimized surface, and
E M the edges of the mesh. Figure 4.6 shows an example of the template topology
T for a long dress design, which result in many degenerated triangles, and the
optimized topologyM. In practice, ϕ() works in the UV-space of the 2D panels,
which are automatically sew together to obtainM. We have simplified the notation
for the sake of clarity. Notice that the surface ofM and T is analogous, but their
topology is different.
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Figure 4.6: Garment type-dependent topology optimization, here shown in 2D panel space.
Left: the 2D layout of a long dress design, with the template topology T .
Right: the same design after the topology optimization step, resulting in the
meshM with homogeneous triangle size and without degenerated geometry.

4.2.3 Smooth 3D Body Drape

Having the optimized mesh topologyM computed, in this second step we address
the modeling of garment deformations caused by the target body shape. To represent
parametric bodies, we use the popular model SMPL [Lop*15], which provides a
PCA-based representation of human bodies in T-pose, parameterized by β ∈ R10.
We use the first component throughout the paper since it encapsulates the largest
variance in body shape. Importantly, SMPL also provides per-vertex rigging weights
wi, which we use later in this section as a descriptor for garment vertices.

We therefore seek to learn a regressor Rsmooth that deforms the mean shape garment
M and outputs a mesh that reproduces a smoothed drape of the garment onto the
target body shape β. We design Rsmooth such that it learns global and smooth defor-
mations, which has two main advantages: first, it eases the learning task since it
reduces the variance in data and second, it decouples target body-dependent defor-
mations (i.e., global stretching and draping effects) from material-dependent (i.e.,
fine wrinkles) deformations, which we will learn on a subsequent step. However,
formulating such regression task is not trivial: the topology of the input meshM
is unknown at train time since we generate it at run time depending on the design
parameters p. Therefore, we cannot employ a fully connected network, where the
input is a fix-size vector corresponding to the number of vertices of the mesh (a
strategy commonly used in most of recent learning-based garment deformation
methods [Wan*19; Wan*18; SOC19]) and, instead, we propose to use a graph-based
fully convolutional architecture.
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Figure 4.7: UNet-based architecture for regressors Rsmooth (left) and Rfine (right). Each
pooling or upsampling pass reduces or augments the number of nodes to half
or double size. The input number of nodes is the same for both regressors,
they differ in the number of intermediate layers, which is bigger for Rsmooth
as it has to learn a broader range of deformations.

Two key ingredients are required to design the regressor Rsmooth as a graph-based
fully convolutional neural network: first, a convolution operator that is able to deal
with graph input and, second, an efficient graph pooling operator that is able to
coarsen the mesh by clustering together similar vertices. Specifically for this work,
for graph convolutions we use the operator based on truncated Chebyshev polyno-
mial proposed by Defferrard et al. [DBV16], which has shown to be very efficient
given its linear computational complexity and constant learning complexity, like clas-
sical convolutional neural networks (e.g., for images or other Euclidean domains).
For mesh coarsening we use the approach proposed by Ranjan et al. [Ran*18],
which consists of precomputing down- and upsampling matrices using a traditional
method for surface simplification by Garland and Heckbert [GH97]. Both operators
were explained in detail in the background section (4.1).

Having the operators defined, we now explain how we design our fully convolutional
regressor Rsmooth. Starting from the mean shape 3D drape mesh M = {V M, E M},
we first build an analogous undirected graph G = (N, C), with as many nodes and
edges, as vertices and edges in the mesh, N = V M ∈ R3×V M and C = E M ∈
R3×E M , which we wish to use as input to the graph neural network. However,
using vertices position as a descriptor for the graph nodes does not leverage all
the information available in this context. Our key observation is that we can also
append semantic body part information into the graph. To this end, for each garment
vertex v M

i we find the closest body vertex vB
k , and append its associated rigging

weights wk into each graph node descriptor. Additionally, we also append the shape
descriptor β to each node. Therefore, the ith node of the graph G is defined as
ni = {v M

i , wk, β} ∈ R3+J+|β|, where J is the number of body joints (24 for SMPL
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[Lop*15]), and |β| the number of shape coefficients (1 for the results shown in this
paper).

We then input the graph G into our fully convolutional regressor

Rsmooth(G ) = ∆smooth (4.4)

to predict a vector of 3D displacements ∆smooth ∈ R3×V M . The architecture of the
network, inspired by the success of fully convolutional U-Net [RFB15] for image
segmentation, is depicted in Figure 4.7. The final deformed mesh of this second
stage is then computed by adding the predicted 3D offsets to the mean shape 3D
drape

Msmooth = M+ ∆smooth. (4.5)

To train the regressor Rsmooth we create a dataset of ground-truth deformations of
two different materials and a range of body shapes using the physics-based cloth
simulation [NSO12]. We leverage the whole set of training data without introducing
bias due to material-dependent deformations by first applying a Laplacian smoothing
operator to each generated mesh, and then computing the average of each corre-
sponding sample (i.e., those with same topology, garment type, and target shape)
before substracting it from the mean shape to obtain the displacements ∆GT

smooth. As
a loss function we use the ℓ2-norm of the error between ground truth displacements
and predictions, in addition to the ℓ2 regularization of the network weights

4.2.4 Fine 3D Body Drape

The garment meshMsmooth successfully reproduces the global garment deforma-
tions due to target body shape, but lacks fine details that depend largely on the
material. We address such source of deformations in this third and last step by
further deforming the garment mesh. To this end, we learn to regress a new set of
3D displacements ∆fine using a fully convolutional network that takes as input a
graph G built from the vertices positions vMsmooth

i and its associated rigging weights,
analogous to the graph G described in Section 4.2.3

Rfine(G) = ∆fine. (4.6)
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Our final predicted 3D drapeMfine is then computed by adding the fine displace-
ments onto the meshMsmooth

Mfine =Msmooth + ∆fine. (4.7)

To train the regressor Rfine we use the same simulated fits as in Section 4.2.3.
However, in this case, we take advantage of the material-dependent deformations
and train one regressor per material type. We generate the ground truth offsets
∆GT

fine, m per each material m by substracting the smoothed fits from the simulated
fits. As loss function for Rfine we use the same loss as Rsmooth, with the ground truth
fine-scale displacements ∆GT

fine, m instead.

4.2.5 Self-Supervised Learning of Body-Garment
Collisions

The objective losses used to train regressors Rsmooth and Rfine minimize the recon-
struction error but, due to expected residual errors in unseen shapes and topologies,
this term alone does not guarantee predicted deformations to be free of body-garment
collisions. This is a common issue in learning based solutions, which has been
address with rendering tricks [De *10], postprocessing steps [SOC19], or explicit
collision loss terms [Gun*19] using supervised training. Inspired by the later, we
propose a collision loss term that we can train in a self-supervised strategy, and
therefore does not require to generate expensive ground truth simulations. This is a
major advantage over previous explicit collision losses.

Specifically, for each vertex of the garment v M
i we find the closest body vertex vB

k

and compute the collision loss as

Lcollision = max(−nB
k (v M

i − vB
k ), 0), (4.8)

where nB
k is the normal vector of the body vertex. The work of Gundogdu et

al. [Gun*19] uses this loss to penalize collisions during training, but unless the train
dataset is exhaustive enough, this approach does not guarantee collision-free results
for unseen inputs. In our particular case this is particularly bad, since creating an
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exhaustive dataset of cloth simulations is not feasible due to the arbitrary topology
input of our method.

Therefore, starting from network weights trained for Rsmooth and Rfine, we propose a
novel strategy to fine-tune our network Rfine using Equation 4.8 to produce collision-
free results for arbitrary inputs. The key insight of our approach is that evaluating
the collision loss does not require ground-truth data. This allows us to feed the
network with random inputs and train on the collision loss only until it converges to
a value near zero. To this end, during the self-supervised step we sample random
body shapes β and garment topologiesM, feed them into our pipeline, and use
the predicted mesh to fine-tune Rfine with Equation 4.8. Thanks to this strategy
the number of collisions has been reduced by 70% during training, and 20% in
validation.

4.3 Dataset and Implementation

Our ground truth dataset has been generated from 19 different garment pattern
designs, two different topologies per design, and 201 values for the body shape β

from the SMPL body model [Lop*15], uniformly sampled within the range -3 and
3 (from which 100 have been exclusively used for test). The resulting meshes have
between 1,414 (for the simpler case) and 3,581 (for long dresses) vertices. The
dataset was generated for two different materials. We split our 38 topologies into
31 for training and 7 for validation. We qualitatively validate our method in some
completely new designs with unseen combinations of design parameters that are
not in our dataset. To train Rsmooth (Section 4.2.3) we apply Laplacian smoothing to
all samples in our dataset and compute the average mesh with the different material
samples.

T has a fixed size of 403 vertices, value which dynamically changes for M
depending on the garment complexity after the topology optimization step. To
generate our data for the first step described in Section 4.2.1, in order to avoid
potential topology-related problems (e.g., highly distorted triangles, irregular vertex
positions, etc.) at simulation time, we first use a high-resolution mesh of 17,246
vertices, and then consistently downsample the simulated meshes to 403 vertices.
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Figure 4.8: Demo implemented to test our method. The design panel allows for manip-
ulation of the design parameters and deforms the low-resolution mesh T
interactively. Once the user has chosen the design, the "Optimize topology"
button is pushed to activate the remeshing algorithm (M is computed) and the
preprocess (laplacians and down- and up-sampling matrices are computed).
Then, the high-resolution garment is draped in the virtual try-on panel, where
the shape of the human can be modified and the garment is draped interac-
tively.

2D panel meshes are manually generated on a 3D modeling software, and the design
parameters interpolate between these hand-made panels.

We have implemented our pipeline in TensorFlow for efficient GPU training and
execution. The parametric 3D draping is a fully connected layer with 3 input neurons
(one per design parameter) and a single hidden layer (of ten neurons) trained for
less than a minute. Training the fully convolutional networks Rsmooth, and Rfine took
approximately 20, and 14 hours respectively, their architecture is depicted in Figure
4.7. Fine-tuning the self-supervised collisions took around one day. Everything was
executed on a NVIDIA Titan X with 12GB.
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Figure 4.9: Generalization to new topologies. Hausdorff distance between the predicted
and the ground truth meshes for a range of body shapes and 7 validation
topologies. Errors in test topologies are consistent, demonstrating the general-
ization capabilities of our method, and on par to topologies used for training
(dashed black).

4.4 Evaluation and Results

In this section, we quantitatively and qualitatively evaluate our results in different
scenarios. Specifically, we demonstrate our generalization capabilities, compare
with the state-of-the-art method of Santesteban et al. [SOC19], and with a newly
proposed brute force baseline for parametric virtual try-on.

Evaluation of Generalization to New Topologies. In Figure 4.9 we quantita-
tively evaluate the generalization capabilities of the regressors Rsmooth and Rfine to
new topologies. Specifically, for a given garment parameters p and material for
which we have ground truth simulated data, we randomized the topology (keeping
the mean triangle area constant) of the mean shape predicted meshM, and feed
each topology to the regressors Rsmooth and Rfine for a range of target shapes β. For
each predicted mesh, we then compute the Hausdorff distance to the ground truth
simulations. Results demonstrate that our method predictions are quantitatively
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consistent, regardless the topology and target body shape. Importantly, we also
show that the error of the topologies unseen at train time (i.e., validation set) is on
par with the error of topologies used to train (in dash black).

Comparison with Parametric Fully Connected Baseline. Despite the lack of
methods than can cope with parametric garments due to the need for different
topologies, an alternative brute-force approach could be to use a highly-dense
topology in M to represent all garments, followed by a fully-connected end-to-end
network that predicts displacements over such mesh. This high dense topology
would provide an over-discretized mesh which, although unnecessarily complex for
small garments such as a t-shirt, would provide sufficient details for large garments
such as dresses, technically enabling the use of fully-connected pipelines [SOC19].
We implemented such solution, which can be considered a baseline for data-driven
parametric garments, and compared it with our fully convolutional approach.

In Figure 4.10 we present a quantitative evaluation of the precision accuracy of our
method, and the fully connected baseline. Specifically, for a given garment design
(unseen at training time) we compute the Hausdorff error for a range of target body
shapes, and demonstrate that our predictionsMfine are consistently more accurate.
Our hypothesis is that the fully-connected approach cannot generalize to garment
types outside the training set due to the global nature of the densely connected
neurons, that are unable to learn local features. In contrast, the convolutional nature
of our approach is able to capture local features, and therefore correctly predicts
deformations of garment types unseen at train time but locally present in train
examples.

Furthermore, we also evaluate the memory footprint of each method, which also
results favorable for us. The fully connected network size is 167 MB, while ours
(Rsmooth + Rfine) is 71MB. This is also expected, since the number of parameters for
a fully connected network is significantly higher in comparison to the parameters
used in the convolutional kernels. Note also that the fully connected approach
needs to be fully trained for any new material while our approach enables easier
generalization and transfer learning for new materials through fine-tuning Rfine.
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Comparison with Santesteban et al. 2019. In Figure 4.11 we qualitatively
compare our results with the state-of-the-art method of Santesteban et al. [SOC19],
which is limited to a single garment. For a garment design analogous to the t-shirt
used to train their method, we demonstrate that the predictions of both methods
are on par (rows 1 and 2), while we are capable to predict the draping of a much
larger number of garments (rows 3 and 4). This demonstrates the generalization
capabilities of our method to arbitrary parametric garment design (and therefore,
arbitrary topology).

Qualitative Results. In Figure 4.12 we show qualitative results of our method,
for a variety of body shapes, garment types and topologies, all of them unseen at
train time. Notice how the wrinkles predicted with our approach naturally match
the expected behavior of the garment, and change for each shape-garment pair. This
demonstrates that our method generalizes well to new garment types, topologies,
and shapes. Check the supplementary video for more qualitative results.

In Figure 4.13 we show qualitative predictions of our method, for two different
materials, but the same target body shape and garment type (both unseen at train
time). We demonstrate how our final step Rfine is able to learn material-specific
deformations, resulting in visually different folds and wrinkles. Specifically for
this comparison, the blue t-shirt is train on gray-interlock (60% Cotton, 40%
Polyester) material and the pink on white-dots-on-black (100% Polyester)
from ARCSim materials [NSO12]. See [WOR11] for additional material details.

4.5 Conclusions

We have presented a method to predict the drape of a predefined parametric space of
garments onto an arbitrary target body shape. To achieve this, we propose a novel
fully convolutional graph neural network that, in contrast to existing methods, is
not limited to a single garment or topology. Our novel pipeline, based on U-Net
architecture and efficient graph convolutions, generalizes to unseen mesh topologies,
garment parameters, and body shapes. To the best of our knowledge, ours is the
first fully convolutional approach for virtual try-on purposes, which opens the door
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to more general data-driven cloth animation methods based on geometric deep
learning.

Despite our step forward in geometric learning-based solutions for cloth animation,
our approach still suffers from the following weaknesses that could be addressed
by follow-up works. Pose-dependent and material-dependent input parameters are
not considered to our approach, and you need to retrain the model to consider
these configurations. Multi-layer garments and contact with external forces are
not considered either. Additionally, commercial garment design definitely requires
more than 3 parameters. The analysis of the scalability of the proposed method to a
larger garment space remains open for future research.

After the publication of this work, we addressed an important limitation with positive
results. Initially we trained the network with two different triangulations for each
design (see Section 4.3). To do so, we simulated the deformations with each of
the meshes and used them to train the network, but the problem is that differences
in the discretization lead to differences in the simulation, and the network was
getting 2 slightly different deformations for each garment, which is confusing and
led to smoothing. To overcome this issue, we generated new simulations for each
design with high resolution meshes. Then, we generated 20 different topologies
for each garment, and adjusted each sample to the high-resolution simulation. This
augmented and normalized dataset helped the network and led to a significant
improvement of the results.

Another significant limitation is the sampling preprocess. Although our sampling
algorithm is very efficient once the matrices are precomputed, there is a computa-
tional cost at the pre-processing step. Besides, by construction, some features are
lost in the pooled layers. We tried different approaches for learned pooling [GJ19;
Yin*18b], but they didn’t improve the quality of our method.

Even if our self-supervised strategy, significantly reduces the occurrence of penetra-
tions, there are still some occurring in our results. For safety, we need to apply a
post-processing step to handle them.

Last, but not least, the complexity of modeling deformations with graph convolutions
was challenging. It involves very long training times and smoothing artifacts.
These issues only went worse when we started dealing with bigger datasets and
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more complex deformations. While the network did well at estimating the overall
movement of pose-dependent deformations, it lost a lot of high-frequency detail.
For that reason, we decided to try an image-based approach, that still is agnostic to
discretization.
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Figure 4.10: Quantitative evaluation of our fully convolutional (solid blue) approach and
the fully-connected baseline (i.e., using the same highly-dense topology for
all garments and a fully-connected architecture, dashed red), for 6 garment
designs not present in the training set. Our approach consistently outperforms
the fully connected baseline since the latter cannot generalize well to unseen
garment types.
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Santesteban et al. 2019
[SOC19]

Our method

β  = 2 β  = -2β  = 01 1 1

Figure 4.11: Qualitative comparison with the single-garment and fix topology method of
Santesteban et al. [SOC19] and ours. When sampling the same garment type
use to train their method, our results are on par with Santesteban’s (rows 1,
2), while our approach allows for a much richer space of garment types and
topologies (rows 3, 4).
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Figure 4.12: Virtual try-on results with our method, for a variety of garments (rows),
fitted into a range of shapes (columns), both unseen at train time. Our
method successfully predicts the drape of the garment, with natural folds and
wrinkles at different scales that depend both on the input garment type and
the target body shape.
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Figure 4.13: Deformations regressed by our method for two different materials, presented
in blue and pink. We demonstrate that, given the same target shape and input
garment type, our method (top) is able to learn material-specific details that
produce distinctive folds and wrinkles, closely matching the ground truth
deformations (down).
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DiffusedWrinkles: A
Diffusion-Based Model
for Data-Driven Garment
Animation

5

Learning-based methods provide an alternative to computationally expensive tradi-
tional physics-based approaches for the complex task of cloth modeling. However,
these methods often face challenges in generalizing to unseen garment mesh dis-
cretizations and maintaining high-frequency detail. The main reason is that, while
deep learning models are optimized to work on regular domains, their extension to
complex and irregular domains, like 3D meshes is not trivial.

In our previous work (Chapter 4), we decided to tackle this problem by extending
convolutional architectures to handle graph-like structures. Despite the novelty of
the method and the good results, its extension to larger datasets was challenging,
as training the networks took a long time and they struggled with reproducing fine
wrinkles.

To circumvent this limitation, some works model 3D cloth with point clouds or
implicit representations, but detailed and topologically consistent mesh outputs
remain challenging. Alternatively, instead of working in the 3D domain, some
works have explored the use of 2D image-based representations to encode 3D
garments. The key idea underlying these approaches is to leverage the well-studied
deep learning architectures for image processing to model garment details. A
common approach is to use Generative Adversarial Networks to enrich or infer
2D representations. However, GANs are difficult to train (e.g., they easily suffer
from vanishing gradient or mode collapse issues [AB17]) and their expressiveness
is limited.
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Figure 5.1: Samples of a DDPM trained on ImageNet. Source: [DN21]

Recently, Denoising Diffusion Probabilistic Models [HJA20] have emerged as a
successful alternative for image synthesis. These models are trained through a
denoising diffusion process and are capable of generating high-quality images by
denoising Gaussian noise. DDPMs have shown to outperform GANs in many tasks
[DN21] while being faster and easier (as they don’t suffer from collapse issues) to
train (see Figure 5.1 to see some images generated by early DDPMs).

In this chapter, we show DiffWrinkles, our method to generate detailed deforma-
tions using DDPMs. The core idea of the method is to build a robust 2-dimensional
representation of garment deformations and to train a DDPM to generate these
deformation maps conditioned by pose, shape, and design parameters. Our model
creates high-quality animations, is agnostic to mesh topology, and has the capa-
bility of synthesizing various plausible deformations for one pose-shape-design
configuration.

Core to our model is the garment representation. We propose to encode the deforma-
tions of a dataset of animations as 2D layout-consistent displacement maps. With
this representation, we can easily leverage the generative capabilities of DDPMs
to synthesize new maps of deformations. We condition our diffusion model with a
conditional embedding, containing pose, shape, and design information. Besides,
due to the generative nature of the approach, we need to condition the model with
the previous state of the garment, to create temporal-coherent sequences.
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We qualitatively and quantitatively demonstrate that our approach is capable of
generating high-quality 3D animations for a wide variety of garments, body shapes,
and motions, outperforming the closest previous works for similar tasks that are
based on graph neural networks or MLPs.

The remainder of the chapter is structured as follows. In Section 5.1 we describe
DDPMs, which are crucial to our model. In Section 5.2 we introduce our novel
garment representation which consists on a 3D mesh encoded with an MLP network
to represent the global garment design, and an image-based representation to store
folds and wrinkles produced by body pose and shape. We learn each of these terms
in a data-driven strategy. To this end, in Section 5.3 we present our key contribution
and introduce a diffusion-based model to learn predict our image-based wrinkles
representation. Later, in Section 5.4 we demonstrate that our approach enables the
animation of a large collection of designs, producing compelling folds and wrinkles
in animated test sequences. Finally, in Section 5.5 we conclude with a summary of
contributions and future work directions.

5.1 Background. Denoising Diffusion
Probabilistic Models

Denoising Diffusion Probabilistic Models are a class of generative models that pro-
duce images by reversing a diffusion process. They have recently gained popularity,
thanks to their stability, simplicity, and capability to produce high-quality images.
The idea of using a diffusion process for generative learning was first introduced by
Sohl-Dickstein et al. [Soh*15], but it wasn’t until the seminal paper by Ho et al.
[HJA20] that DDPMs were formalized and their effectiveness was proven. Since
then, they have only gained prominence and multiple works have emerged improv-
ing their performance [DN21; ND21], scalability [PX23; Per*23] and their range of
applications (video [Ho*22b; Bla*23], medical image reconstruction [Pen*22])

DDPMs are a class of deep generative models that produce images by reversing
a diffusion process. They are based on two stages, the forward diffusion stage
and the reverse diffusion stage. In the forward diffusion process, Gaussian noise
is progressively added to the data over a fixed number of steps, until a normal
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Figure 5.2: Intuition behind DDPMs. The forward process adds noise, and the reverse
process learns to remove it.

distribution is obtained. In the reverse process, a model is trained to reverse the
diffusion process (i.e. gradually remove the noise). This model can then recover
images from the data distribution by iteratively denoising random samples of a
normal distribution.

Let’s describe the formulation of the different parts of DDPMs

Forward process. Let x0 be an original image of the dataset with data density
q(x0). The index 0 indicates that no noise has been added to the image. Then, the
noised versions are obtained with a Markovian chain, as follows:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI),∀t ∈ {1, ..., T}, (5.1)

whereN (x; µ, θ) is the normal distribution producing x, with mean µ and covariance
θ, T is the number of diffusion steps, and β1, ..., βT are the parameters representing
the noise schedule (later, we will discuss their properties further). Note that, if we
define αt = 1− βt and αt = ∏t

i=1 αi, then the distribution can be rewritten as

q(xt|x0) = N (xt;
√

αtx0, (1− αt)I). (5.2)

Sampling xt from the distribution q(xt|x0) is equivalent to computing

xt =
√

αtx0 +
√

(1− αt)ϵ (5.3)

where ϵ ∼ N (0, I).
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Intuitively, this means that sampling the distorted image at a certain timestep t

can be directly done by computing the weighted sum of the original image and a
randomly sampled Gaussian noise image.

Noise schedule. (βt)T
t=1 ∈ [0, 1) represent the noise variance across the different

diffusion steps. If they are chosen such as αT ≈ 0, then the distribution of xT can
be approximated by the standard Gaussian distribution. In the seminal paper by
Ho et al. [HJA20] they set the schedule to be linearly distributed from β1 = 10−4 to
βT = 0.02, but later approaches demonstrated that cosine schedule yields to better
results. The intuition is that this schedule makes αt change slower at the extremes,
when t is close to 0 and T , avoiding abrupt changes in noise level.

Reverse process. In theory, new samples can be obtained from the distribution
q(x0) by starting from a sample xT ∼ p(xT ) = N (xT ; 0, I) and following the
reverse steps with the following distribution:

p(xt−1|xt) = N (xt−1; µ(xt, t), Σ(xt, t)), (5.4)

where the mean µθ(xt, t) and the covariance Σθ(xt, t) can be predicted with a neural
network, given the noisy image xt and the timestep t. Then,

pθ(x0:T ) := p(xT )
T∏

t=1
pθ(xt−1|xt), (5.5)

pθ(xt−1|xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)). (5.6)

Training objective. As we want pθ(x0) to fit the distribution of the data, the ideal
objective would be to maximize the log likelihood of the distribution, but this is
intractable. Instead, a variational lower bound on the negative log likelihood is used
for optimization:

E[− log pθ(x0)] ≤ Eq[− log pθ(x0:T )
q(x1:T |x0)

] := Lvlb(θ), (5.7)

so minimizing this function is equivalent to maximizing the likelihood. This idea
was developed before by Kingma and Welling [KW14].
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Ho et al. propose to fix Σθ(xt, t)) and rewrite µθ as a function of noise ϵθ. After
some mathematical derivations, they show that a simplified variant of the variational
lower bound can be used for training:

Lsimple(θ) := Eϵ,xt,t[∥ϵ− ϵθ(xt, t)∥2
2] = Eϵ,x0,t[∥ϵ− ϵθ(

√
αtx0 +

√
1− αtϵ, t)∥2

2]
(5.8)

In practice, when training, t is randomly sampled from a uniform distribution and
the noisy image xt is computed with x0 and a random sample of Gaussian noise
ϵ. Given t and xt, the network ϵθ(xt, t) returns an estimation of ϵ, that is used to
compute the loss to take gradient descent and optimize its parameters. Once trained,
at sampling, starting from a random noise sample xT we iteratively compute xt−1

as a function of xt and t until t = 1.

5.2 Garment Representation

Our garment representation builds on top of the existing 3D parametric human
models (e.g., [Lop*15; JSS18]), borrowing their shape β and pose θ parameteri-
zation used to encode the identity and skeletal configuration of the subject. More
specifically, and inspired by previous works [Vid*20; SOC19], we extend SMPL
body model formulation [Lop*15] to represent a deformed garment as

Mg(β, θ, p) = W (Tg(β, θ, p), J(β), θ,W), (5.9)

where W is a skinning function (e.g., linear blend skinning, or dual quaternion),
J(β) ∈ R3×24 the body joint positions, andW the skinning weights of a deformable
garment Tg(·).

Our key difference with our previous work (described in Chapter 4) is the representa-
tion used to encode and learn the deformable garment Tg(·), which allows us to learn
fine-wrinkle detail while being agnostic to both the template mesh topology and the
surface discretization detail. To this end, we propose a deformable template

Tg(β, θ, p) = Gdesign(p) + ϕ(Gwrinkles(β, θ, p)) (5.10)
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Figure 5.3: All our parametric garments have UV coordinates, such that their texture maps
are aligned. The displacement maps are generated in the same layout and
they are transformed to offsets in the 3D unposed space. Finally, the mesh is
reposed and a post-process to remove penetrations is applied.

where the first term models the global deformation of garment due to the design
parameter p, and the second term models the local wrinkle details due to body pose
θ, shape β, and design p. In the rest of this section, we provide more details on how
we model each of these terms.

The Gdesign term models the global design-dependent deformations in T-pose. In
practice, we learn a function Gdesign : |p| −→ Ng × 3 + Ng × 2 using a shallow
multilayer perceptron (MLP) network that outputs Ng 3D vertex positions and their
corresponding 2D texture coordinates of a morphable T-shirt template parameterized
by sleeve length, font-and-back pannel length, and cleavage (i.e., the basic set of
design parameters that enable the modelling of dresses, t-shirt, sweater, tops, and
similar garments). Importantly, we design our garment model such that all designs
share the same UV parametrization.

The Gwrinkles is our key contribution to the garment model, and addresses the goal
of adding pose-dependent and/or shape-dependent deformations to the output of
Gdesign. In contrast to previous works, which use displacements encoded in an
MLP [SOC19; SOC22] or graph neural networks [Vid*20], we opt for encoding
the deformations in a 2D displacement map stored as a RGB image (i.e., a UV
texturemap). The ϕ : 2 −→ 3 operator represents the projection operator from 2D
pixel coordinates to 3D mesh coordinates which, in practice, we implement using
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the known mesh surface parameterization implicit in the UV coordinates. Notice
that, a key design choice of our garment representation is that all Gdesign outputs
share a common mesh parametrization, which means that they all use the same 2D
layout despite encoding different designs. This is a fundamental property of our
representation that significantly simplifies the learning of garment wrinkles, since it
spatially normalizes our ground truth data.

5.3 Data-Driven Diffusion-based Wrinkles

In this section, we describe how we learn the term Gwrinkles of our garment model
defined in Equation 5.10 using a diffusion model.

Diffusion models can be conditioned on one or more input variables. To this end,
these variables are typically encoded in a conditional embedding, as shown in
Figure 5.4, through a Multilayer Perceptron (MLP), and introduced in the neural net-
work in different layers. In the rest of this section, we first describe our conditional
diffusion model for estimating wrinkles in a static scenario for a target pose, shape,
and design (Section 5.3.1). Then, we describe how we can incorporate temporal
constraints into our diffusion model to enable the generation of temporally coherent
animations of 3D garments (Section 5.3.2). Implementation details are described in
Section 5.4.2.

5.3.1 Pose-shape-and-design Conditional Wrinkles

Our goal is to learn a conditional diffusion model of the form p(y|c), where y←
Gwrinkles(β, θ, p) is a UVs image representing the displacement vector and c =
[β, θ, p] is the conditioning vector that includes shape β, pose θ, and design p
parameters. Given Gwrinkles, the deformation is obtained through Equation 5.10.

Our diffusion model follows the formulation of Ho et al. [HJA20] that learns to
predict the noise ϵ added at a certain step t of the markovian chain.
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Figure 5.4: Our neural network architecture is a UNet with six Resnet blocks as shown
in the diagram. The conditioning vector, aggregated in the ResNet blocks,
contains an embedding of the pose, shape, and design parameters, as well as
the noise level t.

For training, we iteratively add random noise to the ground truth data until conver-
gence, according to the following loss function:

L(ω) = E
ϵ,y0,t,c

∥∥∥ ϵ− fω

(
c,
√

ᾱty0 +
√

1− ᾱtϵ, t
)
)

∥∥∥2

2
, (5.11)

where fω is the learned neural network, ϵ ∼ N (0, I) is randomly generated Gaussian
noise, t ∼ U({1, ..., T}) is sampled from the Uniform distribution, and y0 the
ground truth sample. Finally, ᾱt = ∏t

s=1 αs is the aggregated noise variance that
can be computed in closed form at any timestep t [HJA20].

For inference, we perform the reverse process iteratively computing the following
equation:

yt−1 = 1
√

αt

(
yt −

√
1− αtfω (c, yt, t)

)
(5.12)

At the beginning of the diffusion process (t = T) the initial value for yt=T is virtually
indistiguishable from Gaussian noise. Then, iteratively, from t = T until t = 1 this
image is denoised by substracting the outputs predicted by the neural network fω

until we obtain an approximation of y0.
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Figure 5.5: Temporal coherent diffusion model. To account for temporal consistency in
the generated sequences while varying pose parameter, we concatenate the
output of the previous frame in the sequence.

5.3.2 Temporally Coherent Garment Wrinkles

Using the diffusion model described in Section 5.3.1 we can generate plausible
wrinkles conditioned on pose, shape, and design. However, if we sample the
model for a sequence of poses, we will obtain a non-temporally coherent animation:
consecutive frames will exhibit significantly different deformations. This is due to
the generative nature of the model, since we sample it with random noise it can
produce different results even for the same condition. This prevents the conditional
model from Section 5.3.1 to generate temporally coherent animations of garments.

To tackle this issue, we take inspiration from cascade models for high-resolution
image synthesis that condition a sample on a low-resolution version of the target
image to drive the diffusion process towards a specific target [Ho*22a]. We propose
to use a similar strategy to enforce temporal coherency. To this end, to synthesize
the garment deformations at frame n, we further condition our diffusion model from
Section 5.3.1 on the output image yn−1 of the previous frame n− 1 of the sequence.
In practice, we implement this by adding into our neural network fω an extra input
g(yn−1) that is concatenated to y. To avoid overfitting this new conditional signal
to the training ground truth values of yn−1, we apply several perturbations g() to the
UV images will be described in the implementation section. Figure 5.5 illustrates
this process.
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Figure 5.6: A few samples of our dataset. We simulate a large variety of garment designs
on different body shapes and poses (top row), which we then convert into a UV
image that encodes 3D garment deformations as per-vertex 3D displacements
stored as RGB pixel values (bottom row). Using such image-based representa-
tion, we can faithfully reconstruct the original garment (middle row).

5.4 Results and Evaluation

In this section we first provide details about our dataset, discussing how we construct
our UV image, and then provide implementation details. Finally, we qualitatively
and quantitatively evaluate our results, and compare with competing state-of-the-art
methods for 3D garments.

5.4.1 Dataset

To train our method, we first build a large dataset of UV-encoded deformations for a
variety of garment designs worn by different body poses and shapes. To this end,
we first manually create a deformable template of a 3D garment parameterized by
length, sleeve, and cleavage. Importantly, all designs sampled by this parametric
template share the same 3D-to-2D parameterization (i.e., the same UV layout).

Using a state-of-the-art cloth simulator [NSO12], we statically simulate a wide
variety of garment designs worn by different SMPL [Lop*15] body sequences from
AMASS dataset [Mah*19]. For each simulated frame, similar to [SOC19], we
project the deformed garment into a canonical state (i.e., T-pose) by unposing the
mesh using the inverse transform of the skinning weights of the underlying body
pose. We then compute the per-vertex offset between the unposed mesh and the

5.4 Results and Evaluation 61



template mesh and store it as an RGB value of a texture image using the known 3D-
to-2D mapping. Following this strategy and using standard barycentric coordinates,
we can assign a value to all pixels of the texture map. Generated texture maps
effectively encode the 3D garment deformations in a convenient 2D image format
that can be exploited with a diffusion model. Following the reverse process, we
can reconstruct a deformed 3D garment by querying the UV texture value of each
vertex, and then posing the garment using the skinning values of the target pose, as
shown in Equation 5.9.

Figure 5.6 depicts a few samples of our dataset including ground truth simula-
tions (top), the corresponding UV texture encoding deformations (bottom), and
the reconstructed 3D garment from the UV images (middle). Notice that recon-
structions closely match simulations, despite using an underlying very compact 2D
representation (128× 128 pixels for the results throughout the paper).

In practice, we simulate 17 designs of garments (7 different garment lengths, 6
different sleeves, and 4 types of cleavage) in 52 sequences, and generate a 128×128
pixels UV textures to encode the deformation of each frame. We train on 11 designs
and leave out 6 designs and 5 sequences for validation. Once trained, our model
generalizes to unseen combinations of garment parameters, producing plausible
deformations for new garment designs.

5.4.2 Network Architecture and Implementation Details

Our neural network fω from Section 5.3.1 is implemented as a symmetrical UNet
that consists of six downsampling residual layers. The fifth layer includes a spa-
tial self-attention block, which has been proven successful in performing global
reasoning [Vas*17]. Each ResNet layer has two layers, and the number of output
channels for each UNet block is 128, 128, 256, 256, 512, 512. The conditional
embedding is implemented as a 2-layer MLP with a 128 feature vector. We use a
cosine noise scheduler of 100 timesteps. We train our model using a batch size of 8
for 100 diffusion steps using a single NVidia Titan X. On average, our model takes
3.5 seconds to generate an image.
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Our temporally coherent diffusion model architecture described in Section 5.3.2
is analogous to the design of fω described above. The key difference is the input,
which is expanded with the previous frame of the sequence. The architecture does
not need to be updated as both images are concatenated, only changing the depth of
the intermediate outputs. Because at this step the previous frame will already be
converged, it will be a strong signal for the network and potential cause of overfitting.
To avoid it, we apply a data augmentation process consisting of randomly applying
Gaussian blur and color jitter effects.

5.4.3 Evaluation

We quantitatively and qualitatively evaluate our results, including comparisons to
the closest state-of-the-art works on data-driven parametric garments.

Quantitative evaluation. Figure 5.7 presents a quantitative evaluation of our
proposed diffusion model. The blue curve represents the model conditioned on pose-
shape-and-design (Section 5.3.1), while the red curve represents our temporally-
coherent model additionally conditioned on the previous state of the garment (Sec-
tion 5.3.2). For each model, we plot the per-vertex position error (left) and the
velocity error (right) compared to two ground truth simulations on two validation
garments designs (top and bottom) unseen at train time.

Our temporally-coherent diffusion model consistently outperforms the static model
only conditioned on pose-shape-and-design, delivering lower and much more sta-
ble per-frame vertex error. This is clearly observed at the vertex velocity error
plots (Figure 5.7, right). Our temporal model (in red), conditioned on the previous
garment state, closely matches the ground truth velocity, while a static per-frame de-
formation synthesis (in blue) significantly and incoherently differs from the ground
truth. A qualitative visualization of this plot can be found in the supplementary
video, showcasing smooth surface deformations over time when using our temporal
model.
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Figure 5.7: Quantitative evaluation of our temporally-coherent diffusion model (in red)
and per-frame diffusion model (in blue). Since our temporal model is condi-
tioned on the previous deformation state of the garment, the resulting anima-
tions are temporally smooth (see per-vertex velocity error, right) and closer to
the ground truth surface (see per-vertex position error, left). Evaluated on two
validation designs (top and bottom).

Qualitative evaluation. Figure 5.8 presents a qualitative comparison of the results
obtained with our diffusion model (bottom) and ground truth simulations (top) on
different garment designs under different body poses, all unseen at train time.
Despite the challenging dynamic deformations, exhibiting a wide variety of folds
and wrinkles in each frame, our model synthesizes fine deformations that closely
match the ground truth. See the supplementary video for more animated results.

Figure 5.9 presents a large mosaic of five different validation garment designs
(columns A-E) worn by differently posed bodies. Designs include long dresses
with various neck and sleeve styles, t-shirts, tops, and shirts with different sleeve
lengths. Notice that each frame exhibits unique nuances, showcasing rich, different,
and dynamic folds and wrinkles that realistically match the underlying body pose.
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This mosaic validates the large expressively of our proposed diffusion-based model.
Similarly, Figure 1.2 shows three different designs worn during a hip-hop dancing
motion from AMASS [Mah*19] dataset (sequence 50027), exhibiting natural
pose-shape-and-design 3D clothing deformations.

Qualitative comparison to state-of-the-art. Figure 5.10 presents a qualitative
comparison with our previous method, presented in Chapter 4. We show garment
deformations obtained by each method for a test design in various body shapes.
Notice that our previous work does not model pose-dependent deformations, hence
we limit our comparison to T-pose avatars. Our method obtains deformations that
closely match the ground truth simulation, which demonstrates that our diffusion-
based model is more expressive than the fully-convolutional graph model of our
first contribution.

In the Figure 5.11 we also show some results to qualitatively compare our method
with the self-supervised self-supervised methods SNUG [SOC22] and HOOD
[Gri*23]. It is difficult to faithfully quantitatively compare these methods given the
significant differences in representations, models, and goals. For example, SNUG is
capable of modeling dynamics but it is limited to a single garment. Similarly, HOOD
produces very compelling results and works also unseen garments, but it is not
generative, does not explicitly incorporate design parameters, and uses a graph-based
representation. Despite these differences, qualitative comparison demonstrates that
our method is on par with the deformations showcased by state-of-the-art methods,
while using a very compact image-based representation.

5.5 Conclusions

In this chapter we have presented DiffusedWrinkles, a generative method to syn-
thesize 3D garment deformations conditioned on pose, shape, and design. Under
the hood, our method uses a 2D diffusion-based model that encodes 3D garment
deformations into texture maps. Leveraging a carefully designed 2D-to-3D surface
parameterization, a wide family of 3D garment designs can be represented using a
consistent 2D layout, which opens the door to image-based diffusion models to be

5.5 Conclusions 65



G
ro

un
d

tr
ut

h
Pr

ed
ic

tio
ns

G
ro

un
d

tr
ut

h
Pr

ed
ic

tio
ns

Figure 5.8: Ground truth vs our model on test sequences. Our predictions closely match
the folds and wrinkles obtained with physics-based methods.
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Design A Design B Design C Design D Design E

Figure 5.9: Qualitative results of five test garment designs (columns A-E) deformed using
our diffusion-based model driven by a test motion from AMASS dataset.
Notice how each sample exhibits unique garment folds and wrinkles that
match the driving pose.
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Ground truth Ours [Vid*20]

Figure 5.10: Qualitative comparison with [Vid*20] for a garment design unseen at train
time. Our diffusion model predicts 3D deformations that closely match
the ground truth, while the state-of-the-art method [Vid*20] produces over-
smooth deformations.

used for parametric 3D garments. This approach manages to circumvent some of
the limitations of the graph-based method presented in Chapter 4. For instance, the
deformations modeled by DiffusedWrinkles are richer and more detailed, and the
diffusion network is trained faster. To enable the synthesis of 3D animated results,
we take inspiration from the cascade architectures for high-resolution diffusion mod-
els [Ho*22a] and propose a diffusion-based model conditioned on the current state
of the garment that yields temporally-coherent 3D deformations. Our results show
compelling 3D animations generated with a single model, capable of representing
deformations as a function of body shape, pose, and designs.

Despite the step forward of our method in the field of data-driven garments, we
suffer from a number of limitations. Body-garment collisions are a common issue
in most of existing methods, and we also suffer from it. Similar to [SOC19; PLP20]
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Figure 5.11: We emulate some sequences to qualitatively compare our method with current
state-of-the-art methods SNUG [SOC22] and HOOD [Gri*23]
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and follow-up works, at inference time we check for garment penetrations and push
the problematic vertices outside. Our method is also limited by the expressivity
of the underlying diffusion model. If the training samples increase significantly,
the generalization capabilities can be reduced leading to over-smooth results. This
could be addressed with the use of Latent Diffusion Model, which enables the use
of more expressive subspaces for images. Finally, dynamic effects are currently not
modeled. Our approach takes as input the current state of the garment which yields
a temporally-coherent output, but a longer temporal window and a more complex
architecture are needed to model time-dependent effects.
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Conclusions
6

The main objective of this thesis is the development of data-driven frameworks
for accurate 3D draping that are agnostic to surface discretization and garment
design. To this end, we address the limitations of previous data-driven methods,
that struggle with new garments and mesh topologies. The objective of our first
approach (Chapter 4) was to create a fully convolutional network that estimates
cloth deformation in the 3D space and can handle arbitrary mesh topologies and
target body shapes. In the second approach (Chapter 5), we tried to take advantage
of image generation models to generate cloth deformation.

In the course of my doctoral research we have made the following contributions:

• Novel framework. We proposed a geometric deep learning framework for
parametric garments. Our model is based on graph convolutions and shows
the ability to handle arbitrary mesh topologies.

• Three-stage approach. Our framework separates three sources of deforma-
tion into three different networks:

– Parametric 3D Drape. An initial dense network estimates the rough
shape of the garment draped on a mean human shape, given design
parameters. The triangulation of this low-resolution mesh is then opti-
mized, to avoid corrupt triangles and to increase the level of detail. The
resulting mesh is the template of the garment that we want to deform.

– Smooth 3D Body Drape. A fully convolutional regressor estimates the
per-vertex offsets corresponding to the smooth deformations caused by
the target body shape. The result of this step is a smooth mesh with the
overall shape-dependent deformations.
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– Fine 3d Body Drape. The last fully convolutional regressor further re-
fines the mesh, by regressing, for each vertex, the offsets that correspond
to the material-dependent deformations. In practice, this network returns
the wrinkles and details. As a result, we get the fully deformed mesh.

• Self-supervised collision loss. To avoid penetrations between the garment
and the body, we propose a self-supervised strategy. Once the network is
trained on the training dataset, we use Parametric 3D Drape to generate new
designs (that aren’t in our dataset and, therefore, don’t have a ground truth).
These new garments are used to refine the network Fine 3D Drape with a
collision loss that penalizes inter-penetrations.

• Generalization. Our method leverages data-driven models to generalize to
various garment types and body-shapes.

• Novel 2D approach. We represent 3D garment deformations as a 2D texture
encoding 3D offsets with respect to a garment template in a consistent lay-
out. The use of this representation enables the application of image-specific
architectures to generate new displacement maps (and, equivalently, 3D de-
formations).

• DiffWrinkles. We trained a conditional diffusion model on a dataset of gar-
ments, taking profit of the generative capability of such models to synthesize
new plausible deformations for a given pose, shape, and design.

• Temporal coherence. Proposed a solution to condition the model on an exist-
ing garment state, enabling the generation of temporally coherent sequences.

Our contributions show the potential of DL models to create versatile frameworks
for cloth modeling. We believe that these kinds of models can be rich enough to
reproduce the movement of cloth while significantly reducing the computational
cost, compared to traditional methods. They open avenues of future work to further
explore the application of data-driven models for applications like virtual try-on, or
design tools.

In the process of designing, developing, implementing, and validating the contribu-
tions shown in this thesis, we have learned a few things. First, graph convolutions
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can be applied to estimate deformations of arbitrary garments. They are great at
predicting the rough deformation of the cloth and they have great generalization
capabilities to new garments and discretizations. However, they are difficult to train
and they struggle with the generation of fine wrinkles. Alternatively, our second
contribution shows that DDPMs can generate rich displacement maps, that encode
fine and detailed wrinkles, but this approach has some downfalls too. On one hand,
right now our method requires garments with consistent UV-layout. This condition
limits considerably the range of garments that can be deformed by the method,
so a different, more general, representation of the displacement maps could really
enhance the potential applicability of the model (we can draw inspiration from Su et
al. [Su*23]). Besides, our displacement maps are small (128x128, limiting the
quantity and quality of deformations that we can model), and the generation of
images is quite slow (to generate each image we require 100 evaluations of the
network). Luckily for us, DDPMs are evolving at an amazing pace, and using
a new, more efficient, architecture based on diffusion can potentially accelerate
this application (recent methods generate high-quality images with just one to four
evaluations of the network [Sau*24]). Thus, denoising diffusion models have the
potential to create deformations that are richer and more expressive than the ones
estimated by graph-based networks.

Despite their promising results, our contributions face multiple limitations:

• Our models do not consider material-dependent input parameters. A richer
material model would be an interesting consideration since material properties
define fundamental characteristics of garments, such as type of wrinkles,
overall folding, draping, etc. Some works have shown that such properties
can be captured from data [Rod*23]. As they are, they need to be retrained
to handle different configurations, and any material change would require
the generation of a new dataset and the training of a new network. Instead,
material parameters could be treated as inputs to condition the models.

• None of the models accounts for external forces or multi-layer garments, as
cloth-to-cloth interactions are not even considered. Some works focus on
solving this issue using neural fields [San*22]. Extending our frameworks to
handle layers would be a very interesting line for future work.
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• Commercial garment design requires more than three parameters. Garment-
Code [KS23] leverages parametric garments to model a really wide variety
of clothes. Further research needs to be conducted in order to study the
scalability of the proposed frameworks to such high-dimensional parametric
cloth spaces.

• The methods, being data-driven, might not fully capture the physical accuracy
of real-world garments, especially under extreme conditions. Our approaches
still have collisions.

• Supervised data-driven methods are only as good as the data we use for
training. Improving our datasets and increasing the space of body shapes and
designs would lead to better results.

There are several lines for potential future research stemming from the identified lim-
itations. One particularly promising direction is the exploration of self-supervised
methods. These methods have demonstrated significant potential [BME21; SOC22;
Gri*23], especially considering that the creation of high-quality datasets remains
a challenge for data-driven approaches. Integrating data-driven techniques with
physics-based constraints could significantly reduce the time required for data cre-
ation and capture. Furthermore, due to the differentiable nature of neural networks,
these methods could be capable of adjusting parameters based on real-world cap-
tured garment data. This combination of self-supervised learning and adjustment
to captured data has the potential to advance virtual try-on and design applications,
enabling them to operate in real-time.
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Mesh Animation from Multi-View Silhouettes”. In: Proc. of ACM SIGGRAPH.
2008, pp. 1–9 (cit. on p. 14).

[Wan21] Huamin Wang. “GPU-based simulation of cloth wrinkles at submillimeter
levels”. In: ACM Transactions on Graphics (TOG) 40.4 (2021), pp. 1–14 (cit.
on p. 12).

[Wan*10] Huamin Wang, Florian Hecht, Ravi Ramamoorthi, and James F O’Brien.
“Example-based wrinkle synthesis for clothing animation”. In: ACM SIG-
GRAPH 2010 papers. 2010, pp. 1–8 (cit. on pp. 12, 95).

[WOR11] Huamin Wang, James F O’Brien, and Ravi Ramamoorthi. “Data-Driven Elastic
Models for Cloth: Modeling and Measurement”. In: ACM Transactions on
Graphics (Proc. SIGGRAPH) 30.4 (2011), pp. 1–12 (cit. on p. 44).

[Wan*18] Tuanfeng Y Wang, Duygu Ceylan, Jovan Popović, and Niloy J Mitra. “Learning
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Resumen
A

Las vestimentas han evolucionado de una necesidad básica de protección y como-
didad hacia una forma de comunicación, que afecta profundamente a cómo los
individuos somos percibidos por la sociedad, y en consecuencia a cómo interactu-
amos entre nosotros. La manera de vestir refleja múltiples aspectos de la identidad
de las personas: clase social, intenciones, cultura, profesión... Consecuentemente,
la fabricación, distribución y consumo de ropa impulsan el crecimiento económico
y proporcionan empleo en todo el mundo, haciendo de la industria de la moda una
potencia económica.

La representación digital de prendas de vestir está ganando popularidad, especial-
mente en los ámbitos del entretenimiento y de la moda. La moda digital permite el
diseño de prendas para avatares, potenciando la expresión personal y la identidad en
entornos virtuales. En películas y videojuegos, las prendas virtuales son cruciales
para la creación de personajes y ambientaciones creíbles. El diseño eficaz y la simu-
lación eficiente de prendas virtuales son clave para lograr realismo e interactividad,
especialmente en experiencias de realidad virtual y aumentada.

Por otro lado, la simulación digital de ropa tiene el potencial de revolucionar la
industria de la moda, al permitir a los diseñadores visualizar y crear prototipos de
prendas en un espacio virtual, lo que podría reducir considerablemente el tiempo, los
recursos y los residuos asociados a la creación física de prototipos. Adicionalmente,
las aplicaciones de probador virtual, impulsadas por el auge de las compras en línea,
ofrecen a los clientes la posibilidad de ver cómo les queda la ropa desde la como-
didad de sus casas. Esta opción reduce la necesidad de comprar en tiendas físicas,
así como la probabilidad de devoluciones en las compras en línea, mejorando la
experiencia de compra y contribuyendo a la sostenibilidad al disminuir los residuos
de prendas no vendidas y la cantidad de transportes. Este tipo de aplicaciones, sin
embargo, requieren simulaciones rápidas, escalables y precisas.
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La informática gráfica lleva años trabajando en la simulación de prendas virtuales.
Los tradicionales métododos de simulación basada en físicas (PBS), aunque con-
siguen resultados realistas, suelen conllevar un alto coste computacional y requieren
de expertos para su creación y ajustes. En cambio, los modelos basados en datos,
que aprenden a reproducir los movimientos a partir de conjuntos de datos, ofrecen un
rendimiento más rápido y el potencial de escalar mejor. Sin embargo, estos modelos
presentan dificultades a la hora de generalizar a nuevas estructuras, especialmente
con mallas irregulares que representan prendas tridimensionales.

Intentaremos abordar estas limitaciones mediante la ampliación de métodos de
aprendizaje profundo para su aplicación en prendas tridimensionales con diversi-
dad de diseños y triangulaciones. La investigación desarrollada parte de modelos
pioneros en regresión de deformaciones y se centra en mejorar su capacidad de
generalización, así como en superar los retos que surjan.

El objetivo principal de la tesis es desarrollar modelos basados en el aprendizaje
automático de datos para el drapeado preciso de prendas 3D. Inicialmente, la tesis
explora el desarrollo de redes neuronales totalmente convolucionales aplicadas
sobre grafos, para modelar prendas 3D. Para ello, se crea un espacio de prendas
paramétrico, mediante el cual se generan prendas con diversos diseños que se
adaptan a diferentes cuerpos sin depender de una topología fija. Sin embargo, este
método tiene limitaciones en el tiempo de entrenamiento y en la generación de
detalles de alta frecuencia.

Para abordar estos problemas, se introduce un nuevo enfoque, que emplea modelos
probabilísticos de difusión de eliminación de ruido (DDPM) para la síntesis de
arrugas de alta calidad. Mediante la representación de deformaciones 3D como
mapas de desplazamientos, un modelo generativo puede producir arrugas finas y
animar prendas 3D con un modelo agnóstico a la discretización. Este enfoque
predice secuencias de deformaciones de alta calidad con coherencia temporal.
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A.1 Antecedentes

La digitilización de ropa presenta un reto significativo para la comunidad de la
informática gráfica, debido a sus múltiples aplicaciones y a su complejidad. La
simulación precisa de telas puede mejorar las experiencias en entornos virtuales, y es
crucial para diversas industrias (animación, videojuegos, efectos especiales, realidad
virtual, diseño de moda...). En particular, las aplicaciones de probador virtual,
requieren que la simulación de ropa sea precisa (que su comportamiento replique
con la máxima fidelidad el de la ropa real), eficiente (para permitir la interacción
de los usuarios) y escalable (de manera que múltiples usuarios puedan usar la
aplicación de manera simultánea). Este capítulo revisa los diferentes enfoques para
el modelado de telas.

Simulaciones Basadas en Física

El enfoque tradicional para abordar este desafío son las simulaciones basadas en
física(PBS), que consisten en aunar modelos matemáticos y leyes físicas para
simular el movimiento de la ropa.

Uno de los métodos más empleados para la simulación física de telas son los sistemas
conocidos como masa-muelle, en los que la superficie de la tela se discretiza como
un sistema de partículas conectados por muelles [Pro*95; BFA02; BMF05]. Este
sistema es popular debido a su simplicidad y efectividad, pero no destacan por
su precisión. La otra opción más popular es la simulación mediante el método de
elementos finitos (FEM) [Mül*02; EKS03], que consiste en aproximar la simulación
considerando la superficie de la tela como una superficie continua, permitiendo
mayor precisión y la reproducción de efectos más complejos, como la anisotropía.

Dado que el coste computacional es una limitación considerable en estos métodos,
han surgido muchos intentos de acelerar las simulaciones mediante aceleración de
la integración [BW98; Mül*07; Bou*14], reducción del modelo [De *10; Wan*10]
o modelos adaptativos [NSO12; Man*17].

A pesar del realismo proporcionado por estos métodos, en general presentan un
compromiso entre eficiencia y precisión. Además, reproducir las deformaciones de
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prendas reales no es trivial, ya que los parámetros físicos de la simulación han de
ser ajustados.

Reconstrucción

Entendemos por captura de prendas el proceso de obtener datos detallados de
prendas reales, incluídos textura, forma y movimiento, con el fin de crear modelos
3D capaces de reproducir el comportamiento de dicha prenda. La reconstrucción
precisa de la superficie y las propiedades de prendas reales es esencial para simular
como ajusta esa prenda a nuevos sujetos o para entrenar modelos basados en datos,
por lo que entendemos que las técnicas de captura y reconstrucción de prendas son
cruciales a la hora de desarrollar aplicaciones de probadores virtuales.

Los primeros métodos empleaban múltiples cámaras y patrones codificados con
colores [Sch*05], pero las investigaciones han ido evolucionando hacia la captura sin
marcadores [Bra*08], y, más adelante, a reconstrucciones a partir de una sola imagen
RGB [Zho*13]. Recientemente, se han desarrollado enfoques que reconstruyen el
cuerpo y la ropa como capas separadas. Muchos métodos ajustan los parámetros de
un modelo estadístico humano para recuperar el cuerpo y modelan la ropa como
desplazamientos respecto al cuerpo [NH14; Pon*17], algunos incluso estiman
parámetros del material o de talla[Yan*18a].

Las técnicas de aprendizaje profundo han ayudado a la captura de prendas me-
diante la estimación de desplazamientos 3D a partir de imágenes para prendas
fijas [Dan*17]. Estos métodos consiguen incluso generar deformaciones para
nuevas animaciones a partir de los datos obtenidos [LCT18; CCC22].

Estos métodos capturan eficazmente los detalles de la superficie y el movimiento de
la prenda, pero adaptar las prendas capturadas a distintas formas del cuerpo sigue
siendo un desafío.

Modelado de tejidos basado en datos

Los modelos basados en datos consisten en la utilización de técnicas estadísticas y
de aprendizaje automático (ML) para aprender relaciones directamente de los datos
(por ejemplo, usar muchas simulaciones para inferir deformaciones a partir de los
parámetros de pose).
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Esta familia de modelos ha sido fundamental en la creación de modelos estadísticos
3D del cuerpo humano, como SMPL [Lop*15] (modelo que usamos en la tesis),
que permiten la representación de gran diversidad de cuerpos mediante un espacio
paramétrico reducido. En el campo de las prendas de vestir, han surgido enfoques
basados en datos para la reconstrucción [All*19], el diseño [Wan*18] y la animación
de prendas virtuales [SOC19].

A pesar de que las prendas virtuales acostumbran a ser representadas como mallas
tridimensionales, muchos modelos basados en datos usan representaciones alter-
nativas, como nubes de puntos [Ma*21a; Zak*21], representaciones implícitas
[Tiw*21; San*22], esbozos [Wan*18], imágenes [Zhu*23] o mapas UV [LCT18;
Zha*21a]. El empleo de diferentes representaciones permite sacar provecho de
las estudiadísimas arquitecturas de aprendizaje profundo que funcionan con datos
estructurados (como imágenes o vectores de características de tamaño fijo).

Estos modelos se pueden entrenar mediante conjuntos de datos sintéticos [SOC19;
Gun*19; PLP20] o capturados [LCT18; Tiw*20; Ma*20] (aprendizaje supervisado),
o mediante técnicas auto-supervisadas, que consisten en el uso de métricas implícitas
para supervisar la optimización [BME21; SOC22].

Los métodos desarrollados en esta tesis se encuentran en el marco de los modelos
supervisados mediante datos sintéticos. El primero trabaja sobre las deformaciones
de los vértices de las prendas en espacio 3D, usando redes convolucionales de
grafos para evitar restricciones en la discretización de las mallas. En el segundo,
representamos las deformaciones mediante mapas de desplazamientos. De este
modo, podemos hacer uso de redes generativas para sintetizar nuevas y detalladas
deformaciones, en forma de imágenes.

A.2 Objetivos

El objetivo principal de esta tesis es el desarrollo de modelos eficientes para el
drapeado automático de prendas mediante técnicas de aprendizaje profundo (DL). A
pesar del éxito de estas arquitecturas en otros campos, su aplicación a la simulación
de ropa presenta ciertos desafíos. La adaptabilidad de este tipo de métodos a
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dominios irregulares, así como su capacidad de generalización a nuevos escenarios
son limitadas. Esta tesis aborda esta limitación mediante la creación de modelos
que generalicen a nuevas prendas y que no dependan de una discretización fija.

Para ello, se proponen dos enfoques diferentes. Primero buscamos una arquitectura
que extienda el potencial de las convoluciones en imágenes al irregular espacio de
las mallas tridimensionales. El segundo enfoque, sin embargo, explora la generación
de mapas 2D que representan deformaciones en 3D.

A.3 Metodología

Para la realización de la tesis se ha seguido la siguiente metodología:

Revisión bibliográfica

Una vez definidos los objetivos de la tesis, se procedió a realizar una revisión
bibliográfica exhaustiva en el ámbito de los modelos de simulación de ropa. Dicha
revisión se encuentra detallada en el Capítulo 2 y de ella nace nuestro interés por
los métodos de aprendizaje para la animación de ropa, así como el descubrimiento
de que todos los modelos que operaban en espacio tridimensional estaban limitados
a una triangulación fija. El campo del aprendizaje profundo, así como el de su
aplicación para el modelado de prendas, está en continuo crecimiento, por lo que la
revisión bibliográfica ha sido un proceso iterativo que se ha ido actualizando a lo
largo de todo el desarrollo de la tesis.

Diseño de un modelo convolucional para el drapeado de prendas

Tras analizar el estado del arte, observamos que los métodos que emplean técnicas
de DL para la animación de ropa en 3D usan capas densas, por lo que su gener-
alización a nuevas triangulaciones es inviable. Además, este tipo de modelos no
tienen en cuenta la información espacial y tienden a sobreajustarse a los datos de
entrenamiento, a costa de perder capacidades de generalización.

Para evitar estas limitaciones, proponemos un modelo basado en convoluciones
de grafos. Nuestro método aprende de manera diferenciada las deformaciones
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provocadas por tres causas distintas: diseño de la prenda, forma del cuerpo y material.
Para ello, primero entrenamos una red que, dados unos parámetros de diseño,
devuelve una aproximación de baja resolución de la prenda vestida por una persona
media. La triangulación de esta malla es optimizada para que las deformaciones
ofrezcan suficiente nivel de detalle. A continuación, una red convolucional con
estructura de U-Net estima las deformaciones suavizadas, debidas a la forma del
cuerpo y el diseño. Finalmente, otra red convolucional añade los detalles de baja
frecuencia, provocados principalmente por el material de la prenda. Al contrario,
que los métodos previos, este enfoque permite regresar el drapeado de toda una
familia paramétrica de prendas, sin limitación en cuanto a sus discretizaciones.

En el Capítulo 4 explicamos los detalles de diseño e implementación de nuestro
método, y demostramos su eficiencia y capacidad de generalización en comparación
con métodos previos. Sin embargo, nos encontramos con algunas limitaciones. Prin-
cipalmente, los tiempos de entrenamiento son muy largos y las redes que entrenamos
mostraban dificultades a la hora de reproducir detalles de alta frecuencia.

Diseño de un modelo generativo de mapas de desplazamiento para el modelado
de ropa

Tras el desarrollo de nuestra primera herramienta y a raíz de las dificultades que
nos encotramos, decidimos cambiar el enfoque. Con el auge de los modelos
generativos de imagen, se nos ocurrió aprovechar su potencial para generar mapas
de desplazamientos.

En nuestra segunda contribución proponemos representar las deformaciones de las
prendas a través de mapas de desplazamiento. A partir de los mapas obtenidos
entrenamos una red de difusión, concretamente una DDPM (Denoising Diffusion
Probabilistic Model) que genera nuevos mapas a partir de condiciones de diseño
de la prenda y de forma y pose del cuerpo. Este enfoque permite la síntesis de
varias deformaciones, dado un mismo conjunto de condiciones. Mediante un
condicionamiento temporal, conseguimos deformaciones continuas para secuencias
de movimiento. Los detalles de esta contribución se encuentran descritos en el
Capítulo 5
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A.4 Resultados

En el curso de la investigación de esta tesis, se han realizado las siguientes contribu-
ciones:

• Hemos propuesto un novedoso marco de aprendizaje profundo geométrico
para prendas parámtericas. Nuestro modelo está basado en convoluciones de
grafos y ofrece la capacidad de manejar triangulaciones de malla arbitrarias.

• Nuestro enfoque separa las diferentes fuentes de deformaciones en tres etapas
diferentes. Para cada una de ellas entrenamos una red.

– Parametric 3D Drape. Una primera red densa genera una aproximación
general de la forma de la prenda sobre un cuerpo medio dados los
parámetros de diseño. Esta prenda pasará por un proceso de retopo,
que optimizará la triangulación para evitar triangulos irregulares y para
aumentar el nivel de detalle, será la plantilla para el siguiente paso.

– Smooth 3D Body Drape. Una red convolucional calcula los desplaza-
mientos por vértice originados por la forma del cuerpo, sobre la plantilla
de la prenda que hemos obtenido en el paso anterior. Mediante este paso
obtenemos la forma suavizada de la prenda deformada al ponerla sobre
un cuerpo dado.

– Fine 3D Body Drape. La última red convolucional regresa, para cada
vértice, las deformaciones correspondientes al material. El resultado de
este paso es una malla con más detalles y arrugas. Esta red es específica
del material, así que no generaliza a nuevos materiales.

• Para evitar penetraciones entre la malla del tejido y del cuerpo, proponemos
una estrategia auto-supervisada. Para ello, una vez entrenada la red, gener-
amos automáticamente nuevos diseños que no están en nuestro conjunto de
datos (mediante el regresor Parametric 3D Drape). Empleamos estos diseños
para refinar los pesos de la red final Fine 3D Drape con una función de coste
que penaliza las penetraciones.
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• En el segundo bloque, proponemos una representación de deformaciones a
través de mapas de texturas. Esta representación está alineada para todos los
diseños y permite codificar las deformaciones como imágenes.

• Gracias a la representación con imágenes podemos entrenar un modelo gener-
ativo que, condicionado a diseño, pose y forma del cuerpo, sintetiza nuevos
mapas, que se pueden traducir en nuevas deformaciones para triangulaciones
arbitrarias. Este modelo permite la reproducción de detalles más finos, así
como la generación de deformaciones plausibles y distintas para una misma
configuración.

• Dada una secuencia de poses, la naturaleza generativa del modelo impide
la continuidad en las deformaciones obtenidas. Para obtener secuencias con
coherencia temporal, proponemos el condicionamiento de la red generativa
con el estado previo de la prenda.

A.5 Conclusiones

El objetivo de esta tesis es el desarrollo de modelos de aprendizaje para el drapeado
de prendas, que sean agnósticos a la discretización de la superficie. Para ello, en la
primera contribución (Capítulo 4) se propone un modelo basado en convoluciones
de grafos, que predice la deformación de una prenda en función de su diseño y la
forma del cuerpo humano que la lleva. En la segunda contribución (Capítulo 5), se
plantea el uso de modelos de síntesis de imagen para la generación de deformaciones
en ropa.

El uso de modelos de aprendizaje en el dominio de las mallas 3D presenta un alto
grado de complejidad, y el desarrollo de estos métodos, no ha estado falto de compli-
caciones. A pesar, de ello, proponemos dos representaciones diferentes de prendas
para el aprendizaje de deformaciones con diversidad de diseños y discretizaciones.
Ambas contribuciones son novedosas y muestran el potencial de los modelos de
aprendizaje para la creación de aplicaciones eficientes para la simulación de ropa.
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Durante el desarrollo de estas investigaciones hemos comprobado varias cosas. Por
un lado, hemos visto que las convoluciones de grafos se pueden emplear para estimar
deformaciones en mallas con topología arbitraria. Muestran buenos resultados
en cuanto al aprendizaje de las deformaciones a grandes rasgos y generalizan
bien a nuevas prendas con nuevas discretizaciones. Sin embargo, cuestan mucho
de entrenar y encuentran dificultades a la hora de aprender a reproducir arrugas
detalladas. Por otro lado, las DDPMs tienen la capacidad de generar mapas de
desplazamiento detallados, que codifican deformaciones de alta frecuencia. Sin
embargo, nuestro enfoque requiere que los mapas de UV estén alineados, condición
que limita considerablemente el rango de prendas sobre el que se puede aplicar
nuestro método. Quizás, una representación de los desplazamientos más general,
podría ampliar la aplicabilidad del método. Además, los mapas que generamos son
pequeños (128x128) y la generación de imágenes lenta. Por suerte, esta familia de
modelos está de moda y contínuamente se publican nuevos métodos con eficiencia
y calidad mejorada. Sin duda, probar arquitecturas novedosas ayudaría a reducir
estas limitaciones (métodos recientes [Sau*24] generan imágenes de alta calidad
con una sola evaluación del modelo). Por esto, creemos que las redes generativas
(y en concreto, las DDPM) pueden tener la clave para generar deformaciones con
mayor riqueza y expresividad.

A pesar del enfoque pionero y los prometedores resultados de nuestras contribu-
ciones, encontramos múltiples limitaciones. Nuestros modelos no consideran ningún
tipo de parámetro de material como entrada a la red. Las propiedades de los ma-
teriales afectan significativamente al comportamiento de la tela y estaría bien que
condicionaran el resultado de la red, en lugar de aprenderse de manera implícita.
Estos métodos no tienen en cuenta fuerzas externas ni interacciones entre ropa, de
manera que no se podrían emplear para probadores multi-capa. El método ULNeF
[San*22] se centra en solucionar estas interacciones mediante campos implícitos, y
extender nuestros métodos en esta dirección sería interesante.
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