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Abstract

Deformable materials are widely extended in our daily interactions. They are the source

for the manufacturing of many everyday objects, in addition to playing a very important

role in our bodies, considering their deformable nature. In this context, computational

modeling of deformable objects has been widely explored in computer graphics, with a

wide variety of applications in simulators and virtual environments. During the last decades,

the community has researched from efficient to very precise methods, but unfortunately,

there is yet no general deformation model that is suitable for all practical use cases in

the field. The goal of this thesis is to develop useful simulation methods for deformable

objects that are fast and accurate, with special focus on efficiently capturing proper dynamic

behaviors, external interactions and deformations produced by contact. We achieve this

goal thanks to an intelligent combination of data-driven techniques with fast physics-based

methods. Throughout the thesis we also address common limitations of data-driven methods

by designing novel problem representations. This enables us to obtain useful models for the

efficient simulation of deformable objects and materials.
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Figures

3.1 Our soft-tissue avatar combines a statistical model and an FEM simulation.

Our custom constitutive material produces highly dynamic effects and real-

istic external interactions. We characterize material parameters to match 4D

captures using numerical optimization. . . . . . . . . . . . . . . . . . . . . 19

3.2 These are three examples of posed avatars (inset) subject to various soft-tissue

deformations expressed in unposed space through a color map. For a static

pose (top), the unposed shape is undeformed and identical to the reference

shape. For highly dynamic (left) or external interaction (right) scenarios, the

unposed shape shows high-frequency local deformations. . . . . . . . . . . . 21

3.3 We generate a volumetric discretization of the soft-tissue layer with smoothly

vayring thickness throughout the body. This avoids the negative effect that an

irregular discretization of the inner surface might have on the outer surface

deformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 This picture shows the resulting deformation for two static poses when defin-

ing the deformation gradient in world space as in [Kim*17]. The color map

highlights where the result differs from the data-driven static deformation of

SMPL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 This picture shows the deformation of our material (top) in comparison with

the nonlinear flesh material defined in [SGK18] (bottom), for two different

weights under gravity: 0.5Kg (left) and 2.0Kg (right). It can be clearly seen

that our material provides a higher nonlinear response. . . . . . . . . . . . . 28

3.6 This picture shows four instances of soft-tissue deformation due to the effect

of tight cloth, contact and friction. . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Picture showing the trajectory of a vertex for different configurations of

material and error metric (from left to right, top to bottom): captured data,

isotropic-isotropic, isotropic-anisotropic, anisotropic-anisotropic. It can be

seen that the last configuration clearly outperforms the rest. . . . . . . . . . . 32

3.8 The three test subjects: SA, SB and SC . . . . . . . . . . . . . . . . . . . . . 36
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3.9 This figure shows a comparison of the tangential (top) and normal (bottom)

variance errors for subject SB , between SMPL and our soft-tissue model. It

can be seen that our method approximates the overall dynamic behavior better

for both training and test sequences. . . . . . . . . . . . . . . . . . . . . . . 37

3.10 This figure shows a comparison of the tangential (top) and normal (bottom)

variance errors for subject SA, using the three different configurations of the

optimization. It can be seen that for CC the error w.r.t. the captured data is

lower for both training and test sequences. . . . . . . . . . . . . . . . . . . . 37

3.11 This graph shows a comparison of the anisotropic variance error for each

of the five sequences, averaged across the three different subjects, between

SMPL (pink) and our hybrid data-driven and physics based method (purple).

It can be seen that our soft-tissue avatar clearly outperforms the SMPL solution. 38

3.12 This graph shows the convergence of the optimization considering the anisotropic

material and error metric for each of the three subjects tested. The dots indi-

cate the iteration separating the three stages of the optimization: i) 12 points,

material parameters; ii) 12 points, alternating material and thickness; and iii)

42 points, alternating material and thickness. . . . . . . . . . . . . . . . . . . 39

3.13 Our soft skeleton body model matches static data-driven deformations ac-

curately for a given pose (left). When in contact with an external object

it produces a dynamic response with two-way coupling (right). Soft-tissue

deformation is clearly noticeable in the unposed reference shape (inset). Local

static deformations due to the pose blend shape (e.g., arm bulging) apply

independently of external interactions. . . . . . . . . . . . . . . . . . . . . . 43

3.14 Our model incorporates skeletal tracking of target input animations through

control forces. Note that even in the absence of external interactions, dynamic

deformations appear as an effect of inertial components. The figure shows a

sequence of four animation frames and a colormap with the corresponding

vertex displacements in unposed space (insets). . . . . . . . . . . . . . . . . 46

3.15 Our handling of inertial forces correctly captures soft-tissue deformations

induced by the skeletal motion. The picture shows two frames of an animation

with a character subject to rotational acceleration (left) and deceleration (right)

in the vertical axis, and the resulting colormap of soft-tissue deformations. . . 48

3.16 Each column presents a sequence of pictures showing two rag-doll characters

with different shape parameters undergo the same simulation scenario. The

bodies are slowly pushed by a cylinder while hanging from the wrists, resulting

in different deformation behaviors. . . . . . . . . . . . . . . . . . . . . . . . 49
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3.17 We compare the behavior of our method (top) against the ground-truth full-

space problem (bottom). While the full-space solution is slightly smoother,

our approximation produces a plausible behavior at a computational cost

orders of magnitude lower. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 The top images show a dynamic simulation of an FEM Neo-Hookean jelly

with 12,469 triangles. The deformation is rich but slow (20 fps). The central

images show the same scene using a linear subspace model built with just 8

point handles. The simulation is fast (420 fps), but it misses all the detail and

suffers distortion under moderate forces. The bottom images show the result

with our model, which augments the linear model with nonlinear learning-

based corrections. We retain fast dynamics close to the linear model (140 fps),

but we recover the detailed contact-driven deformations of the full model. . . 57

4.2 Our subspace model (center) disentangles the deformations due to three differ-

ent sources (global linear, local nonlinear internal, local nonlinear external),

enabling an efficient learning of nonlinear corrections, and accurate matching

of full simulations (left). Directly learning the full deformation, on the other

hand, leads to poor generalization capability (right). In the example, the

subspace model is made of three bones, and deformations are produced by

pulling with a spring from the circle at the bottom. Both our model and the

fully learned approach use neural networks of the same complexity. . . . . . . 59

4.3 The deformation behavior of a full simulation (left) is accurately modeled

when nonlinear corrections are learned on a local setting (center). Global

corrections are more difficult to learn, and suffer artifacts (right). In the

example, both local and global corrections use the same training data and

neural-network architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 To maximize runtime efficiency, we have evaluated different approximations

to the Jacobian of our deformation model (4.3). The behavior with the

full Jacobian (top) is accurately matched when we ignore the change in

the deformation gradient (middle), as in (4.4). However, deformation errors

are evident (bottom) if we use the Jacobian of the linear subspace and ignore

the change in the corrections ∂r
∂q

; hence we retain this term. . . . . . . . . . . 61

4.5 This example highlights the aggregation of deformations in our model. The

left column shows the linear deformation U q. The right column shows the

addition of nonlinear corrections. The top-right image includes only internal

corrections rint, which restore nonlinear deformations. The middle-right and

bottom-right images include both internal and external corrections, with the

middle-right example highlighting external corrections rext, which introduce

accurate contact-driven details. . . . . . . . . . . . . . . . . . . . . . . . . . 62
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4.6 The nonlinear deformation of a full simulation (top) is accurately matched

when internal and external corrections are learned separately (center). Trying

to learn both types of corrections together complicates data generation and

learning, and fails to reproduce external contact-driven corrections (bottom).

In the example, the complexity of the neural-network architecture for coupled

learning is equal to the added complexity of the decoupled architectures. . . . 63

4.7 Data generation pipeline. First, a) we interactively record a linear-subspace

dynamic simulation, and b) use the recorded interaction to generate an offline

full dynamic simulation. c) For each frame, we extract a representative

subspace state q̄. Then, we fix the DoFs corresponding to the subspace

(in purple) and run two full static simulations, d) ignoring and f) including,

external interactions. Nonlinear corrections are then computed by considering

the difference between these full static deformations and the linear subspace

solution Uq̄ in e). Internal corrections are generated by g) mapping the

difference to the undeformed setting using F−1. Finally, external corrections

are generated in two steps: first, h) the difference w.r.t. the linear subspace

solution is again mapped to the undeformed setting; and second, i) internal

corrections are substracted to account only for the effect of external interactions. 64

4.8 We simulate two types of microstructures, an auxetic structure (left) and

accordion-like heterogeneous stripes (right), with subspace models defined by

just 2 frames and 16 points. A purely linear model is incapable of showing

nonlinear effects produced by material heterogeneity, such as the negative

Poisson’s ratio of the auxetic structure and the ripples of the striped structure.

Our method practically matches the full solution, yet 9× faster. . . . . . . . . 68

4.9 Our subspace model successfully represents contact deformations due to

both small and large colliders with high-resolution features. Nevertheless,

large colliders with larger configuration space (e.g., the comb-like object on

the bottom) require a larger training set and larger network architecture. A

quantitative analysis of the error is summarized in Table 4.2. . . . . . . . . . 71
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4.10 In this example, we pull a worm-like soft robot through a narrow passage.

A purely linear subspace model (top) suffers strong distortions (see the soft

regions between bones), and cannot deform locally to conform to the shape of

the pins. Our model (bottom), even though it is built from a subspace of just 3

bones, follows closely the motion and deformations of a full model (middle).

The plot shows the pulling force as each worm traverses the passage. The

purely linear model suffers locking and reaches a peak force 5.6× larger than

the full model. With our model, the peak force is just 1.8× larger. For this

benchmark, we trained our external corrections for just one pin. At runtime,

we evaluated the same function of external corrections six times, for each pin

in the passage. Thanks to the separation of internal and external corrections

in our model, external corrections are local in practice, and we can apply

superposition of multiple external corrections as long as the colliders are

sufficiently far from each other. . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.11 This model of Big Buck Bunny contains a soft-tissue layer on top of a rigid

core. We learn contact-driven corrections to augment a linear subspace model

(point frames highlighted in the inset). As shown in the examples, with our

method contact-driven deformations do not suffer the resolution limitations of

the linear model, and match closely the deformations of a full simulation model. 73

4.12 We model a finger with just 3 frame handles located at the phalanges. The full

nonlinear deformation of the surrounding tissue is captured by our learning-

based corrections. Moreover, in this example we learn external corrections as

a function of the size of the spherical collider, opening the possibility of using

parametric shape models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 We present a learning-based method to augment a subspace deformable simu-

lation with contact-driven deformation detail. We learn contact deformations

in a contact-centric manner, which allows us to significantly reduce the sam-

pling of configurations of the deformable object, and subsequently learn

highly complex deformations. For this real-time simulation of the MANO

model [RTB17] with dynamics, we used just one pose of the hand for training.

Notice the accurate high-resolution deformations due to contact with a rigid

object, highlighted in the zoom-ins. . . . . . . . . . . . . . . . . . . . . . . 81

5.2 When a collider Z touches a deformable object X , it produces a displacement

field u(x̄). We model the full deformation field x(x̄) as the sum of a dynamic

subspace deformation x̃(x̄) and a learning-based approximation of the contact

displacement field u(x̄). A key insight of our method is to learn this field as a

displacement r(z̄) parameterized in collider space. . . . . . . . . . . . . . . . 83
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5.3 The close-ups compare the representation of contact displacements in object

space x̄ (left) vs. collider-space z̄ (right) for these two examples. As the

collider sweeps through the surface of the deformable object, collider-space

contact displacements are notably smoother, and this drastically impacts the

learning ability of our method. . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Two examples (top, bottom) to depict that contact displacements are domi-

nated by the configuration of nearby handles/bones of the deformable object.

We leverage this observation designing a sparse approximation of the contact

displacement function. Here, we compare ground-truth displacements (left),

learned displacements with sparsifying weights, i.e., Eq. (5.4) (middle), and

without sparsifying weights, i.e., Eq. (5.3) (right). With the same training data,

the sparse function achieves superior results, as it succeeds to disambiguate

the subspace state that contributes to the contact displacements. . . . . . . . . 86

5.5 Our approach significantly improves the generalization capabilities of the

object-centric method presented in Chapter 4, and closely matches the realism

of full simulation. Our method is able to learn the complex interaction between

the star-shape collider and the deformable jelly using one order of magnitude

less neurons and training data than the original settings in Chapter 4. In

contrast, when trained with such reduced dataset, the object-centric approach

from Chapter 4 is unable to learn deformations due to contact. . . . . . . . . 89

5.6 Qualitative evaluation. We show 3 frames of a sequence where a collider
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Introduction 1
Many of the objects we use in our daily life are deformable. In fact, deformable objects

and materials are a fundamental part in the manufacturing of fashion, furniture and tools,

among many other things. One of the main reasons for being so widely used is their inherent

mechanical behavior. Soft materials can change their shape, tend to be more comfortable,

ergonomic, and are better suited for interactions. Not only in the manufacturing of objects,

deformable matter is also very common in living creatures, like humans. Except for bones,

our bodies are mostly made up of soft-tissues such as muscle and fat. Indeed, we could say

that our bodies are one of the most important deformable objects in our daily interactions.

When we change our pose, make a facial expression or grasp an object with our hands, our

soft tissue deforms due to muscular activations and external contacts.

Therefore, a proper understanding and modeling of the deformable materials is essential

for the progress of different applications in computer graphics, mechanical engineering and

biomechanics. Beyond applications in the real world, modeling deformable objects is also

important in virtual environments such as games, visual effects, training simulators or virtual

reality. In this context, realistic virtual worlds demand complex deformable interactions,

with avatars, items and clothing requiring to be properly modeled as deformable objects for

a complete immersive experience.

In the area of computer graphics, which is the one covered by this thesis, various methods

have been proposed for modeling deformable objects, with different scope and application

domains. Mathematical models describing the behavior of continuous media have been

known for a long time, but until recently they could only be used for very simple examples.

This has changed since the advent of modern computers, and nowadays we have a wide

variety of computational models and simulations available for this task, ranging from

geometric deformation models to physically-based methods.

Unfortunately, there is no general deformation model that is suitable for all use cases

in computer graphics. Some methods can compute accurate simulations with realistic

object dynamics and detailed deformations produced by contacts and forces. Although

very useful in applications demanding high accuracy, they can be difficult to setup, they

offer no guarantees of stability, and they are not practical in interactive applications due
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to their high computational cost. Other methods succeed in reducing the computational

cost, simplifying the models and approximating the deformations. These alternatives tend

to be fast, easy to implement, and can be applied in interactive contexts, but the necessary

simplifications often mean that the generated results suffer limitations. This is especially

true if we are looking for expressive dynamic movements, accurate mechanical behavior or

highly detailed deformations.

Motivated by these limitations, in this thesis we use data-driven methods to bridge the gap

between accurate and interactive simulation models of deformation. Recently, data-driven

methods and machine learning techniques have dramatically transformed computer science,

showing that a wide variety of problems can be solved with the right data and learning

models. The goal of this thesis is to develop useful simulation methods for deformable

objects that are fast and accurate, with special focus on efficiently capturing proper dynamic

behaviors, external interactions and contact produced deformations. To do so, we investigate

the combination of physically-based simulations and data-driven techniques.

1.1 Objectives

As stated in the introduction, our main goal is designing useful models for the efficient

simulation of deformable objects and materials. Here we enumerate the most important

objectives that deformable models have to fulfill to be applicable in general computer

graphics applications:

• Expressiveness. We are targeting deformation models that generate realistic and

perceptually accurate results. To obtain plausible interactions, adequate mechanical

response and proper dynamics are also relevant properties. Importantly, in computer

graphics applications the final quality assessment is usually done by our senses,

and this allows approximations in the models that might not be acceptable in other

engineering fields. Therefore, we look for deformation models whose results are

correct enough to feel realistic.

• Efficiency. Efficient models can be used in different environments, facilitate ex-

ploration, and allow interactive simulation framerates. In particular in computer

graphics applications, we need efficient deformation models both in terms of compu-

tational resources and time resources. The reason is that multiple applications in this

context need to run interactively in virtual environments, either to allow immersive

experiences or provide previews of final results. Moreover, these models often run
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on devices with limited capabilities such as personal computers, mobile devices or

headsets, motivating further the need for efficiency.

• Generalization. Useful deformation models are stable and robust, enable accurate

interactions, and support general contact deformations. Also, to be applicable in

unpredictable environments, deformation models need to respond robustly to a wide

variety of situations. This is especially relevant with contact interactions between

objects, where the generated deformations can be very diverse. Therefore, models

have to generalize appropriately to this diversity.

Current methods for deformable object simulations do not meet all of the objectives men-

tioned above. Precise physically-based methods produce accurate results [SB12; Kim*17]

and generalize properly to complex contact deformations [Li*20], however, this is at the

expense of efficiency. On the other hand, models focused on interactive applications are

efficient, but suffer limited expressiveness and generalization when it comes to captur-

ing realistic material responses [KB18; LLK19] and contact deformations of high spatial

frequency [PW89; BJ05; Hah*12; Hah*13; BEH18].

In this situation, we propose the extension of physics-based reduced simulations with data-

driven methods to build models with all the desired objectives. Relying on physics-based

simulations provides us robustness, generalization, intuitive force-based interactions, and

expressive damping-free dynamics. Additionally, using novel data-driven techniques, we

can improve the generalization capability of the fast coarse deformation models and preserve

most of the accuracy and realism of high-resolution models.

1.2 Challenges

Useful deformable models should be expressive, efficient and generalize to diverse inter-

actions. Next we discuss the main challenges we have faced in order to achieve practical

simulation methods with these properties, including some highlights on how we solve

them:

• Complexity of real objects. Building physical models for real deformable objects

is challenging. Real objects have intricate internal structures, with heterogeneous

material properties and variable thickness. Living creatures and human bodies are

specially complex, with multiple bones, soft-tissue layers, and coupled articulated

mechanisms. Therefore, efficiently modeling the behavior of these systems just
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based on physical assumptions is near impossible. To solve this challenge, we design

data-driven techniques to reduce the complexity of the physical models, replacing

this complexity with data. Among other things, we optimize deformable material

parameters and thickness from real data, design expressive material models, compute

elastic deformation in unposed configurations and combine simulated dynamics with

quasi-static deformations captured from the real world.

• Slow physical simulations. Physical simulations are still the method of choice for

computing general-purpose deformations, with accurate physical behavior and vivid

dynamics. However, to obtain precise results, high resolution simulations are required,

and they tend to be slow. In addition, they may suffer instabilities if extra actions

are not taken. To avoid these limitations, we use reduced models. We combine

the fast dynamics of subspace simulations with the highly detailed deformations of

learning-based methods, presenting models that are efficient, dynamic and naturally

respond to external interactions. Our models use practical handle-based subspaces and

build efficient nonlinear corrections from data, decoupling the internal and external

contact-driven deformations.

• Overfitting in data-driven methods. Models based on data tend to overfit if enough

deformation examples are not provided. Supporting general interactions and arbitrary

contact deformations in data-driven models is especially challenging due to the large

number of possible interactions and collider shapes. However, obtaining exhaustive

datasets can be very expensive or even impossible, and the resulting models can

be large and inefficient. To tackle this problem, we present methods to reduce

the required data, with good quality results and still demanding low computational

resources. Our approach is based on the generation of deformation examples with an

efficient covering of the interaction space, and encoding the deformation models in

a suitable representation for the problem at hand, e.g, with contact-centric models,

local collider descriptors, continuous representations and sparse deformation maps.

1.3 Contributions

Here we gather the contributions of this thesis, along with the key results for each of them,

accompanied by the resulting publications:

• Accurate soft avatars with hybrid dynamic deformations. We present an animated

avatar model with hybrid soft-tissue deformations generated as a combination of a
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data-driven statistical model and FEM mechanical simulation. As a key contribution,

we define deformation mechanics in the reference space of the statistical model, re-

taining as much as possible of the accurate data-driven deformations. We also present

a custom anisotropic nonlinear material for accurate skin dynamics, automatically

optimizing skin thickness and material properties from 4D human captures. Finally,

to achieve interactive frame-rates, we augment the avatar model with a careful choice

of reduced simulation subspace. These contributions are discussed in Chapter 3 and

have resulted in the following publications:

- Cristian Romero, Miguel A. Otaduy, Dan Casas and Jesús Pérez. “Modeling and

Estimation of Nonlinear Skin Mechanics for Animated Avatars”. Computer Graphics

Forum (Proc. of Eurographics) (2020)

- Javier Tapia, Cristian Romero, Jesús Pérez and Miguel A. Otaduy. “Parametric

Skeletons with Reduced Soft-Tissue Deformations”. Computer Graphics Forum

(2021)

• Fast reduced simulation with learned deformation corrections. We design a

novel subspace method for the simulation of dynamic deformations, augmenting

linear handle-based subspaces with nonlinear learned corrections. This combines

the fast dynamics of subspace methods with the highly detailed deformations of

learning-based methods. We apply the nonlinear corrections on the local undeformed

setting, decoupling internal and external contact-driven corrections for an improved

generalization. Our dynamic simulations are efficient, thanks to a simple mapping

of corrections to the global setting. Additionally, we design a training pipeline to

generate examples that efficiently cover the interaction space. These contributions are

discussed in Chapter 4 and have been collected in the following publication:

- Cristian Romero, Dan Casas, Jesús Pérez, and Miguel A. Otaduy. “Learning Contact

Corrections for Handle-Based Subspace Dynamics”. ACM Transactions on Graphics

(SIGGRAPH) (2021)

• Efficient representation for learning contact deformations. We introduce an effi-

cient method to machine-learn highly detailed, nonlinear contact deformations for

real-time dynamic simulation, using a novel representation suited for contact prob-

lems. We depart from previous deformation-learning strategies, modeling contact

deformations in a contact-centric manner. Also, we learn a continuous vector field

of contact deformations, instead of a discrete approximation. To improve the gen-

eralization, we sparsify the mapping between the contact configuration and contact

1.3 Contributions 5



deformations. These contributions are discussed in Chapter 5 and have given rise to

the following publication:

- Cristian Romero, Dan Casas, Maurizio M. Chiaramonte, and Miguel A. Otaduy.

“Contact-Centric Deformation Learning”. ACM Transactions on Graphics (SIG-

GRAPH) (2022)

• Generalized learning for arbitrary contact deformations. We formulate a learning-

based method for the simulation of general rich contact deformations, generalizing

the previously introduced deformation model to arbitrary colliders. We improve

earlier limitations by designing a neural model that supports general rigid collider

shapes. This is achieved thanks to a novel collider descriptor that characterizes local

geometry in a region of interest. To validate out approach, we showcase our method

on interactive dynamic simulations with animation of rich deformation details and

contact.

These contributions are discussed in Chapter 6 and have culminated in the following

publication:

- Cristian Romero, Dan Casas, Maurizio M. Chiaramonte, and Miguel A. Otaduy.

“Learning Contact Deformations with General Collider Descriptors”. SIGGRAPH

ASIA Conference Proceedings (2023)
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Background 2
Since the pioneering work of Terzopoulos and Witkin [TW88], the computer graphics

community has been increasingly interested in the physics-based animation of deformable

objects. In the last decades, different methods have been presented to improve the effi-

ciency and expressiveness of the produced deformations, with many existing articles and

courses discussing the evolution and current development of deformable object simulation,

e.g., [Nea*06; SB12; BS19].

Different rigging techniques have been proposed for the controllable deformation of soft

objects, such as linear blend skinning or handle based methods [Jac*14], improving the

deformations with pose-dependant correctives [LCF00]. In addition, the simulation of

soft articulated bodies has motivated many works that enrich rigging techniques with

dynamics [Cap*02; Cap*05] and add two-way coupling between the soft-tissue and the

articulated body [Liu*13].

Significant efforts have been devoted to improving the efficiency of deformable simu-

lations [Gal*07; McA*11; LLK19]. With particular relevance, subspace models have

been used to approximate the equations of motion by ignoring high-frequency deforma-

tions [SB12], using modal analysis [PW89] or principal component analysis of deformation

examples [KLM01]. A common issue with subspace simulations is that contact deforma-

tions are not resolved in high detail, specially for contact-based interactions. Some works

have addressed this limitation, enriching the subspace with a local basis [HZ13] or with a

local submesh [Ten*15].

In recent years, data-driven methods have been applied to learn different types of deformation

models. They are used for synthesizing high-dimensional deformation detail conditioned

by some low-dimensional code [Lop*15; Bai*18], automatically infer compact nonlinear

subspaces for dynamic deformations [Ful*19], and learning representations of the full

dynamic interaction between a dynamic object and some collider(s) [Hol*19]. Other works

have addressed the personalization of the physics-based models by estimating geometric

and material properties from observed data [Kad*16; KK19] or optimize material from

local measurements [Pai*18].
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The following review of related work offers a more complete description of the already

mentioned advances, focusing especially on those works related to the main contributions

in this thesis.

2.1 Rig-Based Deformers

Rigging techniques are ubiquitous in software animation packages which often include

traditional linear deformers and various other nonlinear alternatives. They consist of the

transformation of the vertices of a surface mesh by mapping a low-dimensional space of rig

parameters.

Nowadays the classic approach to implement deformable shapes is through linear blend

skinning (LBS) [MLT89; Jac*14], where an underlying skeleton is used to parameterize

the pose of an articulated object, and linear blending of individual bone transformations

deforms the shape surface. This technique is also known as skeleton subspace deformation

(SSD) [MLT89], and has been extensively used for the animation of skeletal characters and

objects, with many extensions and improvements.

Pose-space deformation. To mitigate well-known LBS artifacts and prevent unnatural

deformations, it is common to use a pose-space deformation (PSD) [LCF00] method. PSD

methods define a reference shape of the skin, apply a pose-space deformation to it, and

then transform the deformed skin through rigging. While Lewis et al. [LCF00] computed

the PSD through scattered-data interpolation of deformation samples, many other solutions

are possible. The data-driven models SMPL [Lop*15] and MANO [RTB17] define the

PSD using blend shapes governed by the skeletal pose as well as shape parameters. Such

blend shapes are fitted to accurately depict the deformation of parametric bodies and hands

respectively under static poses.

Aggregating deformations. Extending beyond skeletal rigs, other animation methods

use more diverse definitions of global pose, aggregating local surface deformation for

faces [Bic*08] or cloth [Kav*11; ZBO13]. The recent work of Song et al. [SSR20] uses

an animation rig as a generalization of pose, and learns both global and local deformation

as a function of the rig parameters. If we look at dynamic simulations, two prominent

examples of aggregate global-local deformation methods are Eulerian-on-Lagrangian sim-

ulation [Fan*13] and multifarious hierarchies [Mal*15]. In this area, the focus is not
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necessarily on dimensionality reduction. Separation into global and local deformations

may have other advantages, such as better modeling of mechanical phenomena or faster

solvers.

Deformable human models. The simulation of soft articulated bodies has motivated

many works that enrich rigging techniques with simulated dynamics, e.g., [Cap*02; Cap*05].

These works aim at modeling an anatomically-inspired representation of the human body

that can be deformed in a physics-based simulation framework to reproduce real-world

human body behavior. Some simulation methods approximate the skeletal structure using

an articulated rig, and model the soft flesh as a continuum, coupled to the skeleton [Liu*13].

Kim et al. [Kim*17] combined the SMPL model with a soft-tissue layer simulated in full

space. Anatomical methods work inside out to represent the musculoskeletal elements of the

body [LST09], and then place a soft layer of skin, which provides the final appearance. Some

early works focus on specific body parts, including the modeling of head [Käh*02; SNF05],

neck [LT06], hands [AHS03], torso [Zor*04], or upper-body [Ter*05; LST09]. Other works

have placed emphasis on the properties of the flesh models, including robustness [SGK18]

or anisotropy [KDI19]. Others have placed emphasis on the efficiency of the model, as it

provides a cost-effective solution for responsive animated characters [KB18; LLK19].

2.2 Subspace Simulations

Subspace simulation methods assume that a high-resolution deformable object is given, and

find a low-dimensional subspace that represents accurately the range of deformations of

the object. These methods are also known as model order reduction in various fields of

engineering and applied mathematics [SB12].

In the context of dynamic simulation, the creation of subspace models allows fast approxi-

mation to the equations of motion. These methods replace the degrees of freedom (DoFs) of

a chosen discretization with a much smaller set of DoFs expressed in a subspace.

Linear vs nonlinear. Designing an appropriate linear subspace basis has been a research

interest since the early works [OHS03]. Modal analysis finds a good subspace based on

the mechanical properties of the object [PW89], and principal component analysis does it

based on deformation examples [KLM01]. Modal derivatives can improve the basic linear

subspace of these two approaches [BJ05].
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Other model order reduction approaches use nonlinear subspaces, such as animation

rigs [Hah*12; Hah*13] or rotation-strain coordinates [PBH15]. The recent approach of

Lan et al. [Lan*20] uses the object’s medial axis to find an expressive geometry-motivated

subspace. Some authors have looked at complementing artist-defined subspaces with model

order reduction to augment them with fast dynamics, such as pose-based subspaces [XB16;

Hah*14].

Locality. Traditional subspaces usually have global support, e.g., [KLM01; BJ05], mean-

ing every DoF in the full space depends kinematically on every subspace DoF. This is

not necessarily realistic and may cause that novel interactions, which were not originally

considered in the design of the subspace, produce unrealistic global artifacts. Some works

have alleviated this burden using domain decomposition techniques [KJP02; BZ11; KJ11;

WMW15], while others directly address the design of local subspaces.

Local methods are generally based on skinning transformation handles, spatially distributed

in regions of deformation interest [Wan*15]. Some examples include the use of interpolated

frames [Gil*11; Fau*11], automatic sparse matrix computation [Neu*13], and the more

recent work of Brandt et al. [BEH18], which interpolates affine transformations skinned

using geodesic radial basis functions.

Subspaces and rigs. Model reduction has been employed in combination with rig-

ging models. The early work by [KJP02] augmented SSD with locally supported eigen-

displacement basis functions to achieve quasi-static deformations. Many posterior works

further improved this approach for the dynamic simulation of characters [Gal*09; Ten*15]

or cloth [Hah*14]. These methods build their basis in an unposed configuration of the object.

This might result in inaccurate deformations when skeletal configurations are far from the

neutral position. Some methods like [Gal*09] and the more recent [XB16] address this

problem by considering several poses for the construction of the basis. While the former

constructs a single basis with per-pose PSD corrections, the latter constructs several bases

at different poses and interpolates them at simulation time.

Contact enrichment. A common issue with model order reduction is that contact defor-

mations are not resolved in high detail. The variety of contact deformations is too large to

be captured by the subspace, and the resulting simulations appear overly smooth.

In this context, a different approach to increase the accuracy of global subspace simulation

methods is to locally enrich the simulation model. Harmon and Zorin [HZ13] enrich a linear
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subspace model with locally supported basis functions precomputed using a Boussinesq

contact model. Teng et al. [Ten*15] select submeshes that are simulated with nodal degrees

of freedom, while the rest of the object uses a linear subspace representation. Both regions

are coupled accurately and efficiently using a condensation method.

Cubature. An additional challenge for simulations with subspace methods is the efficient

yet accurate evaluation of the different forces. When the subspace deformations are smooth,

this cost can be further alleviated using cubature [AKJ08; Tyc*13]. Cubature methods

approximate integrals across the mesh using a small set of representative elements. This

usually involves a precomputation where the optimal set is selected to match forces for

some training examples. The accurate evaluation of contact forces can be particularly

challenging, with some works presenting methods for these specific cases with contacts or

self-contacts [TOK14].

2.3 Data-Driven Models

Data-driven methods use data to build the deformation models, avoiding the sometimes

complicated or non-existent fundamental-principle approaches. To a large extent, the recent

success of machine learning techniques has made data-driven methods gain relevance in

the last few years. A great variety of proposals make use of data, combining learning

methods with more traditional deformation models such as rig deformations or subspace

simulation.

Learning deformations. Data-driven aproaches have been applied to learn different types

of deformation models. Prior to the explosion of neural-network methods, de Aguiar et

al. [Agu*10] designed a learning-based second-order model of cloth deformation with

stability guarantees and Kim et al. [Kim*13] showed how to encode complex dynamics

of cloth using motion graphs. More recently, and using artificial neural-networks, many

works synthesize rich deformation details conditioned by some low-dimensional code, e.g.,

linear deformation driving nonlinear deformation [Luo*20], coarse deformation driving

numerical coarsening (i.e., high-order shape functions) [Ni*23], upscaling of dynamics to

objects of different topology [Zhe*21], skeletal motion driving cloth deformation [SOC22;

BME22], upscaling of low-resolution hair simulation [Lyu*22] or convolutional networks

for mesh-based deformations [Che*20].
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Many works have been proposed to extend pose-space deformation PSD in multiple ways,

learning the pose-dependant correctives from data [Lop*15]. Bailey et al. [Bai*18] use

multiple neural networks to approximate the rig’s nonlinear deformation components. Some

works have also learned correctives for modeling specific body parts, such as faces [SSR20]

or hands [RTB17]. Garment deformations have also been learned from simulations, us-

ing shape correctives [Wan*10; SOC19; PLP20; Pon*17; Ma*20] or even neural fea-

tures [Zha*21]. Recent works leverage machine-learning methods to learn dynamic cor-

rections as a function of pose and its time evolution. The approach has been applied to

bodies [Pon*15] and cloth [SOC19]. As an alternative to learning corrections, the method of

Wang et al. [WPP07] learns deformation gradients and then reconstructs the deformation.

Despite the realism of the deformations showcased by these methods, due to their self-driven

deformation strategy (i.e., deformations depend only on rig pose or motion), they are unable

to model the effects of external interactions.

Learning subspaces. Subspace simulations are an efficient solution when external in-

teractions are required, and data-driven learning techniques are becoming an important

alternative for building these efficient and expressive subspace models. Fulton et al. [Ful*19]

introduced the use of variational autoencoders to automatically infer compact nonlinear

subspaces for dynamic deformations. Recently, Shen et al. [She*21] improved the differen-

tiability of deep autoencoders for their use in deformable simulation with learning-based

cubature, and Lee and Carlberg [LC21] showed how to enforce physical conservation laws

in the learned subspaces. Very recent work has also placed the attention on training the

reduced representation without example data [Sha*23]. Learned reduced models are even

used for modeling muscle activation of soft characters [Yan*22].

Learning physics. Some methods try to learn directly the physics of deformable objects.

NNWarp [Luo*20] learns the correction between linear and nonlinear materials as a warping

function, and thus simplifies the simulation of complex nonlinear materials. Beyond com-

puter graphics, recent efforts on machine learning look at representations of the common

invariants and/or processes involved in mechanics. Some of the examples include model-

ing collisions and deformations using graph representations [Bat*16], producing generic

neural-network representations of mechanical evolution using composable objects and their

interactions [Cha*17], modeling multi-physics phenomena through learned particle-based

models [Li*19], or modeling physical processes by learning invariants and training with

measurable functions of these invariants [GDY19].
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Learning contact. Other methods learn the contact response in deformable object simu-

lations. Holden et al. [Hol*19] learned the dynamic update of a reduced simulation upon

contact. Aigerman et al. [Aig*22] applied a more general methodology for learning Jacobian

fields. Learning has also been used for resolving self-collisions, e.g., by computing differen-

tiable collision classifiers as a function of mesh deformation [Tan*22a], or configuration-

space distances conditioned by the deformation state of reduced models [Cai*22]. In the

case of cloth deformation, particular attention has been placed on solving contact, with

self-supervised learning of a latent space free of body collisions [San*21], by adding a

repulsive force unit to the network architecture [Tan*22b], or untangling multiple cloth

layers through projection operations on implicit representations [San*22]. All these works

learn collider-specific models, which do not scale to the combinatorial complexity of object

interactions.

Learning human models. Purely data-driven methods aim at finding a model to represent

the surface deformations of the human body directly from data. Initial works leverage static

3D scans to build linear models that represent upper torso [ACP02] and full body [All*03]

static deformations as a function of body shape. The seminal work of SCAPE [Ang*05]

went one step further and learned an articulated human body model parameterized by shape

and pose. Later, SMPL [Lop*15] learned pose and shape correctives from a large dataset of

4D scans. Subsequent works have leveraged the learning capabilities of neural networks to

extend SMPL to model soft-tissue dynamic deformations [Pon*15; CO18; San*20].

Dynamic deformations caused by soft tissue and muscles have also been attempted from a

data-driven perspective. Pioneering works used a marker-based tracking system to capture

the trajectory of a few hundred markers to reconstruct [PH06] and model [PH08] soft-tissue

deformations. With 3D scanning technologies becoming more accessible and precise, it

is nowadays possible to reconstruct full-body sequences exhibiting highly nonrigid defor-

mations [Dou*15; Pon*17; Rob*17; Bog*17]. Such detailed and dense reconstructions of

human performances have been very recently leveraged to build data-driven models capable

of learning soft-tissue dynamics [Pon*15; CO18], but with no interaction capabilities.

Setting up a physics-based model of a character provides interaction capabilities and a

plausible skin behavior. But personalization requires, in addition, the estimation of geometric

and material properties from observed data. Some works have addressed the estimation

of full-body models [Kad*16], specific models for particularly complex areas such as the

face [KK19], or soft-tissue layers from local measurements [Pai*18], and some have even

addressed learning of motor control [Nak*18]. Kim et al. [Kim*17] estimate a soft-tissue

model to augment a parametric human model.
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2.4 Neural Representations

Machine learning techniques, in addition to using data, are characterized by the use of novel

model representations. Among these representations, the most widely used are the so-called

artificial neural networks, and models that use these neural network as the main mechanism

to operate are known as neural representations [Xie*21]. When modeling spatial quantities,

these neural representations have proved to have interesting features, such as their property

of being universal function approximators, their parameterization flexibility, or the easiness

of evaluating them for arbitrary input without requiring discretizations.

Neural fields. The high potential of learning field representations has only recently been

identified, and it has quickly extended to address many different problems in Computer

Vision and Computer Graphics [Che*21]. One prominent example is Neural Radiance Fields

(NeRF) [Mil*20], which learn to synthesize novel views of complex scenes by optimizing

a continuous volumetric scene function using a sparse set of input views. Other popular

examples are methods that learn to reconstruct 3D shapes from images by conditioning an

implicit representation on local features extracted from images [Sai*19; Sai*20].

Neural shapes. Recent trends learn implicit neural representations to encode 3D shapes.

Initial works learn to approximate the surface of 3D meshes by predicting a binary occupancy

of arbitrary 3D points [Mes*19; CZ19]. Since fully-connected neural networks are used,

the learned representation is continuous, memory-efficient, and easily differentiable, which

brings many benefits in simulation, computer vision, and geometry processing frameworks.

For example, these representations enable differentiable inside/outside queries, which are

tricky to implement with traditional representations such as polygonal meshes. Follow-up

research [Par*19; CZ19; AL20] demonstrated that neural networks are also capable of

learning distance to surface, which is also a fundamental building block for many methods

in Computer Graphics. Such learning-based encoding is often referred to as implicit neural

representations or neural distance fields [CMP20].

Beyond rigid surfaces, the advantages that learned implicit representations bring have been

leveraged to model more complex objects, such as articulated shapes. Deng et al. [Den*20]

model an articulated human body using a piecewise implicit representation. Subsequent

works learn fully-parametric body models [AXS21; Mih*21], hands [Kar*21], hand-and-

object interactions [Kar*20], garments [Cor*21], and personalized dressed humans [Sai*21;

Tiw*21].
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To train these representations, existing methods often require direct 3D supervision in form

of a known or pre-computed implicit representation of the target shape [Par*19; CZ19].

Interestingly, more recent methods are able to train directly from raw point clouds (i.e.,

without supervision at the zero level set) [Gro*20; AL20] or open surfaces [CMP20],

something that is not possible with traditional representations of signed distance fields

(SDF).

Beyond surfaces. Other methods explore more general uses of learned fields, and beyond

using them to approximate implicit functions, leverage them to expand surface properties to

3D points. Subsequent learning-based methods expand surface properties, such as skinning

weights, outside the body surface. This strategy has been used for registering 3D scans to

meshes [Bha*20], and for articulating raw scans of dressed humans [Hua*20]. Santesteban

et al. [San*21] go one step further and learn neural fields to diffuse pose-and-shape surface

correctives to R
3. Learned fields are used for projecting garments to a canonical shape,

which enables highly-efficient handling of body-garment collisions.

Neural shape descriptors. Neural representations for unstructured point clouds, starting

with PointNet [Qi*17a], have opened the possibility to encode rich latent shape infor-

mation. In a nutshell, they aggregate individual point features into a global signature.

PointNet++ [Qi*17b] extends the original PointNet with a hierarchical structure, allowing

the representation of local features at different scales. PCPNet [Gue*18] learns local features

robust to common point imperfections (e.g., varying noise level, sampling density, level of de-

tail, missing data), by enforcing perturbations in the training data. Point2Sequence [Liu*19]

aggregates the information of different local regions thanks to an attention mechanism.

EdgeConv [Wan*19] arranges dynamic graphs on point clouds to enable more powerful

operations. Such shape descriptors are mostly used for problems such as object detection,

shape classification, or part segmentation.

Other works use SDF data to construct shape descriptors, such as probabilistic directed

distance fields [Aum*22] or neural omnidirectional distance fields [Hou*22]. However,

these representations are more complex than the actual SDF and are designed for ray

queries. Deep Local Shapes [Cha*20] reconstruct large surfaces from continuous local deep

SDFs. Neural Descriptor Fields [Sim*22] encode object manipulation conditioned by pose,

and are used for inverse modeling of contact manipulation tasks. Interestingly, Chun et

al. [Chu*23] recently generalized Neural Descriptor Fields to unseen objects by utilizing

local descriptors.
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As a related problem, several works have studied the neural computation of vector quantities

on surfaces, which poses a challenge due to the choice of reference frame on the tangent

plane. Multi-Directional Geodesic CNNs [PO18] address the challenge by computing

quantities on multiple frames. Harmonic Surface Networks [WEH20], on the other hand,

extend harmonic nets to surfaces and achieve rotation-equivariance of vector quantities.
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Modeling Soft Avatars with

Hybrid Deformations

3

Data-driven models of human bodies have shown very accurate representations of static

poses with soft-tissue deformations. However they are not yet capable of precisely represent-

ing very nonlinear deformations and highly dynamic effects. Nonlinear skin mechanics are

essential for a realistic depiction of animated avatars interacting with the environment, but

controlling physics-only solutions often results in a very complex parameterization task.

In this chapter, we propose a hybrid model in which the soft-tissue deformation of animated

avatars is built as a combination of a data-driven statistical model, which kinematically drives

the animation, and an FEM mechanical simulation. Our key contribution is the definition of

deformation mechanics in a reference pose space. This way, we retain as much as possible of

the accurate static data-driven deformation and use a custom anisotropic nonlinear material

to accurately represent skin dynamics. Model parameters including the heterogeneous

distribution of skin thickness and material properties are automatically optimized from 4D

captures of humans showing soft-tissue deformations. To achieve interactive frame-rates,

we also augment our avatar model with simulated reduced deformations. We succeed to do

so in a highly efficient manner, thanks to a careful choice of reduced model for the subspace

deformation. The work on model reduction has been published in a paper whose first author

is Javier Tapia, but this thesis has contributed extensively in the design of the deformation

model, the cubature approach, and the experiments; therefore the full work is discussed

here for completeness. Overall, the contributions presented in this chapter have led to the

following publications:

• Cristian Romero, Miguel A. Otaduy, Dan Casas and Jesús Pérez.

“Modeling and Estimation of Nonlinear Skin Mechanics for

Animated Avatars”.

Computer Graphics Forum (Proc. of Eurographics) (2020)

• Javier Tapia, Cristian Romero, Jesús Pérez and Miguel A. Otaduy.

“Parametric Skeletons with Reduced Soft-Tissue Deformations”.

Computer Graphics Forum (2021)
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3.1 Introduction

Soft-tissue deformation is essential for a realistic depiction of animated characters. The

human body deforms due to its own movement and its interaction with the environment,

creating rich and expressive effects. Not only are soft-tissue deformations unique for every

individual, but they also produce highly nonlinear forces in response to the interaction with

surrounding objects. A jiggling belly, the quick transition of skin from soft to stiff when

we pull from it, or the bulging induced by tight apparel, are familiar examples to all of us.

Finding accurate and inexpensive methods for the animation of soft-tissue characters in

highly dynamic and contact-intensive scenarios has been a long-term goal in the Computer

Graphics community, with numerous applications in VFX, video games or garment design,

among others. In this chapter, we present a model to animate personalized characters with

rich soft-tissue dynamics produced by both skeletal motion and external interactions.

There are two distinct approaches to produce expressive animated characters: physics-based

and data-driven. Physics-based solutions model the mechanical response of flesh, and

simulate deformations by solving the equations of elasticity [Liu*13; Kad*16]. Their

advantage is the ability to respond in a plausible way to arbitrary interactions; they are

fully generative by construction. Their challenge, on the other hand, is to design materials

that mimic the properties of skin, and to parameterize them to match the behavior of each

individual. Data-driven solutions learn nonlinear mappings from skeletal motion to soft-

tissue deformation [Lop*15; Pon*15; CO18]. Their advantage is the ability to reproduce

observed data with high accuracy, thanks to high-dimensional parameterizations and rich

nonlinear building blocks, not constrained by physics laws. Their challenge, on the other

hand, is the lack of response to external interactions or, more generally, the need for large

training data and the difficulty to generalize to unseen situations.

We propose a model for avatar animation that combines the advantages of physics-based

and data-driven approaches. The model responds to external interactions, yet it reproduces

accurately observed deformations. The high potential of the combined approach is evidenced

by the work of Kim et al. [Kim*17]. However, our deformation model enjoys major

contributions that enhance notably the response to external interactions and the ability to

reproduce observed deformations (See Fig. 3.1).

We design a deformation model that reproduces with very high accuracy static deformations,

matches well dynamic deformations, and exhibits plausible and robust response to unseen

interactions. We build the deformation model by extending the SMPL parametric human

model [Lop*15] within the volume of the body, and adding a parametric smooth soft-tissue

18 Chapter 3 Modeling Soft Avatars with Hybrid Deformations



Figure 3.1: Our soft-tissue avatar combines a statistical model and an FEM simulation. Our

custom constitutive material produces highly dynamic effects and realistic external

interactions. We characterize material parameters to match 4D captures using numerical

optimization.

layer in neutral shape and pose. We achieve effective personalization of the soft-tissue

layer through shape-and-pose-dependent transformation plus adjustment of its thickness

parameters.

The key to match static deformations with very high accuracy is a formulation of mechanics

in neutral pose. With this formulation, soft-tissue mechanics ignore static deformations

already considered by the parametric model, and focus instead on accurately capturing highly

dynamic deformations. We introduce a sound and simple derivation of this mechanical

formulation, and we show how animated characters converge exactly to the output of the

parametric model when they reach a static pose.

For plausible and robust interaction, we design a custom nonlinear skin material. Further-

more, by observing human performance data, we have identified strong anisotropy in the

motion of skin. Therefore, we augment the custom material with anisotropy, and define

anisotropic error metrics for the estimation of material parameters from observed motions.

Following the definition of the deformation model and the skin material, we personalize

them by estimating soft-tissue thickness and heterogeneous material properties from 4D

human performance data. We execute the estimation as a numerical optimization, and

to optimize efficiently we design acceleration strategies for gradient-based optimization

methods. As a result of this optimization, our method accurately reproduces observed

deformations. While our model does not intend to match real material stress, it shows

realistic behaviors under external interactions.
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Finally, to achieve interactive simulation frame rates, we present a model of reduced

kinematics that combines our data-driven skeletal model and a handle-based subspace

simulation. We leverage recent developments on handle-based subspace methods [Wan*15]

that provide intuitive ways to define expressive subspaces, simply by selecting handles on the

target object, without the need for deformation examples. For the successful conservation

of accurate data-driven deformations, we build the subspace basis in the unposed reference

shape. The resulting model produces effective skeletal dynamics and data-driven static

deformation, enriched with subspace soft-tissue deformations.

The current chapter is structured as follows. We start describing our volumetric parametric

human model (Section 3.2), we introduce our deformation model (Section 3.3), and then we

discuss our method for model estimation (Section 3.4). Finally, we construct our reduced

soft skeletal model to accelerate simulations (Section 3.6) and present the formulation of

forces and dynamics (Section 3.7).

3.2 Construction of a Soft-Tissue Avatar

Our method creates soft-tissue deformations as a combination of both data-driven and

physics-based components. Our deformable avatars are composed of a soft-tissue layer with

varying thickness throughout the body that is simulated using a nonlinear finite element

method (FEM). The data-driven model is used to define the overall shape of the avatar, to

kinematically drive the inner vertices of the soft-tissue layer and to formulate deformation

mechanics in an unposed reference shape. This provides us with a personalized simulation

model that retains as much as possible of the data-driven deformation for static poses and

only uses mechanics to precisely model the response to external interactions as well as

highly dynamic effects. In this section, we first briefly review SMPL, a statistical model,

which is capable of creating static deformations of the body surface for some input shape

and pose parameters. Then, we first describe how we create a volumetric mesh of the

soft-tissue layer with varying thickness, and adapt SMPL to also account for volumetric

deformations. This pipeline results in a parametric soft-tissue avatar ready to be used in

simulation.
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Figure 3.2: These are three examples of posed avatars (inset) subject to various soft-tissue defor-

mations expressed in unposed space through a color map. For a static pose (top), the

unposed shape is undeformed and identical to the reference shape. For highly dynamic

(left) or external interaction (right) scenarios, the unposed shape shows high-frequency

local deformations.

3.2.1 Body Surface Model

Our model relies on SMPL [Lop*15], a statistical model of body surface static deformations

that modifies a rigged template mesh T , with N = 6890 vertices and K = 24 skeletal

joints. Vertex positions are adapted depending on two sets of parameters: i) the pose,

θ, ♣θ♣ = 75, encoding the translation and rotations of the skeletal chain; and ii) the shape,

β, ♣β♣ = 10, representing a series of identity-dependent features that model aspects such as

height, slenderness or muscularity. Given these parameters, SMPL produces shape and pose

dependent surface deformations following the expression:

S(β, θ) = W (S̄, J(β), θ, W),

S̄(β, θ) = T + Ss(β) + Sp(θ).
(3.1)
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Figure 3.3: We generate a volumetric discretization of the soft-tissue layer with smoothly vayring

thickness throughout the body. This avoids the negative effect that an irregular dis-

cretization of the inner surface might have on the outer surface deformation.

Here, W (S̄, J(β), θ, W) is a linear blend skinning function [MLT89] that takes as input the

surface vertices in a reference T-pose S̄(β, θ) ∈ R
3N , the joint locations J(β) ∈ R

3K , the

pose parameters ♣θ♣ = 75 and some blend weights W ∈ R
3NxK . To create the reference

T-pose S̄, SMPL modifies the template in an additive way through per-vertex 3D offset

functions called blend shapes. While shape blend shapes, Ss(β), model changes due to

identity body features, pose blend shapes, Sp(θ), deform the template to compensate for

skinning artifacts and features such as muscle bulging. Both blend shapes and joint location

functions are learnt from 3D human captures in different poses. We refer to the original

work [Lop*15] for a more detailed explanation.

3.2.2 Soft-Tissue Mesh

Simulating the soft-tissue layer requires creating a volume mesh with varying thickness

throughout the body. One straightforward solution used in [Kim*17] would be to compute a

volumetric discretization of the template mesh, T , and then select those elements within a

given distance of the surface. However, this leads to irregular and jaggy discretizations of the

inner surface. This might potentially affect the robustness of the simulation against element

inversion and the smoothness of the outer surface deformation due to the highly nonlinear

response to external interactions. For this reason, we propose an alternative method that
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first creates smooth outer and inner boundaries of the flesh layer and then generates the

volumetric discretization using a standard meshing software.

The outer surface of the soft-tissue layer corresponds to the template mesh T . To define the

inner surface B, each vertex of the template mesh ti ∈ T , i = 1, . . . , N is initially projected

to the closest bone of the kinematic chain leading t̂i. This mapping often results on failure

cases where neighboring vertices in the surface correspond to points on the skeleton which

are far from each other. To correct this issue, we refine this initial solution by iteratively

applying a Laplacian smoothing of vertex projections, which slide along the skeleton until

convergence. This yields a point distribution where each pair of neighboring surface vertices

also have neighboring skeleton projections. In practice, this allows us to effectively shrink

the body surface moving each vertex along the projection direction ui = (t̂i − ti)/♣t̂i − ti♣,

while preventing face inversion. Consequently, given some thickness distribution defined at

each vertex of the template mesh, h = ¶h1, . . . , hN ♢ , the inner surface B(h) can be easily

generated by setting each vertex bi ∈ B, i = 1, . . . , N as bi = ti + uihi. Here, thickness

values are kept in a feasible range hi ∈ [hmin
i , hmax

i ]. The lower bound hmin
i is equal for

all surface vertices and corresponds to a minimum soft-tissue layer thickness. The upper

bound hmax
i varies for each of the vertices and can be computed as hmax

i = ♣t̂i − ti♣ − b,

for some common minimum bone thickness b.

Once both the outer and inner meshes are created, we generate the volumetric mesh using

the Tetgen software package [Si15], making sure we retain the original topology for the

boundaries. This leads to a parameterized volumetric mesh V(h) with M vertices and D

elements. Notice that none of the soft-tissue deformations affects extremities (i.e., hands,

feet and head). In practice, we remove those parts from the volumetric mesh and enforce

thickness to slowly decay to zero at the boundaries. As it can be seen in Fig. 3.3, our way of

generating the volumetric mesh produces smooth discretizations that are better suited for

simulation.

3.2.3 Volumetric Statistical Model

Our deformation method relies on the statistical model to constrain the kinematics of the

inner surface of the soft-tissue layer, as well as to formulate deformation mechanics in an

unposed reference state. However, the model defined in (3.1) only handles surfaces and

thus we must adapt the SMPL method to account for volumetric deformations. This is done

by interpolating blend shape functions and blending weights from the surface points to the

volume mesh through Laplacian interpolation. More precisely, as the outer boundary of V is

conformal with the template mesh T , we simply contrain the values at the outer vertices and
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compute a Laplacian interpolation matrix L ∈ R
3M×3N using the cotangent approximation

[Sor05]. Thus, our volumetric SMPL function simply results

V (β, θ) = Z(V̄ , J (β), θ, Z),

V̄ (β, θ) = V(h) + Vs(β) + Vp(θ),
(3.2)

where Vs = L ·Ss, Vp = L ·Sp, Z = L ·W. We notice that this approximation is not exactly

equal to effectively applying Laplacian interpolation to blend shape functions as done in

[Kim*17]. However, we have not detected any significant difference in the performance of

the method.

3.2.4 Parametric Soft-Tissue Avatar

The statistical method described in the previous section provides us with a parametric model

of a soft-tissue animated avatar ready to be simulated. The model has a personalized shape

β and varying skin thickness h and can be statically deformed given some time-dependent

pose θ. The separation between fixed and time-varying properties defines two clearly

different parametric shapes that are used in combination with the FEM simulation:

• The reference shape x̄(h, β) = V(h) + Vs(β), x̄ ∈ R
3M , which depends only on

character-based properties that are fixed through the animation and define a natural

rest configuration.

• The skinned shape p(x̄, θ) = Z(x̄ + Vp(θ), J(β), θ, Z), p ∈ R
3M , which conversely

depends on the time-changing pose and provides an accurate approximation to soft-

tissue static deformation. Note this function can be expressed in a compact way as an

affine skinning transformation P(θ) of the reference shape p = P(θ) · x̄.

The first expression defines the rest shape of the FEM simulation. In Section 3.3, we

leverage the second expression to drive the kinematics of the inner surface vertices of the

soft-tissue layer, as well as formulating mechanics in an unposed deformed shape.

3.3 Soft-Tissue Avatar Mechanics

The volumetric SMPL method introduced in the previous section provides us with a tool

to parametrically deform a volumetric soft-tissue model given some thickness h, shape
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Figure 3.4: This picture shows the resulting deformation for two static poses when defining the

deformation gradient in world space as in [Kim*17]. The color map highlights where

the result differs from the data-driven static deformation of SMPL.

β, and pose θ parameters. We aim to build a hybrid data-driven and physically based

model such that it retains as much as possible of the data-driven pose-dependent static

deformation, while taking advantage of the capabilities of FEM simulation to capture

nonlinear skin dynamics. Overall, this is done by using the volumetric SMPL to impose

kinematic boundary conditions on the internal surface of the soft-tissue layer, while letting

the rest of the vertices deform freely. However, two design decisions are key for an accurate

depiction of the skin behavior. First, we formulate deformation mechanics in an unposed

reference space to ignore all pose-dependent deformations already captured by the SMPL

model. And second, we design a custom constitutive material that is capable of representing

two essential features of the skin: anisotropy and nonlinearity.

In this section, we first explain how we formulate deformation mechanics and discuss its

advantages with respect to other alternatives. Then, we describe in detail our custom material.

Finally, we formalize the dynamics equation that is solved to simulate the deformation of

the soft-tissue layer.

3.3.1 Skin Mechanics Formulation

Continuum mechanics define the elastic response to deformation in terms of a strain energy

density Ψ(F) that depends on the deformation gradient F, a tensor field defined at each point

of the volume as the partial derivative of the deformed position w.r.t. the rest configuration.

The total elastic potential is then computed as the volumetric integral U =
∫

Ψ(F) · dV .
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FEM provides an interpolation framework to define F at each element of the volumetric

discretization and approximate the total potential integral as a summation [ITF06].

One key concept that is going to enable our deformation mechanics formulation is that of

skinning transformation P(θ). In the previous section, we introduced the transformation

to map the reference shape x̄ to the skinned shape p = P(θ) · x̄. However, this transfor-

mation can be used to map arbitrary deformed configurations. For an arbitrary simulated

configuration, let’s denote the mesh in world space x ∈ R
3M as deformed shape, and

the mesh in unposed space u ∈ R
3M as unposed deformed shape. These two shapes are

related through the skinning transformation x = P(θ) · u, and through the inverse skinning

trasnformation u = P(θ)−1 · x. Thanks to this transformations, we have the option of

expressing the simulated configurations in two different spaces or coordinates systems,

being able to transform from one to the other when necessary.

The unposed deformed shape u has some desirable properties to measure deformation. In

absence of acceleration or external forces, it is identical to the reference shape u ≡ x̄.

In other cases, the resulting shape differs from the reference only in local high-frequency

deformations due to external interactions and dynamic effects. This opens the possibility

to formulate soft-tissue mechanics so that only deformations different from the static pose

defined by the skinning transformation produce an actual elastic response.

Following this observation, we propose an alternative deformation gradient definition as

the derivative of the unposed deformed shape w.r.t. the rest configuration, F = ∇x̄u. This

way, our local strain metric ignores large global deformations that are accounted for by the

pose-dependent SMPL model and focuses solely on high-frequency local deformations that

arise from inertial effects and external interactions. With this formulation, it is not necessary

to consider gravity forces because their effect is already included in the statistical model.

Inertia effects appear naturally, since the method does not modify the definition of kinetic

energy. Finally, note that our deformation gradient F measures deviation w.r.t. the unposed

reference state and this might affect the expected stress response for a given strain. However,

we do not aim to model anatomically accurate skin and so strain magnitudes are not exact

anyway. Instead, we seek to produce realistic behaviors through a simplified model and, to

this end, we optimize material parameters to best fit captured data.

Alternatively, [Kim*17] use the standard definition of the deformation gradient, i.e., the

derivative of deformed shape expressed in world coordinates F = ∇x̄x. However, this

solution does not take advantage of the deformation data provided by the statistical model

and does not preserve pose-dependent static deformations in absence of external inter-

actions. As it can be seen in Fig. 3.4, deformations resulting from the definition of the
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deformation gradient in world space significantly differ from SMPL parametric shapes

even for static poses. There is an additional way of defining a deformation metric such

that static deformations are preserved, the so-called rest-state retargetting [KDI19]. In that

case, the deformation gradient is computed in world coordinates but the reference shape is

incrementally updated to match the static deformation produced by the statistical model, i.e.,

F = ∇px, with p = P(θ) · x̄. However, this alternative comes with the burden of having

to compute all rest-state-dependent magnitudes that remain constant in other cases. Plus,

generating the volumetric mesh might produce meshing errors for some extreme poses and

affect the solution of the dynamics problem.

Notice, that even if our deformation gradient is computed in unposed space, we can represent

the state of the simulation both in world space or unposed space. For the full model

introduced in this section we chose to encode it in world space. In this way, we don’t need

to modify the inertial terms and the simulation equations are solved as we would do for any

other deformable model. However, as explained later in Section 3.7.1, simulating in world

space complicates the construction of a static pose-preserving subspace and the computation

of the required derivatives. To circumvent this problem, for the reduced model case, we

simulate deformations directly in unposed space.

Having defined our local measure of strain based on the unposed reference shape F =

∇x̄(P−1x), the response of the material to deformation is fully goberned by the properties

of the elastic energy density Ψ(F). In the next section, we will describe in detail how we

define such elastic potential to capture deformation properties that are key for an accurate

depiction of skin deformation.

3.3.2 A Nonlinear Skin Material

We aim to design an elastic energy function that accurately captures the complexity of skin

dynamics. More precisely, we want to support two deformation properties: anisotropy and

nonlinearity. Skin is a complex structure composed of several layers of heterogeneous

materials. It has been shown experimentally that this structure results in a highly nonlin-

ear anisotropic response to tangential and normal components of the deformation. After

extensive experimentation, we designed a custom elastic potential to support each of these

properties as mixture of an orthotropic StVK material [LB14], combined with a Fung type
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Figure 3.5: This picture shows the deformation of our material (top) in comparison with the

nonlinear flesh material defined in [SGK18] (bottom), for two different weights under

gravity: 0.5Kg (left) and 2.0Kg (right). It can be clearly seen that our material provides

a higher nonlinear response.

exponential saturation to increase the nonlinear response [SGK18]. The elastic energy

density Ψ(F) results

Ψ(F) =µ(exp(η · σ) − 1)/η +
λ

2
(J − 1)2,

σ =
3
∑

i=1

3
∑

j=1

τij · Eij
2, J = det(F).

(3.3)

Here, Eij are the coefficients of the Green strain tensor Ē expressed in an orthonormal basis

B that aligns the axes in a meaningful direction for modeling skin anisotropic response,

Ē = BT · E · B, with E the Green strain tensor evaluated at unposed deformed shape. The

first term of (3.3) models material response to stretch and compression and is controlled

through the first Lamè parameter µ ∈ [0, inf), together with a saturation parameter η ∈

(0, inf) that regulates the nonlinearity of the elastic response. Anisotropy is achieved by
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individually weighting the contribution of each quadratic component in σ using weights

τij ∈ [0, 1]. The second term depends on the relative volume change J = det(F) and

modulates material respose to incompressibility through the second Lamè parameter λ.

Fig. 3.5 shows a comparison between our material and the nonlinear flesh material defined in

[SGK18]. In both cases, material parameters have been estimated from data to best fit target

4D human captures. The saturation component in (3.3) produces a highly nonlinear response

preventing very large deformation from happening even under big external loads. To prove

the capabilities of our method to handle external interactions, we have integrated the ArcSim

cloth simulator [NSO12] in our pipeline as well as incorporated collision handling. Fig. 3.6

shows realistic soft-tissue deformations as a result of the avatar wearing tight cloths. In

addition, handling self-contacts improves the default SMPL solution even in the absence of

other external interactions.

3.3.3 Mechanics Parameterization

Our custom constitutive material requires the characterization of Lamé parameters and

several weigths, ¶µ, λ, τij♢. In practice, we estimate the elastic modulus for the normal and

tangential directions YN , YT ∈ [0, inf), the Poisson’s ratio ν ∈ [0, 0.5) and the saturation

parameter η ∈ (0, inf). We compute Lamè parameters as

µ =
Ymax

2(1 + ν)
, λ =

Ymaxν

(1 + ν)(1 − 2ν)
, (3.4)

where Ymax = max(YN , YT ). In a similar way as done in [LB14], we set the coefficients

corresponding to the main stretch directions relative to elastic moduli, τ00 = YN /Ymax and

τ11 = τ22 = YT /Ymax, and automatically compute the value of shear direction coefficients

as τij = max(τii, τjj), i ̸= j to ensure a reasonable behavior.

Overall, the mechanical behavior of our animated avatar is completely determined by the

thickness of the soft-tissue layer at each point of the surface mesh h; and the material

parameters mi = ¶YN , YT , ν, η♢ and anisotropy basis Bi at each element of the volumetric

mesh. In practice, we fix Poisson’s ratio ν = 0.2 and the saturation parameter η = 4 to

constant values throughout the volume that were experimentally found to produce reasonable

volume preservation and nonlinear effects. Anisotropy basis Bi are defined in the surface

mesh to be aligned with the surface normals of the reference shape x̄ defined in Section 3.2.4,

and interpolated through the volume using Laplacian interpolation.
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Figure 3.6: This picture shows four instances of soft-tissue deformation due to the effect of tight

cloth, contact and friction.

In the next section, we will present how we characterize the thickness, h, and material,

¶YN , YT ♢i, parameters from 4D human captures using numerical optimization. To reduce

the computational burden of solving this problem, we consider the material distribution

is symmetric along the longitudinal axis, thus we only care about half of the body. Plus,

parameters are defined at a reduced number C = 42 of control points distributed throughout

the surface and interpolated to surface vertices using biharmonic interpolation [Jac*11].

Finally, material parameters are interpolated from surface points to volume vertices using
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again Laplacian interpolation. To ensure that these properties do not decay with the distance

to the surface, values at the vertices of the inner surface are set equal to the value at vertices

in the outer surface. This yields a reduced parameter space of d ∈ R
3C .

3.3.4 Full Space Dynamics

Simulating the deformation of the FEM model due to skeletal-driven animation and external

interactions requires solving the system of nonlinear differential equations defined by

discrete Newtonian dynamics. Acceleration and external forces add a deformation offset

to the skinned shape p(x̄, θ) defined in Section 3.2.4, resulting in the deformed shape

configuration x ∈ R
3M of the volumetric mesh. Then, the dynamics problem is formulated

as:

Mẍ − f − fe = 0

CB · x = CB · p(x̄, θ).
(3.5)

Here, CB is a matrix selecting only those vertices in the inner boundary of the soft-tissue

layer, which are kinematically constrained to the skinned configuration defined by the

statistical model p(x̄, θ) ∈ R
3M for a given reference shape x̄ ∈ R

3M and time-dependent

pose θ. Additionally, M is the mass matrix, fe groups all external forces produced by

environmental interactions and f is the sum of all internal forces generated by skin elastic

response. Internal forces can be computed from the derivative f = −∇xU of the scalar

elastic potential U(x) introduced in Section 3.3.1.

3.4 Data-Driven Estimation

In the previous sections, we have introduced our hybrid method for the deformation of

soft-tissue animated characters. The performance of this method heavily depends on having

a good characterization of all the parameters affecting the deformation, which can be an

arbitrarily complex task. This includes shape and pose parameters used by the statistical

model in (3.1) but, more importantly, the geometry and material constituting the soft-tissue

layer. In this section, we will describe in detail how these parameters are automatically

estimatated from 4D captures of people using numerical optimization. Our key contribution

is the definition of a novel error metric based on the anisotropic motion variance of surface

vertices. This is required to accurately estimate the value of the anisotropic material
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Figure 3.7: Picture showing the trajectory of a vertex for different configurations of material and

error metric (from left to right, top to bottom): captured data, isotropic-isotropic,

isotropic-anisotropic, anisotropic-anisotropic. It can be seen that the last configuration

clearly outperforms the rest.

parameters. In addition, we use sparsity acceleration to make gradient-based optimization

feasible.

The estimation of SMPL shape β and pose θ parameters that best approximate an input 4D

capture can be formulated as a least-squares problem and has been previously described.

We refer to e.g. [CO18] for a more detailed explanation. In the following sections, we will

focus on the estimation of the parameters affecting the mechanical model. First, we will

describe the input data and introduce metrics that can be used to characterize the avatars.

And then, we will pose the optimization problem and describe in detail the methods used

for solving it.
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3.4.1 Input Data

Our input data consists of several sequences of animated 4D meshes captured from 3

different subjects performing various tasks [Pon*15]. For a given subject with V sequences,

the i-th sequence Zi is composed by a series of frames Zi = ¶Z1
i , . . . , ZKi

i ♢ captured at 60

FPS. Each frame is a triangular mesh with N = 6890 vertices and exactly the same topology

as the template mesh T described in Section 3.2.1. Sequences are initially grouped by

subject and preprocessed to estimate SMPL parameters as described in [CO18]. This results

in a unique shape parameter vector β per subject and as many pose parameter vectors as the

total number of frames across all sequences ¶θ1
1 . . . θK1

1 , θ1
2 . . . θK2

2 , . . . , θ1
V . . . θKV

V ♢.

3.4.2 Motion Variance Metrics

We aim to minimize some distance metric between the soft-tissue deformation produced by

our hybrid method and the 4D captures under the same input animation. One straightforward

choice would be to use the L2 distance between the captured and simulated data, but we

are not interested in matching exact trajectories. Instead, we seek to approximate the

characteristic movement of the captured data and, for that purpose, L2 distance between

trajectories has some undesirable properties. In particular, for static deformations, the

error is not zero because SMPL does not exactly match captured data. In situations with

low dynamic behavior, the base error caused by the static deformation might hide the

contribution of dynamic effects. For these reasons, we look for a simplified descriptive

metric of the surface motion in order to approximately match the overall deformation

behavior of the skin. We explore the use of the statistical variance of vertex trajectories.

Through early observation of captured data we noticed a skewed distribution of vertex

trajectories, where the resulting point cloud takes the approximated shape of an ellipsoid

aligned with the surface normal as shown in Fig. 3.7. This is caused by the highly nonlinear

and anisotropic nature of skin dynamics. As a consequence, in our initial estimation

experiments, the isotropic motion variance of the deformed mesh approximately matched

that of the input captures but still the resulting trajectories differed significantly. This

anomaly motivated the creation of a custom anisotropic material as well as exposed the need

for a different motion variance metric that takes into account anisotropy.

For notation simplicity, in the following we will drop the subscripts corresponding to subjects

and sequences. The trajectory of the i-th vertex of a mesh within a sequence Z follows a

discrete path πZ,i = ¶z1
i , . . . , zK

i ♢, where the subscript and superscript indicate respectively
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the index of the vertex and the frame. This trajectory includes large displacements due to the

large differences in input poses. This might result in a very high dispersion that would not

correctly represent the local behavior of the skin. For this reason, we first transform vertex

positions to unposed reference space by applying the inverse skinning operation P−1(θ) as

described in Section 3.3.1. Therefore, we define the anisotropic motion variance of a vertex

as

MN (πZ,i) =
1

K

K
∑

j=1

♣Ni(P
−1
i (θj) · z

j
i − z̄i)♣

2,

MT (πZ,i) =
1

K

K
∑

j=1

♣(I − Ni)(P
−1
i (θj) · z

j
i − z̄i)♣

2,

z̄i =
1

K

K
∑

j=1

P−1
i (θj) · z

j
i ,

(3.6)

where Ni is the projection matrix to the subspace defined by the normal of the surface at the

i-th vertex, P−1
i (θj) is the inverse skinning transformation corresponding to the i-th vertex

at the j-th frame, and z̄i is the average vertex posistion across all frames. This allows us to

define an anisotropic variance residual between the simulated and captured sequences:

D(X , Z) = M(X ) − M(Z), (3.7)

where M(X ) = ¶MN (πX ,i), MT (πX ,i)♢, i = 1, . . . , N , is a vector containing the normal

and tangential motion variances corresponding to all the vertex trajectories of a sequence.

Note that here we only consider those vertices in the outer surface of the soft-tissue layer.

In the following sections, we will pose an optimization problem to minimize an error based

on this residual and show that our anisotropic distance metric leads to a more precise

description of skin behavior and ultimately better results.

3.4.3 Optimization Procedure

For a given subject with V sequences, we pose the optimization as a nonlinear least squares

problem based on the residual defined in (3.7)

min
d

V
∑

i=1

D(Xi(d), Zi)
T D(Xi(d), Zi), (3.8)

where d ∈ R
3C is the vector that concatenates all free parameters described in Section 3.3.3.

For notation simplicity and without loss of generality we will assume we are optimizing
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just one sequence. We aim to solve this problem using a gradient-based method to take

advantage of all the available machinery in standard optimization packages. This requires

the computation of the gradient as ∇dD · D which is highly nontrivial. Each evaluation of

the residual D requieres the simulation of the complete animated sequence, which means

solving a large number of nonlinear systems of equations defined in Section 3.3.4. Moreover,

the solution of each dynamic problem depends on all the previous frames of the sequence

which complicates the computation of the analytic Jacobian ∇dD. Consequently, we opt

to estimate the gradiend using finite differences, which requires one full evaluation of the

simulation per optimized parameter.

To alleviate this large computational cost, we take advantage of the fact that the Jacobian

∇dD is sparse in practice. The trajectory of each of the deformed vertices depends only

on the thickness and material distribution in a close neighborhood. For instance, it is very

unlikely that the material of the leg and the mechanical behavior of the chest are related in

any way. We solve the optimization problem using the off-the-shelf trust-region nonlinear

least squares solution offered in SciPy optimization package that takes advantage of a

sparsity pattern to estimate the Jacobian using finite-differences. The sparsity is defined

through a matrix S ∈ R
N×C such that Sij ̸= 0 if and only if the mechanical behavior of

the i-th vertex is affected by the parameters of the j-th control point. We build such matrix

heuristically:

1. We first compute the biharmonic interpolation matrix from control points to surface

vertices H ∈ R
N×C . Then, we build the p-Influence matrix Hp by taking the p

higher coeffiencients of each row and rounding them up to 1, leaving the rest of them

to 0. This relates each surface vertex to its p most influential control points.

2. The adjacency matrix Ap = HT
p · Hp defines neighborhoods of control points sharing

surface vertices for which such control points are among the p most influential. This

adjacency criterion can be finally used to build k-ring expansions of the influence

matrix S(p, k) = Hp · Ak
p .

In our experiments, the values p = 2 and

k = 2 result in a sufficiently sparse pattern

and a good trade-off between the quality of

the estimation and computation time. The

inset figure shows the dependency area cor-

responding to one of the points in the chest

and its corresponding symmetric point. To

further alleviate the cost of the optimiza-
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tion and avoid redundant effects of material

stiffness and layer thickess we separate both sets of parameters and follow and alternating

optimization scheme. First, we optimize material parameters to convergence using a simple

distribution of C = 12 points. Then we alternate optimization steps of the thickness and

material parameters until no further improvement is possible. Finally, we take this initial

result and refine it using the total number of control points C = 42, directly on an alternating

scheme. In the following section, we will show the results of fitting material and thickness

parameters from data for 3 different subjects with various input sequences and discuss the

performance of the optimization procedure.

3.5 Estimation Experiments

The optimization procedure described in the previous section is capable of characterizing the

parameters of our mechanical model. As it can be seen in Fig. 3.1, this produces soft-tissue

characters that realistically deform under highly dynamic animations and external interac-

tions. In this section, we describe in more detail our parameter estimations experiments and

discuss our optimization scheme.

We estimated the parameters of our soft-tissue avatar model for three different subjects that

we denote SA, SB and SC (Fig. 3.8). For each subject, we use two animation sequences of

1.5s as the training set and three animation sequences of [3, 4]s as the test set. We focus

our main analysis in this section on subjects SA and SB , as those show stronger dynamic

behavior. Fig. 3.9 shows the distribution of the normal and tangential variance error defined

Figure 3.8: The three test subjects: SA, SB and SC .
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(a) Running on spot (Training) (b) One leg jump (Test)

Figure 3.9: This figure shows a comparison of the tangential (top) and normal (bottom) variance

errors for subject SB , between SMPL and our soft-tissue model. It can be seen that our

method approximates the overall dynamic behavior better for both training and test

sequences.

(a) Jumping jacks (Training) (b) Shake shoulders (Test)

Figure 3.10: This figure shows a comparison of the tangential (top) and normal (bottom) variance

errors for subject SA, using the three different configurations of the optimization. It

can be seen that for CC the error w.r.t. the captured data is lower for both training

and test sequences.
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Figure 3.11: This graph shows a comparison of the anisotropic variance error for each of the five

sequences, averaged across the three different subjects, between SMPL (pink) and

our hybrid data-driven and physics based method (purple). It can be seen that our

soft-tissue avatar clearly outperforms the SMPL solution.

in (3.8), for subject SB in two different animation sequences. It can be seen that our

method significantly reduces the error of the SMPL model and approximates the dynamic

behavior of the captures from just two training sequences. Thanks to the formulation of

the error metric in terms of the anisotropic motion variance, we notice that most of it is

concentrated in the normal part of the residual. We believe that this is caused by an existing

trade-off in our material definition between compliance in the normal direction and volume

presservation (which is a desired property when modeling skin mechanics). This is expected

as the skin has inherently limited stretch in the tangential direction, thus constraining the

deformation in the normal direction if volume must be presserved. We found that using

a Poisson’s Ratio of µ = 0.2 was a reasonable compromise solution. For future work,

we would like to explore more complex soft-tissue models (e.g., multi-layer) that might

alleviate this limitation. Overall, our method reduces the error of the statistical model by

56.8% in the case of training sequences and 31.4% in the case of test sequences (Fig. 3.11).

For some particular tests that notably differ from the training set, the optimization is not

fully capable of generalizing the behavior of the soft-tissue. In such cases, we have observed

that the solution provided by SMPL produces smaller variance errors. We found that this

happens because the anisotropic metric is particularly sensitive to the misalignment between

the captured and simulated vertex trajectories. However, our method provides qualitatively

better results.
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Figure 3.12: This graph shows the convergence of the optimization considering the anisotropic

material and error metric for each of the three subjects tested. The dots indicate

the iteration separating the three stages of the optimization: i) 12 points, material

parameters; ii) 12 points, alternating material and thickness; and iii) 42 points,

alternating material and thickness.

We repeated the optimization of subject SA several times to compare the performance of

our custom constitutive material when considering isotropic and anisotropic elastic moduli.

Additionally, we explore the effect that our anisotropic error metric has on the results of the

optimization . Overall, this result in three configurations:

• CA: isotropic material with isotropic error metric.

• CB: isotropic material with anisotropic error metric.

• CC : anisotropic material with anisotropic error metric.

Fig. 3.7 shows a comparison between the trajectories obtained for one of the training se-

quences, for each of the mentioned configurations. It can be seen that the CC produce vertex

trajectories that fit much better with the captured one than CA. While the anisotropic error

metric used in CB helps to improve the overall quality of the fit, the isotropic constitutive

material cannot capture skin behavior accurately. Fig. 3.10 shows in detail the spatial

distribution of the anisotropic variance for each of the considered configurations. It can

be seen that the configuration CC clearly outperforms the other two in approximating the

captured data.
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Overall, the complexity of the problem complicates convergence and suffers risk of getting

stuck in local minima. Our optimization scheme notably alleviates the burden and makes

solving the problem feasible. As shown in Fig. 3.12, it is effective to provide an initialization

for the full optimization using the solution obtained with the reduced parameter space of

12 control points. However, the big computational cost remains the main limitation and

prevents us from further exploring other options that might lead to better results. All our

simulations and optimizations were run in a desktop machine Intel Core i7-8700 @ 3.2GHz,

with 32GiB RAM. We use a time step of 1/120s. Each time step converges in 1 or 2

Newton iterations, and the cost per iteration is around 0.7s. We estimate the parameters

of each subject using 2 sequences of 1.5s each. Alltogether, simulating the two sequences

takes about 6min. In each optimization step, we estimate the Jacobian of error terms using

finite differences. With 42 control points, this implies running 43 simulations per thickness

iteration and 85 simulations per material iteration. Our sparsity acceleration approximately

divides the number of simulations by 2. Overall, this leads to a total optimization time of

around 30-40 hours, depending on the subject and the chosen training set.

3.6 Construction of a Reduced Soft Skeletal Avatar

In this section, we describe the DoFs of our reduced skeletal soft model. The model combines

the parametric soft avatar presented so far and a handle-based reduced deformable model.

We first describe the handle-based reduction, and then conclude the section discussing how

we merge it with the parametric avatar.

3.6.1 Handle-Based Reduced Model

Several reduced models build compact and sparse bases by skinning the deformations of a

few handle points or frames. They differ in the choice of DoFs and the construction of the

basis. Some possibilities are to use rigid frames skinned with harmonic weights [Gil*11],

or affine transformations skinned using geodesic radial basis functions [BEH18]. We opt

for the biharmonic generalized barycentric coordinates (BGBC) of Wang et al. [Wan*15],

which interpolate both handle points and affine frames in a smooth, shape-aware manner.

The BGBC are obtained by solving a quadratic minimization on a volumetric mesh subject

to interpolation constraints at handles. Wang et al. propose an objective energy based

on mass-weighting a linearly precise Laplacian, and we refer to their paper for details.

40 Chapter 3 Modeling Soft Avatars with Hybrid Deformations



We discard BGBC values below a small threshold (in practice, we smoothly decay values

between 0.1 and 0.03), and thus enforce local support of the basis.

Given a skeletal model, the BGBC reduced model allows us to naturally choose as handles

the bones of the skeleton plus a sparse set of surface points. The model is well suited

for fitting the shape (i.e., skin) of the skeletal model, as well as anatomical constraints

(i.e., the bones and joints), while providing a compact deformation basis. To compute the

BGBC basis, we mesh the soft-tissue volume between the outer skin surface and the inner

skeleton, as shown in Fig. 3.3. Note that we only use the complete volumetric meshes during

preprocessing, to compute the BGBC weights as well as cubature weights (Section 3.7.2).

Below, we show the computation of skin deformations SB ∈ IR3n by linear combination

of the positions ϕ ∈ IR3h of h handle points and the vectorized affine transformations

A(θ) ∈ IR12b of b handle bones with pose θ.

SB(ϕ, θ) = Uφ ϕ + Uθ A(θ). (3.9)

Uφ ∈ IR3n×3h and Uθ ∈ IR3n×12b represent, respectively, the basis vectors of handle points

and handle bones, and store the BGBC of all handles.

The reduced model (3.9) can be used as kinematic representa-

tion in dynamic simulation, endowed with an FEM elasticity

model, as well as joint and contact forces. The inset figure

shows the distribution of handle points manually selected all

over the surface of the body for the presented reduced model

examples. The major advantage of the method is that contact

produces both skeletal reaction and soft-tissue deformation,

with natural two-way coupling. However, deformations are

governed solely by physics, making it very hard to match real

deformation examples.

3.6.2 Combined Model

Next, we present our skeletal model augmented with reduced soft-tissue deformations, by

combining the two models presented before. We represent the effect of bone transformations

using the parametric skeletal model, i.e., through the pose blend-shapes Vp(θ) and the

skinning transformation W (·). This provides a pose-dependent soft-tissue deformation

that realistically depicts data-driven static deformation and with skeletal dynamics due to
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contact. In addition, we aim to achieve flesh deformations due to contact or inertia, while

still preserving the accurate data-driven static deformation of the parametric skeletal model.

Thus, we formulate reduced soft-tissue deformations SB in the unposed reference shape,

to capture deviations from the parametric skeletal model instead of full deformations. Our

model enables simple construction of anthropomorphic models that match both flesh and

bone geometry, while supporting large joint rotations. This is a complex goal for typical

models that evaluate world-space deformations, because the narrow space between bones is

heavily deformed under joint rotations. With our unposed deformation model, joint rotations

do not cause any difficulty.

Our design choices result in ignoring the bone transformations in the reduced deformation

model, i.e., A(θ) = 0 in (3.9), since the bones remain fixed in the reference shape, but their

effect is captured by the parametric skeletal model. As a result, our augmented skeletal

model defines soft-tissue deformations S ∈ IR3n as

S(ϕ, θ) = W (V̄ , J(β0), θ, W),

V̄ (ϕ, θ) = V + Vs(β0) + Vp(θ) + Uφ ϕ,
(3.10)

The DoFs of the model are the handle points ϕ and the skeletal pose θ. The reduced

deformation Uφ ϕ is evaluated on a volumetric mesh on the unposed reference shape.

However, as already discussed in Section 3.6.1, in our implementation the rest of the model,

and hence S, is evaluated only on the surface . We fix the shape parameters β = β0 to

create the model for a given (but arbitrary) skeletal shape. Then, the joint locations and the

shape-based blend shapes remain fixed during the simulation. Note also that, even though

the bone basis vectors Uθ can be ignored in the runtime simulation, the BGBC basis must

be computed with both point and bone basis vectors Uφ and Uθ. This ensures that bones do

not suffer soft-tissue deformation.

In the next section, we discuss how we endow the combined kinematics representation (3.10)

with elastic and inertial models for dynamic simulation. As shown in Fig. 3.13, our model

enjoys the advantages of both the parametric skeletal model and the reduced deformation

model; it matches static contact-free deformations accurately, and contact produces both

skeletal reaction and soft-tissue deformation, with natural two-way coupling.

3.7 Reduced Soft Skeletal Mechanics

The augmented skeletal model described in the previous section is capable of generating

skeletal animations with soft-tissue deformations. However, to generate these deformations
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Figure 3.13: Our soft skeleton body model matches static data-driven deformations accurately for

a given pose (left). When in contact with an external object it produces a dynamic

response with two-way coupling (right). Soft-tissue deformation is clearly noticeable

in the unposed reference shape (inset). Local static deformations due to the pose

blend shape (e.g., arm bulging) apply independently of external interactions.

in a physics-based simulation, we need to define force models, as well as dynamic equations

that relate those forces to the motion of the skeletal and soft-tissue DoFs. We start with

our formulation of reduced deformation mechanics in unposed space, followed by a novel

cubature scheme that enables efficient evaluation of energies, forces and Jacobians. We

complement the deformation model with a description of skeletal forces, contact handling,

and the formulation and solution of dynamics.

3.7.1 Unposed Deformation

We measure soft-tissue deformations as deviations from the parametric skeletal motion. To

this end, we require two ingredients. One is to define displacements in unposed space as

in (3.10). The other one is to define elastic energy solely based on these displacements.

Let us take a point x̄ in reference shape as introduced in Section 3.2.4. We define the

soft-tissue deformation as the unposed displacement Uφ ϕ from this rest position, which

yields the unposed deformation u = x̄ + Uφ ϕ. We compute an unposed deformation

gradient as F = ∇x̄u = I + ∇x̄Uφ ϕ. This definition of the deformation gradient resembles
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the one proposed for the full model in Section 3.3.1. However, this time kinematics are

discretized using unposed displacements, not world positions.

Given a generic elastic energy density of the form Ψ(F ), elastic forces on the handle points

are computed as

∇φΨ = ∇F Ψ · ∇x̄Uφ, (3.11)

where ∇F Ψ is the First Piola-Kirchhoff stress, and ∇x̄Uφ denotes the gradient of basis

vectors w.r.t. the reference shape. In our dynamics solver, we also require force Jacobians,

which in turn use the Hessian of the elastic energy.

As evident from the expression above, our deformation model does not affect the skeletal

pose θ. In other words, a static change of skeletal pose does not produce additional soft-

tissue deformation, and the skin surface is controlled solely by the parametric model, as

desired. However, as shown in Fig. 3.15 and Fig. 3.17, the presence of dynamic inertial

terms and external contacts does produce an effect on the deformation of the soft-tissue.

In our examples, we have used the nonlinear material model introduced in Section 3.3.2.

In practice, we have clamped the saturation term in the material model, to limit its highly

nonlinear effect. We found that very high saturation values could require more than one

Newton iteration in the backward Euler solve (see Section 3.7.4), and this had a significant

impact on performance.

3.7.2 Data-Oblivious Cubature

The deformation model described above must be integrated on the whole soft tissue to

compute elastic forces on the handle points. To this end, we consider the volumetric

tetrahedral meshes shown in Fig. 3.3 and use the finite element method (FEM) to discretize

the continuous formulation in (3.11). With reduced models, the runtime cost is dominated

by the computation and assembly of energy gradients and Hessians on all mesh elements

and/or quadrature points, each of which must be projected onto the reduced space through

the basis matrix as in (3.11). When the basis vectors are smooth, this cost can be alleviated

thanks to cubature methods [AKJ08; Tyc*13]. They rely on the approximation of the energy,

its gradient and Hessian as weighted sums of evaluations at a sparse set of points.

Typical cubature methods use deformation examples to optimize cubature point locations

and cubature weights. However, the generation of representative training examples is a

challenging task. Instead, we propose a data-oblivious cubature method based on the
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construction of an interpolation scheme on the skeletal model. We sample cubature points

uniformly, construct an interpolation scheme for the elastic energy and its derivatives,

and then derive cubature weights automatically by integrating the basis functions of the

interpolation scheme.

Let us assume a set of cubature points ¶Xi♢, sampled on the reference shape of the soft-

tissue portion of the skeletal model, i.e., excluding the bones. We will discuss the sampling

strategy shortly. We wish to construct an interpolation scheme for the elastic energy and its

derivatives. Thanks to the reduced deformation model, both the energy and its derivatives

are smooth, and a sufficiently dense interpolation scheme can provide a good approximation.

We use BGBC as interpolation scheme, which boils down to computing the BGBC for the

cubature points ¶Xi♢ on the volumetric mesh of the soft-tissue portion of the skeletal model.

Note that these BGBC are different from those of the handles introduced in Section 3.6.1.

Given the elastic energy density Ψ(X) (and its derivatives) sampled at the cubature points,

¶Ψ(Xi)♢, we interpolate the energy using BGBC ¶αi(X)♢ as Ψ(X) =
∑

i αi(X) Ψ(Xi).

We can compute the full energy E by integrating this interpolated energy density on the

whole reference shape:

E =

∫

V

∑

i

αi(X) Ψ(Xi) dV =
∑

i


∫

V
αi(X) dV



Ψ(Xi). (3.12)

Alternatively, we can define the full energy E using cubature, with cubature weights ¶wi♢:

E =
∑

i

wi Ψ(Xi). (3.13)

Simply by equating both expressions, we see that the cubature weights can be obtained by

integrating the BGBC on the reference shape.

wi =

∫

V
αi(X) dV. (3.14)

Our cubature method provides a good approximation of the energy and its derivatives, but it

is also fast.

We have explored several strategies for sampling cubature points. One strategy was to

co-locate cubature points and basis handles, and thus interpolate the internal energy and

its derivatives from the same samples as the deformation field. However, internal forces

are simply not uniform at the surface of rigid handles (i.e., bones); therefore, the interpo-

lation scheme is not well defined. Another strategy was to apply importance sampling,

favoring denser sampling at locations with potentially larger deformation. However, due

to our approach to compute cubature weights in (3.14), some cubature samples with large
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Figure 3.14: Our model incorporates skeletal tracking of target input animations through control

forces. Note that even in the absence of external interactions, dynamic deformations

appear as an effect of inertial components. The figure shows a sequence of four

animation frames and a colormap with the corresponding vertex displacements in

unposed space (insets).

deformation receive a large influence from regions with little deformation, leading to wrong

force estimations. We concluded that uniform sampling was the safest strategy, and we

found no apparent increase in quality after using 5 to 10 cubature points per basis handle.

3.7.3 Skeletal Constraints, Forces and Contact

Our augmented skeletal model (3.10) defines the skeletal DoFs θ, but we must define

joint constraints and forces to correctly simulate skeletal dynamics. Furthermore, it is

important that the skeletal pose remains within the observed subspace of the parametric
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model, otherwise the pose-dependent blend shapes will produce unnatural results. To this

end, we implement the following types of skeletal forces: joint constraints to maintain the

skeletal structure, joint stiffness to capture bending resistance, joint limits, and PD control

forces (a.k.a. viscoelastic coupling) to enable interactive tracking and/or animation control

as shown in Fig. 3.14.

We model all skeletal forces, including joint constraints, through a combination of translation

and rotational springs. These forces act only on the skeletal pose θ, with no direct effect on

soft-tissue deformation ϕ.

We evaluate contact forces on surface points x ∈ S, which are computed according to (3.10)

as x = W (V̄ (ϕ, θ), θ). Recall that W (·) is the skinning transformation, and V̄ = u(ϕ) +

Vp(θ) is the unposed deformation of the reference shape. In our implementation, we define

penalty contacts for colliding surface points. To transfer penalty contact forces to the DoFs

of the model, we require the Jacobian of the surface position x w.r.t. the DoFs. The same

Jacobian would be necessary for constraint-based contact handling.

Since surface positions depend on both the skeletal pose θ and the soft-tissue handle points

ϕ, contact forces act on both the skeleton and the soft-tissue deformation. Effectively, this

shared dependency plays the role of two-way coupling between skeleton and soft tissue.

The Jacobians of the surface position can be computed as:

∂x

∂θ
=

∂W

∂V̄

∂Vp

∂θ
+

∂W

∂θ
,

∂x

∂ϕ
=

∂W

∂V̄
Uφ. (3.15)

We have observed that, in practice, the forces on the skeleton are dominated by the direct

influence on the skinning transformation through ∂W
∂θ

, with the influence through the pose

blend-shapes
∂Vp

∂θ
negligible. To maximize performance, we have discarded the latter in our

implementation. .

3.7.4 Reduced Dynamics

To simulate dynamic deformations of our augmented skeletal model, we integrate equations

of motion of the form

M



θ̈

ϕ̈



=



fθ

fφ



. (3.16)

We integrate the dynamic equations using backward Euler with one Newton iteration, and

we achieve inertial soft-tissue deformations induced by skeletal motion, such as those in
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Figure 3.15: Our handling of inertial forces correctly captures soft-tissue deformations induced by

the skeletal motion. The picture shows two frames of an animation with a character

subject to rotational acceleration (left) and deceleration (right) in the vertical axis,

and the resulting colormap of soft-tissue deformations.

Fig. 3.15. As discussed before, the Newton solve requires the computation of the various

force Jacobians.

The bone forces fθ include the skeletal forces described in Section 3.7.3. The reduced

soft-tissue forces fφ include the elastic forces described in Section 3.7.1. Contact forces

affect both bone and soft-tissue forces, as described in Section 3.7.3. The mass matrix is

derived by formulating the kinetic energy of the system. This boils down to:

M =

∫

V

1

2
ρ



∂x

∂θ

∂x

∂ϕ

T ∂x

∂θ

∂x

∂ϕ



dV, (3.17)

with the Jacobians given in (3.15). We leverage the cubature method discussed in Sec-

tion 3.7.2 to approximate the mass matrix, with one modification: we must add the inertia

terms of the bones to the mass matrix computed on the volumetric mesh.

3.8 Reduction Experiments

The soft skeleton model presented above provides a general scheme to augment any arbi-

trary PSD with reduced soft-tissue deformations. The resulting method features realistic

dynamics, highly non-linear materials, and two-way coupling between flesh and bones

through frictional contact and inertia. As global static deformations are handled by the
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Figure 3.16: Each column presents a sequence of pictures showing two rag-doll characters with

different shape parameters undergo the same simulation scenario. The bodies are

slowly pushed by a cylinder while hanging from the wrists, resulting in different

deformation behaviors.

3.8 Reduction Experiments 49



data-driven pose blend shapes, the subspace basis is completely devoted to representing

local deformations.

To define the soft-tissue layer, we follow the approach described in Section 3.2. The

resulting tetrahedral mesh comprises a total of 10111 nodes and 41585 elements , 500 of

which are selected as cubature integration points. We manually sample h = 82 handle

points uniformly distributed throughout the surface of the body which leads to a total of 672

simulated DoFs.

As shown in Fig. 3.13, the resulting skeletal model accurately matches data-driven static

deformations while at the same time realistically responding to external interactions. The

deformation of the skeleton can be driven by an input animation through tracking forces

(Fig. 3.14), and the soft-tissue dynamically deforms accordingly due to the effect of inertial

forces (Fig. 3.15). Interestingly, as shown in Fig. 3.16, the parametric model allows us to

reproduce the same simulation scenarios for different body shapes resulting in different

deformation behaviors.

On average, simulations run at close to 100 FPS allowing us to interactively manipulate the

avatars. Fig. 3.17 shows a comparison of the deformation behavior obtained by solving the

same simulation scenario considering the full-space problem and our subspace approxima-

tion. While differences are noticeable, our soft skeleton model produces plausible behaviors

while running in real-time. In comparison, solving the full space problem takes around 7

seconds per frame.

Table 3.1 shows a breakdown of timings, comparing a full-space simulation, our subspace

method with the number of cubature points used in the examples, and our method with more

cubature points. The subspace formulation provides a speed-up of over 1000× on the linear

system solve of each time step. On the other hand, cubature integration provides a speed-up

of almost 400× on the evaluation of forces and the energy Hessian. We confirm that the

force and Hessian evaluations scale sublinearly with the number of cubature points.

force Hessian solve step

full space 882 2401 3947 7233

subspace 500 1.51 7.16 0.49 9.17

subspace 1400 1.99 11.63 0.47 14.1

Table 3.1: Performance comparison of a full-space simulation vs. our reduced method, with

different numbers of cubature points (denotes as “subspace X”). The table shows average

timings per time step, as well as broken down into the evaluation of forces, the evaluation

of the energy Hessian, and the linear system solve (all in ms).
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Figure 3.17: We compare the behavior of our method (top) against the ground-truth full-space

problem (bottom). While the full-space solution is slightly smoother, our approxima-

tion produces a plausible behavior at a computational cost orders of magnitude lower.

3.9 Conclusions

We have presented a hybrid model of soft-tissue animated avatar that computes deformation

as a combination of a data-driven statistical model and an FEM simulation. In addition, we

have presented an optimization procedure to estimate the parameters of the model from

4D human captures. Unlike previous work, we ensure that two important properties are

achieved. We reformulate strain computations such that, in absence of external interactions

and dynamics effects, the deformation generated by our method matches exactly that of

the data-driven statistical model. Plus, we model soft-tissue mechanics using a custom

constitutive material that captures the nonlinearity and anisotropy of the skin, which are

essential for representing complex interactions. To best explore the parameter space of our

material model, we have formulated the estimation problem in terms of a novel anisotropic
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motion variance metric. Also, accompanying this soft-tissue avatar model, we have presented

a reduced subspace simulation, effectively augmenting the model with interactive soft-tissue

deformations.

In general terms, our method is capable of realistically modeling soft-tissue avatars at

interactive framerates, under highly dynamic effects and with extreme external interactions.

However, our work is not free from limitations.

By measuring deformations in the unposed reference space, we suffer errors in the estimation

of the deformation gradient. Some of these errors are actually intended, and they help the

model reach the data-driven pose without causing internal stress. But other errors may

alter the expected behavior of the material model. This occurs particularly near joints,

where the skinning transformation from unposed to posed space deviates most from a rigid

transformation. With our nonlinear material, this deviation may induce overestimation or

underestimation of the saturation term. We believe, however, that the benefits of the unposed

deformation metric surpass its limitations. One additional benefit is the robustness under

large joint rotations. The unposed formulation avoids mesh degeneracies that are otherwise

commonplace near joints.

In addition, during our experiments we detected that there is a trade-off between the volume

preservation and the anisotropic capabilities of the material, which limits the quality of the

fitting to captured data. This might be solved using a more complex model of the soft-tissue

that would consider several layers with different mechanical properties. On the other hand,

characterizing material parameters requires solving a complex optimization problem with

large computational cost. Even though our sparsity accelerated gradient alleviates part of

the burden, using finite-differences for the computation of the Jacobian quickly becomes

hardly feasible for a large number of control points. It would be interesting to find an

appropriate reformulation of the dynamics problem such that the gradient can be analytically

approximated. Solving both these problems would constitute interesting lines of future

work.

When the subspace deformation model is used, there are evident limits on the range of

possible deformations, of course with the benefit of computational efficiency. One of the

the main restrictions found in the presented reduced model is the limited ability to resolve

contact deformations with high spatial frequencies. To alleviate this limitation the subspace

basis can be enriched at runtime. As a novel alternative, in the following chapters and in the

remainder of this thesis, we describe new data-based methods to augment subspace contact

simulations with learned corrections, improving the generated contact deformations while

maintaining a reduced number of simulated DoFs.
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As a minor note, in our particular choice of subspace basis, we have focused the placement

of handle points on the surface of the model. However, one could consider adding handle

points within the volume to capture internal heterogeneity. Also, in the construction of our

subspace cubature integration, we have used uniform sampling, but a better cost-to-accuracy

trade-off might be possible with the addition of importance sampling.
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Reduced Deformation

Modeling with Learned

Corrections

4

This chapter introduces a novel subspace method for the simulation of dynamic deformations.

The method augments existing linear handle-based subspace formulations with nonlinear

learning-based corrections parameterized by the same subspace. Together, they produce

a compact nonlinear model that combines the fast dynamics and overall contact-based

interaction of subspace methods, with the highly detailed deformations of learning-based

methods. We propose a formulation of the model with nonlinear corrections applied on the

local undeformed setting, and decoupling internal and external contact-driven corrections.

We define a simple mapping of these corrections to the global setting, an efficient implemen-

tation for dynamic simulation, and a training pipeline to generate examples that efficiently

cover the interaction space. Altogether, the method achieves unprecedented combination of

speed and contact-driven deformation detail. The contributions presented in this chapter

have led to the following publication:

• Cristian Romero, Dan Casas, Jesús Pérez, and Miguel A. Otaduy.

“Learning Contact Corrections for Handle-Based Subspace Dynamics”.

ACM Transactions on Graphics (SIGGRAPH) (2021)

To facilitate the understanding of the whole, in this and the remaining chapters, we have

adapted the mathematical notation with respect to the separately published papers. In these

last three chapters there is a strong connection in the problems we solve and how we solve

them. To make the whole more cohesive and allow a smoother reading, we have unified

the notation following some simple rules. We use lowercase fonts for scalar and vector

quantities, and uppercase fonts for matrices. On the other hand, for scalar and 3D geometric

quantities (positions, displacement vectors, transformations, ... ) we use regular fonts, and

for vectors and matrices of arbitrary dimensions with non-geometrical nature, we use bold

fonts instead. The remaining ambiguities that may arise can be easily decided by context.
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4.1 Introduction

Subspace simulation models define a compact space for the animation of complex objects,

without the constraints of mesh resolution. They have demonstrated the ability to produce

expressive simulations under low computational cost [PW89; KLM01; OHS03; BJ05;

AKJ08]. They are not free of limitations though, as they suffer to produce high-frequency

details, e.g., resulting from contact.

Learning methods find effective parameterizations to model complex nonlinear functions.

Despite recent important breakthroughs [Bat*16; Cha*17; San*18; GDY19; WBT19;

Li*19], it is yet unclear whether learning approaches can represent the generality of high-

resolution dynamics under contact. However, they have succeeded at capturing high-

resolution skeletal and rig-based animations [SOC19; San*20; PLP20; SSR20].

In our work, we want to combine the best features of subspace and learning models for

dynamic simulation of deformable objects. To do so, we design a new subspace simulation

model, presented in Section 4.2. The model aggregates a linear global deformation and a

nonlinear local correction, both parameterized by a common set of subspace handle-based

degrees of freedom. We also define an efficient mapping of the nonlinear corrections to

the global setting, as a function of the subspace. Thanks to learning-based modeling of the

local corrections, we attain highly detailed and accurate contact-driven deformations. At the

same time, thanks to the subspace parameterization of the aggregate deformation, we attain

fast dynamics and overall contact-based interaction. Combining the features of subspace

and learning models, we achieve dynamic simulations with unprecedented combination of

speed and contact-driven deformation detail.

Our method captures in a consistent way nonlinear corrections due to both internal deforma-

tions and external interactions. We have designed a data-generation and training pipeline that

supports different types of corrections and interactions. As we describe in Section 4.3, this

pipeline requires mapping interactions and full-space deformations to the linear subspace,

and we discuss how the choice of subspace can simplify this task.

All in all, we introduce a simple method that allows the efficient simulation of many

interesting phenomena. We showcase simulations where dynamics are efficiently resolved

in a subspace, and they are enriched with accurate data-driven quasi-static corrections. As

the human eye is less perceptive of detail under motion, and high-frequency oscillations

tend to dampen quicker than low-frequency oscillations, we find that our approach produces

simulations that are barely distinguishable from full-space results. We also tackle the

simulation of local contact deformations, a classic challenge for subspace methods. We
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Figure 4.1: The top images show a dynamic simulation of an FEM Neo-Hookean jelly with 12,469

triangles. The deformation is rich but slow (20 fps). The central images show the same

scene using a linear subspace model built with just 8 point handles. The simulation is

fast (420 fps), but it misses all the detail and suffers distortion under moderate forces.

The bottom images show the result with our model, which augments the linear model

with nonlinear learning-based corrections. We retain fast dynamics close to the linear

model (140 fps), but we recover the detailed contact-driven deformations of the full

model.

4.1 Introduction 57



showcase simulations where we learn these high-detail deformations as a function of the

relative configuration between colliding objects and the subspace, and seamlessly aggregate

the corrections with the subspace dynamics. We demonstrate the method on examples that

signify its applicability, such as the simulation of microtextures, soft robots, or soft skeletal

bodies, as shown in Fig. 4.1 and throughout the chapter.

4.2 Corrected Subspace Deformations

In this section, we introduce our subspace deformation model. We start by formulating the

combination of a linear subspace model, nonlinear local corrections, and the mapping of

these corrections to the global setting. All these components are parameterized by the same

reduced handle-based degrees of freedom (DoFs). To allow the computation of forces and

velocities, we also derive the Jacobian of our aggregate subspace model, and we analyze

computationally efficient approximations. We conclude by discussing the application of

variational solvers for dynamic and static deformations.

4.2.1 Formulation of the Subspace

As outlined in the introduction, we construct the subspace model as the addition of a

reduced-order linear deformation and a nonlinear local correction. This separation is shown

in Fig. 4.2. For the linear deformation, we choose the biharmonic generalized barycentric

coordinates (BGBC) [Wan*15]. BGBC allow an intuitive definition of the linear subspace

basis, formed by the transformations of points and rigid frames (referred to as handles), and

we leverage this intuitive basis to construct compact parameterizations of the corrections in

Section 4.3. Other choices of frame-based models [BEH18; Gil*11] would also be suited

for the definition of the subspace. With handle DoFs q and BGBC basis U, the linear

portion of our subspace model is U q. To extend the accuracy of the linear handle-based

subspace, we construct a nonlinear correction. In Section 4.3 we will discuss the details of

this correction; for now we consider a general correction with nonlinear dependency on the

reduced DoFs, r(q). Similar to pose-space deformation [LCF00], we express the correction

in a local setting. This choice simplifies learning and hence maximizes the accuracy of the

correction field, as shown in Fig. 4.3.

We map the local corrections to the full space using the deformation gradient F(q) of

the linear subspace deformation. Notice that this mapping corresponds to a first-order
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Figure 4.2: Our subspace model (center) disentangles the deformations due to three different

sources (global linear, local nonlinear internal, local nonlinear external), enabling an

efficient learning of nonlinear corrections, and accurate matching of full simulations

(left). Directly learning the full deformation, on the other hand, leads to poor gen-

eralization capability (right). In the example, the subspace model is made of three

bones, and deformations are produced by pulling with a spring from the circle at the

bottom. Both our model and the fully learned approach use neural networks of the

same complexity.

approximation of a correction applied to the undeformed setting [Mal*15]. Adding the linear

and nonlinear components together, we can express our nonlinear subspace deformation

model as:

x(q) = U q + F(q) r(q). (4.1)

In practice, we compute the deformation gradient on tetrahedral elements [ITF04] and then

perform a moving least-squares approximation on nodes [Mül*04]. In the remainder of the

section, we drop the explicit dependency of q from the various terms in (4.1).

Interestingly, the nonlinear correction to the linear subspace deformation can also be

interpreted as a modulation of the linear basis. To this end, we rewrite (4.1) by reversing

the order of F r as mat(r) vec(F). Furthermore, the deformation gradient can be expressed

through a linear operation mat(∇) on the subspace deformation U q. Using the matrices

mat(r) and mat(∇), we rewrite our corrected subspace model (4.1) as

x = (I + W) U q, (4.2)
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Figure 4.3: The deformation behavior of a full simulation (left) is accurately modeled when

nonlinear corrections are learned on a local setting (center). Global corrections are

more difficult to learn, and suffer artifacts (right). In the example, both local and global

corrections use the same training data and neural-network architecture.

with W = mat(r) mat(∇). As evidenced in this expression, the nonlinear correction can

be interpreted as an incremental modulation W U to the linear subspace basis U. This

modulation weights the gradient of the subspace basis by the corrections. In practice, for

the evaluation of full-space positions x, we use (4.1), after computing F explicitly. For

the transformation of forces to the subspace, however, it is convenient to analyze the basis

modulation (4.2), as we see next.

4.2.2 Jacobian of Subspace Kinematics

A key ingredient of the subspace model is the Jacobian J that linearizes the mapping between

the subspace DoFs q and the full-space deformation x. Differentiating (4.1) and (4.2), we

obtain:

J =
∂x

∂q
= (I + W) U + F

∂r

∂q
. (4.3)

Using this Jacobian, one can transform subspace velocities q̇ to the full-space as ẋ = J q̇,

and full-space forces fx to the subspace as fq = JT fx.
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Figure 4.4: To maximize runtime efficiency, we have evaluated different approximations to the

Jacobian of our deformation model (4.3). The behavior with the full Jacobian (top) is

accurately matched when we ignore the change in the deformation gradient (middle),

as in (4.4). However, deformation errors are evident (bottom) if we use the Jacobian of

the linear subspace and ignore the change in the corrections ∂r

∂q
; hence we retain this

term.

Most of the computational overhead of our subspace corrections lies in the evaluation of

the Jacobian. Therefore, we pay attention to the relevance of the terms W and ∂r
∂q

in (4.3).

Fig. 4.4 shows a representative example where we evaluate different approximations of J.

We have observed that the term ∂r
∂q

bears an important role in the computation of forces and

resulting deformations, hence it should not be ignored.

On the other hand, the term W, which carries the Jacobian of the deformation gradient,

can be safely discarded in the computation of forces. This is no surprise; as subspace

deformations are smooth, the Jacobian of their deformation gradient is comparatively small.

Dropping this term can be paralleled to ignoring the derivative of rotations in corotational

elasticity models [MG04; Xu*15], but the effect is even milder for subspace deformations.

Based on our experiments, we conclude to approximate the Jacobian (4.3) as

J ≈ U + F
∂r

∂q
. (4.4)

We have also experimented with using this Jacobian for force computations and the ap-

proximation J ≈ U to build the Hessian. However, this approximation results in excessive

damping and slows down the convergence of Newton solves.
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Figure 4.5: This example highlights the aggregation of deformations in our model. The left

column shows the linear deformation U q. The right column shows the addition of

nonlinear corrections. The top-right image includes only internal corrections rint, which

restore nonlinear deformations. The middle-right and bottom-right images include both

internal and external corrections, with the middle-right example highlighting external

corrections rext, which introduce accurate contact-driven details.

4.2.3 Dynamics and Integration

In our examples, we show both dynamic and (quasi-)static deformations. For a unified

solution to both types of simulations, we use a variational formulation of backward Euler

integration [Mar*11; Gas*15]. As done by Pan et al. [PBH15], the variational form

of the subspace integration is easily formulated by expressing the objective function in

the full space, with the subspace DoFs q as search variables. With an explicit update

x∗ = xold + h ẋold of the full-space positions and time step h, time integration results in

q = arg min
1

2 h2
(x − x∗)T M (x − x∗) + V (x). (4.5)

To time-step the rigid frames in the BGBC reduced DoFs q, we parameterize the rotations

in their tangent-space [TK94]. M denotes the full-space mass matrix and V the potential

energy. Full-space forces are defined as fx = −∇V . Our work admits general elasticity

models and discretizations for the definition of full-space forces. In our examples, we have

used a Neo-Hookean material [SGK18] with tetrahedral FEM discretization.

The optimality of (4.5) yields the following nonlinear equations:

JT 1

h2
M (x − x∗) − JT fx = 0. (4.6)
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Figure 4.6: The nonlinear deformation of a full simulation (top) is accurately matched when

internal and external corrections are learned separately (center). Trying to learn both

types of corrections together complicates data generation and learning, and fails to

reproduce external contact-driven corrections (bottom). In the example, the complexity

of the neural-network architecture for coupled learning is equal to the added complexity

of the decoupled architectures.

We solve these equations using a quasi-Newton method, where we approximate the Hessian

of (4.5) as JT


1
h2 M − ∂fx

∂x



J.

As done often for subspace methods, we use a cubature approximation of forces and

Hessians [AKJ08]. After training cubature points ¶xk♢ and weights ¶wk♢ [Tyc*13], one

can approximate subspace forces (and similarly their Jacobian) as fq ≈
∑

k wk JT
k fx,k,

where fx,k and Jk are, respectively, the force and the Jacobian at the cubature point. In our

implementation, we use the same cubature approximation to project the mass matrix M to

the subspace.

4.3 Learning Corrections

In a fully dynamic setting, the deformation of an object depends on its velocity, acceleration,

and external forces. We represent dynamics in the linear subspace, but we want to retain

the accuracy of nonlinear (quasi-)static deformations. We consider two sources of error in

the linear subspace, and therefore model two separate corrections: internal corrections rint,

which correct the linear subspace deformation in the absence of contact, and external cor-
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Figure 4.7: Data generation pipeline. First, a) we interactively record a linear-subspace dynamic

simulation, and b) use the recorded interaction to generate an offline full dynamic

simulation. c) For each frame, we extract a representative subspace state q̄. Then,

we fix the DoFs corresponding to the subspace (in purple) and run two full static

simulations, d) ignoring and f) including, external interactions. Nonlinear corrections

are then computed by considering the difference between these full static deformations

and the linear subspace solution Uq̄ in e). Internal corrections are generated by

g) mapping the difference to the undeformed setting using F−1. Finally, external

corrections are generated in two steps: first, h) the difference w.r.t. the linear subspace

solution is again mapped to the undeformed setting; and second, i) internal corrections

are substracted to account only for the effect of external interactions.
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rections rext, which correct the additional deviation introduced by contact. This separation

into internal and external corrections, highlighted in Fig. 4.5, simplifies the generation of

representative training data, and hence maximizes the accuracy of the aggregate correction,

as shown in Fig. 4.6.

We start this section with a detailed definition and formulation of the internal and external

corrections. Then, we describe the generation of training data for both types of correc-

tions, following the pipeline outlined in Fig. 4.7. And we conclude with a discussion of

implementation details of the learning architecture.

4.3.1 Internal and External Corrections

Given a subspace state q and constant external forces (i.e., gravity), but no other external

interactions, the internal corrections rint represent the deviation between the full-space

equilibrium deformation and the full-space positions given by the linear subspace, U q.

On the other hand, given a subspace state q and an external interaction state, the external

corrections rext represent the deviation between the full-space equilibrium deformation and

the full-space positions given by the internally corrected subspace, U q + F rint. Fig. 4.5

demonstrates the aggregation of internal and external corrections.

We have considered external interactions due to kinematic colliders, but the formulation

could be extended to other types of interactions. Note that interactions produced by prescrib-

ing some subspace DoFs q (e.g., moving handles of the subspace model) can be represented

as part of internal corrections. We denote the interaction state as z, which in our case may

include the state and size of rigid colliders. For better learning ability, we parameterize the

corrections expressing the interaction state relative to the subspace state q. Here, handle-

based reduced models such as BGBC come handy. We can define rigid transformations

A(q) for the handles, and invert them to define relative external interactions A(q)−1 z.

Formally, our nonlinear correction is then split into internal and external corrections as:

r = rint(q) + rext(A(q)−1 z). (4.7)

By separating internal and external corrections, we avoid the combinatorial complexity

of training for all possible internal and external interaction states. We can train internal

corrections free of external interactions, and we can train external interactions only in the

vicinity of the deformable object. Next, we describe our data generation pipeline.
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Table 4.1: Model size and performance data of the examples shown in the chapter. For the worm,

we show data with 1 and 6 colliders. Note that in both cases the corrections are trained

with just 1 collider.

Example
Jelly Jelly Jelly

Accordion Auxetic Worm Bunny Finger
+ Circle + Comb + Star

Handles (points/frames) 8/1 8/1 8/1 16/2 16/2 0/3 24/1 0/4

Colliders 1 1 (rot.) 1 (rot.) 0 0 1 (×6) 1 1

Full mesh (tris or tets) 12,469 12,469 12,469 17,457 12,921 10,656 17,062 10,163

Cubature points 599 599 599 836 615 505 341 203

PCA corr. (int/ext) -/50 -/100 -/100 15/- 15/- 15/120 -/120 -/120

Neurons (int/ext) -/200 -/3,000 -/3,000 200/- 200/- 200/2,000 -/1,500 -/2,000

Train frames (int/ext) -/9,747 -/187,039 -/270,000 5,880/- 6,291/- 3,730/138,379 -/17,425 -/25,128

Ours fps 201 135 145 85 99 13.6 (6.9) 48 10.9

Linear fps 444 410 432 119 122 403 87 143

Full fps 22.7 19.0 21.2 10.4 11.7 2.5 7.1 1.9

4.3.2 Data Generation

The generation of training data follows a strategy parallel to the decoupling of internal and

external corrections. We visit separately (i) the configuration space of the deformable object,

and (ii) the relative configuration space of the collider. For (i), as the space is very large

and difficult to predict, we follow a user-guided sampling approach [BJ05]. For (ii), we

follow an automated sampling approach, and traverse with the collider the surface of the

deformable object on the configurations obtained in (i). Our decoupled sampling of (i) and

(ii) is beneficial in two ways: it removes the need to explore (i) and (ii) together, which

is hard even through user interaction, and it naturally produces training data to separately

learn internal and external corrections. Based on this decoupling, the data generation

pipeline proceeds in three steps: generation of representative states, generation and training

of internal corrections, and generation and training of external corrections. A detailed

representation of the data generation pipeline is shown in Fig. 4.7.

To generate representative states, we first execute fast dynamic simulations using the baseline

linear subspace model (Fig. 4.7, a). These simulations are interactive in our examples, and

one can move colliders and apply forces to quickly visit a large number of states. Next,

we replay the same interactions, but we simulate deformations using the full-space model

(Fig. 4.7, b). For each frame of these simulations, we project the full-space positions x to

the subspace, using a least-squares mapping q = (UT U)−1 UT x. This projection yields a

set of representative subspace states ¶q̄i♢ and the corresponding full-space positions ¶Uq̄i♢

(Fig. 4.7, c and e).

To generate internal correction targets, we must remove the effect of dynamics and external

interactions from the full-space deformations described above, but leaving the subspace state

unchanged. To this end, we compute constrained static deformations (Fig. 4.7, d). For each
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representative subspace state q̄i, we compute the static full-space deformation x̄int,i, such

that it is constrained to the given subspace state. With our choice of handle-based subspace

model, enforcing the constraints is as simple as fixing the full-space DoFs corresponding to

the handles. From the subspace and full states, we obtain target internal corrections simply

by undoing our nonlinear subspace formulation (4.1):

r̄int,i(q̄i) = F(q̄i)
−1 (x̄int,i − U q̄i) . (4.8)

At this point, we use these internal correction targets to train the internal correction rint(q)

(Fig. 4.7, g).

To generate external correction targets, we need to reintroduce the effect of external in-

teractions on the representative subspace states. For each representative subspace state,

we generate multiple interaction states, traversing with the collider the surface of the de-

formable object at varying depths. Without loss of generality, in the remainder we refer to

one pair of subspace and interaction states. Given an interaction zi, we compute the static

full-space deformation x̄ext,i that is constrained to a given subspace state q̄i (Fig. 4.7, f).

From the subspace and full states, we obtain target external corrections simply by undoing

the subspace formulation (4.1) (Fig. 4.7, h). However, this time we also subtract the internal

corrections:

r̄ext,i(A(q̄i)
−1 zi) = F(q̄i)

−1 (x̄ext,i − U q̄i) − r̄int,i(q̄i). (4.9)

At this point, we use these external correction targets to train the external correction

rext(A(q)−1 z) (Fig. 4.7, i).

4.3.3 Learning Architecture and Training

We learn separate models for internal and external corrections, but we follow the same

methodology for both. Therefore, in this section we refer to arbitrary corrections r. We

have observed that corrections exhibit high coherence, hence we use principal component

analysis (PCA) to reduce their dimensionality.

We use a fully connected, 2-layer neural network to model each type of nonlinear correction.

For internal corrections, the input is the subspace state q, and for external corrections, the

input is the relative interaction state A(q)−1 z, as shown in (4.7). In both cases, the output

of the network is the PCA representation of the corrections. We use tanh as activation

function, and we have implemented the neural networks using PyTorch.
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Figure 4.8: We simulate two types of microstructures, an auxetic structure (left) and accordion-like

heterogeneous stripes (right), with subspace models defined by just 2 frames and 16

points. A purely linear model is incapable of showing nonlinear effects produced by

material heterogeneity, such as the negative Poisson’s ratio of the auxetic structure and

the ripples of the striped structure. Our method practically matches the full solution,

yet 9× faster.

We use as training data the target corrections discussed in the previous section, together with

their corresponding subspace and interaction states. We use as loss function the L2 norm

of the difference between target and estimated corrections, and we optimize the networks

using Adam, 1000 to 2000 epochs, a batch size of 512, and learning rate of 1e-3. As done

typically in machine learning methods, we separate a random subset of the training data and

we use it as test data to monitor the convergence of the optimization of the neural network.

This test data is different from that shown in the examples, which is made of completely

new interactions, not used during training at all.

At runtime, the neural network is needed for the evaluation of displacements, but also

for the transformation of full-space forces and the system Hessian to the subspace, as

discussed in Section 4.2.3. Recall that the approximation of the Jacobian of our subspace

model (4.3), requires the Jacobian of nonlinear corrections ∂r
∂q

, as shown in (4.4). We use

a matrix-free implementation of a conjugate-gradient solver, which in turn uses products
∂r
∂q

T
v and ∂r

∂q
v with vectors v. Our implementation of the neural network on PyTorch
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includes gradient back-propagation capabilities, which address the evaluation of ∂r
∂q

T
v. For

∂r
∂q

v, we do the following. We implement a function y = ∂r
∂q

T
w once per system solve, by

back-propagation of an arbitrary vector w through the network. Then, on each conjugate

gradient iteration, we back-propagate the vector v through the function y(w) to obtain
∂r
∂q

v = ∂y
∂w

T
v.

4.4 Experiments

Table 4.1 summarizes the settings, model size, and performance of the examples shown in

the chapter. All the examples were executed on an Intel Core i7-7700K 4-core 4.20 GHz

PC with 32 GB of RAM. Next, we discuss in detail the different experiments.

Microstructures. The combination of different materials at a microscopic level can

produce interesting macroscopic mechanical behaviors. However, the simulation of such

microstructures at full resolution yields a very high computational cost. One approach to

avoid this cost is to use numerical coarsening methods [Sch*15]. Nevertheless, numerical

coarsening methods assume a linear response of the microstructure with respect to coarse

DoFs [Kha*09; Tor*16; Che*18].

We have explored the use of our model for the simulation of microstructures, by augmenting

the linear subspace model with nonlinear internal corrections. In Fig. 4.8 we show the

application of our model to two different microstructures: an auxetic microstructure (top),

and heterogeneous accordion-like stripes (bottom). In both cases, the difference with

respect to the full-resolution simulation is almost imperceptible. With just 2 rigid handles

(controlled by the user) and 16 point handles, both dynamics and detailed static deformations

are reproduced very accurately. Notice how the purely linear model misses the fundamental

behavior of the auxetic material (negative Poisson’s ratio) and the ripples of the accordion-

like stripes. Both effects are matched with our learning-based nonlinear corrections.

Jelly. This example (see Fig. 4.1) showcases soft 2D dynamics augmented with data-

driven contact. The object is modeled on a subspace defined by just 1 rigid handle (controlled

by the user) and 8 point handles, and we learn separately, as two disjoint models, external

corrections produced by a comb-like collider which combines both a large contact area

and small protrusions, and a star with pointy features. The purely linear subspace model

suffers notable distortions and misses detailed contact deformations. Previous methods for
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local enrichment of subspace models [HZ13; Ten*15] assume a moderate contact area to

be efficient, and would not scale well on the comb example. Our model, on the other hand,

matches accurately the deformations of the full model, with a performance that comes close

to the linear subspace model. Note also that dynamics are well captured in the subspace,

i.e., high-resolution dynamics of the full model are quickly damped.

The proposed subspace model succeeds to capture detailed contact-driven deformations,

but the challenge to accurately learn these deformations grows with the complexity and

configuration space of the collider. In Table 4.2, we compare quantitatively the accuracy

of the subspace jelly model for three different colliders: (i) the comb-like collider of

Fig. 4.1, which produces a large and complex contact area and has a 3D configuration

space (translation and rotation in 2D); (ii) the same comb-like collider but restricted to a 2D

configuration space (with no rotation); (iii) and a small circle-like collider, which produces a

small contact area and has a 2D configuration space. As summarized in the table, our model

learns well the interaction with the small circle even with a small neural network and a small

training set. However, as the complexity and configuration space of the collider grow, both

the complexity of the neural network and the training set must grow. With small network

and training set, the model captures well the global correction to the linear deformation, but

fails to learn high-frequency details of the interaction with the complex comb. A qualitative

comparison of results is shown in Fig. 4.9. The star collider of Fig. 4.1 also requires a

complex network and a large training set, like the comb, due to the size of its configuration

space and its pointy features, as indicated in Table 4.1.

Soft-Robot Worm. We have modeled a worm-like soft robot, with three bones surrounded

by soft material (See Fig. 4.10). We simulate the worm using just 3 rigid handles, colocated

with the bones, and no point handles. Even under such a compact subspace, we show that

Table 4.2: Evaluation of model accuracy as a function of the complexity of the collider and its

configuration space, the size of the training data set, and the complexity of the neural

network architecture. The benchmark for the comparisons is the jelly object in Fig. 4.1,

using as colliders a small circle and a large comb-like object. Accuracy is measured

as the RMSE of vertex displacements w.r.t. the linear model across all vertices in the

object and all frames of the test data set, normalized by the RMS of the same vertex

displacements. See also Fig. 4.9 for a visual comparison of some cases.

Training Neurons Neurons Neurons

frames 200 1000 3000 200 1000 3000 200 1000 3000

9,748 11% - - 24% 22% - 25% 23% 12%
30,486 - - - 15% 14% - 21% 17% 12%
187,039 - - - - - - 15% 13% 10%

Circle Comb (no rotation) Comb
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Figure 4.9: Our subspace model successfully represents contact deformations due to both small

and large colliders with high-resolution features. Nevertheless, large colliders with

larger configuration space (e.g., the comb-like object on the bottom) require a larger

training set and larger network architecture. A quantitative analysis of the error is

summarized in Table 4.2.

our corrected model succeeds to match the dynamic and contact-driven deformations of a

full simulation.

We produce training data by pulling with springs from the bones, and interacting with just

one circular pin. Note that we use up to six pins in one example at runtime, as discussed

below. We train internal and external corrections, following the procedure described in

Section 4.3. Fig. 4.5 showcases both the internal and external corrections during spontaneous

interactions outside the training data. Internal corrections are most evident in the soft regions

between the bones. Conversely, the purely linear model suffers evident locking, and as a

result it cannot stretch as it should. External corrections are most evident at the head of the

worm. Conversely, the head of the purely linear model remains locally rigid.
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Figure 4.10: In this example, we pull a worm-like soft robot through a narrow passage. A purely

linear subspace model (top) suffers strong distortions (see the soft regions between

bones), and cannot deform locally to conform to the shape of the pins. Our model

(bottom), even though it is built from a subspace of just 3 bones, follows closely

the motion and deformations of a full model (middle). The plot shows the pulling

force as each worm traverses the passage. The purely linear model suffers locking

and reaches a peak force 5.6× larger than the full model. With our model, the peak

force is just 1.8× larger. For this benchmark, we trained our external corrections for

just one pin. At runtime, we evaluated the same function of external corrections six

times, for each pin in the passage. Thanks to the separation of internal and external

corrections in our model, external corrections are local in practice, and we can apply

superposition of multiple external corrections as long as the colliders are sufficiently

far from each other.

We also test the worm model on a more complex setting, well outside the training settings.

Fig. 4.10 shows the worm being pulled through a narrow passage, where it collides against

six pins. By modeling external corrections separately from internal corrections, their effect

is mostly local. Then, if multiple colliders act sufficiently far from each other, we can safely

assume superposition of their effects. Therefore, in this example, we train with just one

pin, but we run the simulation with six pins, reusing six times the same neural network of

external corrections. As we pull the worm through the passage, we monitor the necessary
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Figure 4.11: This model of Big Buck Bunny contains a soft-tissue layer on top of a rigid core. We

learn contact-driven corrections to augment a linear subspace model (point frames

highlighted in the inset). As shown in the examples, with our method contact-driven

deformations do not suffer the resolution limitations of the linear model, and match

closely the deformations of a full simulation model.

pulling force. With our model, the peak force is 1.8× larger than with the full model. With

the purely linear model, however, the peak force is 5.6× larger. The linear model suffers

strong distortions in the regions between bones, and cannot deform locally to conform to

the shape of the pins. Our model does not suffer any of these limitations, and hence the

force and overall motion are closer to the full model.

In our model, we decouple different sources of deformation, as we hypothesize that this

explicit disentanglement simplifies learning and provides higher accuracy. To validate this

hypothesis, we try to learn a fully nonlinear subspace model for the worm, on a simple
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example with no contact, as shown in Fig. 4.2. We use the same DoFs as in our model,

i.e., the rigid transformations of the bones, and we use a neural network with the same

complexity. To define the output of the model, we run PCA on the full positions of the

training data. With our subspace model, the RMSE of vertex displacements w.r.t. the linear

model across all vertices in the worm object and all frames of the test data set, normalized

by the RMS of those same vertex displacements, is just 15%. With the fully learned model

this error grows beyond 4, 000%. Learning corrections on a global frame is not sufficient,

and the error remains high at 75%, as depicted in Fig. 4.3. We cannot claim that it is not

possible to learn full deformations directly; in fact Holden et al. [Hol*19] managed to learn

full deformations, albeit with a more complex neural network, and with poor generalization

and overdamped dynamics. Nevertheless, we confirm that our explicit disentanglement

simplifies the problem. The decoupling of internal and external corrections is also critical

for the accuracy of our model. Fig. 4.6 shows a different comparison, this time including

contact, of our model vs. a model of the same total network complexity with coupled

learning of internal and external corrections. In this comparison, the normalized RMSE

with our model is 19%, and grows to 51% with coupled corrections.

Bunny. In Fig. 4.11 we show how we use our model to augment a linear subspace model

of Big Buck Bunny with data-driven contact deformations.

The model contains a rigid core surrounded by a soft layer, and the linear subspace model is

built using the inner rigid core as a frame handle, together with 24 point handles on the outer

surface. We train external corrections due to contact with a spherical collider, following

the pipeline described in Section 4.3.2. In the test simulation, it becomes apparent that the

linear subspace model fails to produce correct contact deformations, as the point handles

are too sparse. Our model, on the other hand, succeeds at producing contact deformations

very close to those of the full model.

Finger. To conclude, we have also used our model to simulate deformations of a soft

skeletal finger model, shown in Fig. 4.12. The finger is modeled with rigid anthropomorphic

phalanges, surrounded by homogeneous soft tissue. We have built the linear model using

just the 3 moving phalanges and the fixed palm as rigid handles, with no point handles.

We fix the pose of the finger with springs, and as a result the change of finger pose in

the example is small. Therefore, we have opted not to model internal corrections, and we

have trained external corrections on a fixed pose of the phalanges. The results demonstrate

that our approach produces an extremely compact subspace model, with contact-driven

deformations that are far from the resolution that can be achieved with the purely linear
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Figure 4.12: We model a finger with just 3 frame handles located at the phalanges. The full

nonlinear deformation of the surrounding tissue is captured by our learning-based

corrections. Moreover, in this example we learn external corrections as a function of

the size of the spherical collider, opening the possibility of using parametric shape

models.

model. At this point, the limiting factor was the resolution of the mesh, not the size of the

collider. We would need to increase the resolution of the mesh to ensure smooth contact as

a smaller collider traverses the surface.

On this example, we also explored the ability to learn corrections as a function of other

interaction parameters, such as the size of the collider. We generated training data with 4

different sphere radii, and at runtime we tested arbitrary in-between values. Even though

the example explores a very limited shape parameterization, it opens up the possibility of

training interactions with parametric and generative shape models [Lop*15; Wu*16].

4.5 Conclusions

We have presented an approach to design compact yet accurate subspace simulation models,

by aggregating global linear handle-based subspace deformations and local nonlinear cor-
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rections. We have shown that local corrections can be effectively learned from deformation

examples, through a separation into internal and external (contact-driven) corrections. The

model enables fast simulations with a combination of interaction dynamics and deformation

detail that is unprecedented to the best of our knowledge. Nevertheless, there are interesting

avenues for future work, which could address current limitations and extend the applicability

of the approach.

The method is heavy on preprocessing, as it requires extensive precomputation of high-

resolution contact simulations in order to accurately learn contact-driven deformations. This

could be alleviated through more sparse sampling of contact simulations, perhaps thanks

to changes to the neural network architecture and/or optimization method to achieve better

generalization under sparse data, through self-supervised training methods, or by designing

more atomic correction strategies not at the whole object level as we do.

The model cannot handle arbitrary contact, and it is currently limited to rigid kinematic

colliders. The formulation is general and it admits deformable colliders, by inputting their

state to the external correction model. However, scalability is unclear, both in terms of

training complexity and generalization ability. At a theoretical level, the formulation can

also be extended to support simulated colliders, and in that case the elastic energy of the

object under study would depend on the state of the collider through the corrections. At

a practical level, this dependency could complicate runtime efficiency though, potentially

introducing dense coupling in the Hessian of the full simulation.

Our implementation of the subspace model uses a frame-based approach for the linear

basis, but the formulation admits more general linear subspace models, such as modal

bases [PW89] or modal derivatives [BJ05]. The parameterization of nonlinear corrections

and the data generation process exploit the handle-based basis, and would need to be

reformulated for more general linear models. As described in Section 4.3.1, we learn external

corrections as a function of relative transformations of the collider, A(q)−1 z. A(q)−1

works only for handle-based models, but for general linear models relative transformations

could be encoded using more general feature vectors, such as pairwise distances between

sets of points in the object and the collider. As described in Section 4.3.2, in a couple steps

of the data generation process we must constrain the full-space deformation to the subspace.

For general linear subspace models, this can be executed using the least-squares mapping

q = (UT U)−1 UT x from full space to subspace, and setting a constraint on the resulting

subspace configuration.

Currently, the model admits only quasi-static corrections, but no dynamic corrections.

Learning-based dynamic corrections could be approached in two ways, as done by other
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methods: by explicitly inputting previous states to the learning architecture [CO18; Hol*19],

or by building a recurrent learning architecture [SOC19]. Friction is another source of

trajectory-dependent deformations. Friction could be handled in a way similar to dynamics,

e.g., by introducing previous states of the collider to the learning architecture, or also by

modeling the friction state as an input explicitly [VCO20].
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Learning Contact Produced

Deformations

5

We propose a novel method to machine-learn highly detailed, nonlinear contact deformations

for real-time dynamic simulation. We depart from previous deformation-learning strategies,

and also from the approach we followed in Chapter 4, and we model contact deformations

in a contact-centric manner. This strategy shows excellent generalization with respect to

the object’s configuration space, and it allows for simple and accurate learning. We com-

plement the contact-centric learning strategy with two additional key ingredients: learning

a continuous vector field of contact deformations, instead of a discrete approximation;

and sparsifying the mapping between the contact configuration and contact deformations.

These two ingredients further contribute to the accuracy, efficiency, and generalization of

the method. We integrate our learning-based contact deformation model with subspace

dynamics, showing real-time dynamic simulations with fine contact deformation detail. The

contributions presented in this chapter have led to the following publication:

• Cristian Romero, Dan Casas, Maurizio M. Chiaramonte, and Miguel

A. Otaduy.

“Contact-Centric Deformation Learning”.

ACM Transactions on Graphics (SIGGRAPH) (2022)

5.1 Introduction

The simulation of contact and deformations has drawn great interest in computer graphics,

as it serves to bring to life computer-generated models of humans and their surrounding

objects [Ter*87; McA*11; SGK18]. However, one of the remaining challenges in the field is

to simulate high-resolution contact at interactive rates, e.g., for virtual reality applications.

In our work, we look at leveraging machine-learning methodologies to model contact-driven

deformations, inspired by their success in modeling self-driven deformations [Pon*15;

SOC19; SSR20], i.e., deformations that emerge as a function of the object’s own motion.
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These methods employ a subspace representation of the deformable object, and then learn

rich nonlinear deformations as a function of the subspace state. Some works have already

attempted to model contact deformations using machine-learning approaches, but they

model only smooth global contact response [Hol*19]. The method presented in Chapter

4 allows detailed deformations to be learned, but requires extensive precomputations and

shows very limited 3D interactions.

We hypothesize that there is a fundamental limitation in previous deformation learning

strategies, including our method presented in Chapter 4. Deformations are modeled in an

object-centric manner, which is an excellent choice for self-driven deformations, as they are

smooth with respect to the object’s subspace state, and then machine learning achieves good

generalization even from sparse data. However, contact-driven deformations are not smooth

with respect to the object’s state; therefore, machine-learning these deformations would

require dense sampling of the object’s subspace state. This is hard, as the configuration

space may be large and difficult to cover.

We depart from previous deformation-learning strategies, and propose a contact-centric

strategy to learn contact-driven deformations. This is also the intuition behind sculpting

brushes in digital sculpting [FCG99], and similar to the learning of skeletal deformations in

local body-part coordinates [Den*20]. We demonstrate that our contact-centric approach

shows excellent generalization with respect to the object’s subspace state (down to just 8

training poses for a challenging ‘duck’ example with an 87-dimensional subspace state, or 1

pose for the ‘hand’ example in the teaser figure).

Our novel method, presented in Section 5.2, gathers three main components:

1. As outlined above, we model contact deformations in a contact-centric manner,

i.e., on a local reference of the collider. We observe that contact deformations are

smoother when modeled in a contact-centric manner, and this contributes to better

generalization, and easier and more accurate learning.

2. We regard contact deformations as a continuous vector field. Instead of learning a

discrete approximation, we learn the continuous field directly, inspired by recent

work on implicit surface modeling [Xie*21]. Learning the contact deformation field

generalizes continuity and differentiability to unseen configurations.

3. We sparsify the mapping between the contact configuration and the resulting contact

deformations. In this way, we leverage the locality of contact deformations, and we

learn them effectively from sparse data.
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Figure 5.1: We present a learning-based method to augment a subspace deformable simulation with

contact-driven deformation detail. We learn contact deformations in a contact-centric

manner, which allows us to significantly reduce the sampling of configurations of the

deformable object, and subsequently learn highly complex deformations. For this

real-time simulation of the MANO model [RTB17] with dynamics, we used just one

pose of the hand for training. Notice the accurate high-resolution deformations due to

contact with a rigid object, highlighted in the zoom-ins.
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In Section 5.3, we describe the neural-network approximation of our contact deformation

model. We also discuss the efficient generation of training data. In Section 5.4, we discuss

the simulation of dynamic deformations using our learning-based contact deformation

model. We augment a dynamic subspace deformation with quasi-static contact-driven detail

that is expressed in the same subspace, allowing simulations that are both fast and highly

detailed.

We have applied our method to real-time dynamic simulations of different deformable

objects. We show 2D and 3D subspace simulations generated with the bounded generalized

biharmonic coordinates [Wan*15], and 3D simulations of the MANO hand model [RTB17].

We have augmented these dynamic subspace deformations with rich and highly-detailed

contact deformations, all in real time.

5.2 Contact-Centric Deformations

In this section, we describe how we model contact-driven deformations. Our modeling ap-

proach, i.e., the selection of input and output representations of contact-driven deformations,

is key for designing an effective learning-based approximation.

We start the section with a definition of the notation, as well as a description of our subspace

deformable objects. Then, we define collider-space displacement fields, as a smooth

representation of the deformation fields produced by contact. We continue with a discussion

of continuous vs. discrete representations of the displacement field, and the impact on the

design of a learning-based approximation. To conclude, we propose a sparse approximation

of the displacement field to further improve the learning ability.

5.2.1 Definitions

We learn contact-centric deformations on a subspace deformable object X . In the absence

of contact, a point in (undeformed) object space x̄ ∈ R
3 is mapped to a deformed position

x̃ in world space through a subspace deformation. In our work, we show different sub-

space deformation models that combine a dynamic subspace deformation with quasi-static

learning-based corrections (also parameterized in the same subspace). More specifically,

one example we show is the use of combined point and frame handles, with a smooth defor-

mation field defined by bounded generalized biharmonic coordinates (BGBC) [Wan*15],

and further augmented with learning-based internal corrections as presented in Chapter 4.
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object space collider space

world space

Figure 5.2: When a collider Z touches a deformable object X , it produces a displacement field

u(x̄). We model the full deformation field x(x̄) as the sum of a dynamic subspace

deformation x̃(x̄) and a learning-based approximation of the contact displacement

field u(x̄). A key insight of our method is to learn this field as a displacement r(z̄)
parameterized in collider space.

Another example that we show is the use of dynamic articulated skeletons, with linear blend

skinning, and parametric pose-based corrections [RTB17]. We denote as q the subspace

kinematic configuration of the deformable object X .

Let us also consider a collider object Z , and z̄ ∈ R
3 a point in the collider space. In our

work, we limit ourselves to rigid colliders. Then, we denote as z the rigid configuration of

the collider Z .

When the deformable object X touches a collider Z , we augment the subspace deformation

field x̃(x̄) with a contact displacement field u(x̄), which yields a total deformation field

x(x̄) = x̃(x̄) + u(x̄), (5.1)

as shown in Fig. 5.2. In our work, we model the subspace deformation x̃(x̄) using dynamics,

and the contact displacement u(x̄) as a quasi-static deformation. In this way, deformable

objects exhibit rich global dynamics combined with contact-driven detail.

5.2.2 Collider-Space Displacement

We wish to find a suitable parameterization of the contact displacement field u(x̄) that

allows efficient and accurate approximation with a learning-based architecture. In the limit

case of a translation of a collider along a flat, infinite, homogeneous object, the displacement

field induced by contact is constant when expressed in collider space. In more general
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cases, the collider may produce a global deformation on the deformable object, but far from

the collider this deformation is well captured by the subspace deformation x̃(x̄); it is close

to the collider where the additional displacement u(x̄) is relevant. We observe that, when

the collider moves, this local contact-driven displacement varies more smoothly in collider

space than in object space, as shown in Fig. 5.3.

Based on this intuition, we choose to parameterize the contact displacement in collider

space, r(z̄), as depicted in Fig. 5.2. Then, to evaluate the world-space displacement, we

first transform the subspace deformation x̃(x̄) to collider space, and then transform the

collider-space displacement again to world space. With T (z) a rigid transformation based

on the collider’s configuration, the displacement is formally obtained as

u(x̄) = T (z) · r(z̄), with z̄ = T (z)−1 · x̃(x̄). (5.2)

The contact displacement field depends on the relative configuration between the deformable

object and the collider, which we express as T (z)−1 · q. In practice, we implement this by

transforming all point and frame handles of the deformable object to the local reference

frame of the collider. Based on this relative configuration, the contact displacement field

can be defined by the following function:

r(z̄) ≡ f


z̄, T (z)−1 · q


. (5.3)

We approximate the function f using machine learning. As discussed above, f is in practice a

smooth function of the relative configuration between the collider and the deformable object.

Typical data-driven deformation methods [Pon*15; SOC19; SSR20] learn instead object-

space deformations T (q)−1 u(x̄). However, we have found that the contact displacement

parameterized in object space is far less smooth. As a direct consequence, the collider-space

displacement function f can be learned using far fewer training data and with a smaller

network than an object-space displacement function.

5.2.3 Learning of a Contact Displacement Field

For dynamic simulation of contact mechanics, the deformation field x(x̄), and therefore the

contact displacement u(x̄), must be evaluated at two types of points. One type is points on

the surface of the deformable object X , for the computation of contact potentials or contact

constraints. The other type is points within X , for the computation of the internal energy
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Figure 5.3: The close-ups compare the representation of contact displacements in object space

x̄ (left) vs. collider-space z̄ (right) for these two examples. As the collider sweeps

through the surface of the deformable object, collider-space contact displacements are

notably smoother, and this drastically impacts the learning ability of our method.

(and its derivatives). Due to the subspace deformation, in practice we use cubature points in

the second case [AKJ08].

Both types of evaluation points are fixed in object space x̄. Therefore, under an object-space

parameterization of contact displacements, it turns out convenient to learn directly the

discrete representation of this function. Furthermore, a common approach in machine

learning is to project such high-dimensional representations to a compact linear subspace

using PCA, and learn only a small number of PCA coefficients.

However, the evaluation points are not fixed in collider space. While it might be possible

to sample the collider space, and apply PCA-based learning, the resulting collider-space

displacements should be interpolated to the evaluation points. Instead, motivated by recent

methods that learn continuous fields [Xie*21], we opt to learn the contact displacement

function f directly as a vector field.

Furthermore, by learning the field f using a multilayer perceptron (MLP) network, the

result is memory-efficient, continuous, and fully differentiable, which are key properties

for successful dynamic simulation. The displacement u(x̄) is defined only inside the

deformable object X , and this leads to a discontinuity in the sampling of the collider space
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Figure 5.4: Two examples (top, bottom) to depict that contact displacements are dominated by the

configuration of nearby handles/bones of the deformable object. We leverage this ob-

servation designing a sparse approximation of the contact displacement function. Here,

we compare ground-truth displacements (left), learned displacements with sparsifying

weights, i.e., Eq. (5.4) (middle), and without sparsifying weights, i.e., Eq. (5.3) (right).

With the same training data, the sparse function achieves superior results, as it succeeds

to disambiguate the subspace state that contributes to the contact displacements.

z̄ when learning the function f . However, the inductive bias of the MLP network smoothly

generalizes to unseen points in the collider space z̄, which may be queried at runtime.

The computation of forces and their derivatives requires the evaluation of gradients with

respect to the collider space. However, the differentiability of the network provides gradient

evaluation by construction.

5.2.4 Sparsification of the Learning Function

The major challenge in learning the contact displacement function f is the dimensionality

of the configuration q of the deformable object. At first sight, applying our contact-centric

deformations to objects with a rich underlying subspace q (i.e., with many subspace degrees

of freedom) requires a combinatorial explosion of the deformed configurations that must be

fed as training data to learn f , and a function that is more complex and more challenging to

learn.
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However, as discussed earlier, we can safely assume that contact displacements have

local support, as deformations far from the collider are coarser and well represented by

the underlying subspace deformation. Then, the contact displacement at an object-space

location x̄ is only influenced by the configuration q of nearby handles of the subspace

deformation. Note that, even though the contact displacement function f is parameterized in

collider space z̄, it implicitly depends on the object space x̄ through z̄ = T (z)−1 · x̃(x̄).

Based on the observations above, we approximate the contact displacement field (5.3)

through a sparse function:

r(z̄) ≈ f


z̄, W(x̄) · T (z)−1 · q


. (5.4)

where W(x̄) is a matrix of spatially varying sparsifying weights, i.e., many of its rows are

zero.

We leverage the sparsity of our subspace deformation models to define the sparsifying

weights. Specifically, with U(x̄) the subspace basis (e.g., BGBC basis or skinning weights)

at a material point x̄, we build the weights as W(x̄) = diag(U(x̄)). Similar ideas of spatially

varying sparse weights have been used in other contexts to obtain local pose definitions,

e.g., weighted pose-space deformation [KM04] or pose attention weights [Sai*21]. Fig. 5.4

shows an example comparing the learning accuracy with a sparse vs. a dense learning

function, and we provide a quantitative analysis in Section 5.5.

5.3 Data and Learning

We pose the problem of designing a learning-based approximation of the contact displace-

ment function f in (5.4). Solving this problem requires addressing several tasks, which

define the structure of this section.

First, we address the design and training of a neural network architecture N to compute

the contact displacement function f . Second, we describe our strategy for sampling the

arguments of f , i.e., the collider space, z̄, and the relative configuration between object

and collider, T (z)−1 · q. To conclude, we describe the generation of ground-truth contact

displacements r(z̄), which requires solving contact configurations with and without contact

displacements.
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5.3.1 Neural Network Architecture

We use a fully-connected, 2-layer MLP to model the function f (5.4), with tanh as

activation function. This results in our neural model of contact deformation N. The

actual size of each layer depends on the specific example; see Section 5.5 for details.

Our research focus was on the design of the function to be learned, not on the learning

architecture. However, similar to other works that learn fields, we investigated the use of

Fourier features [Sit*20; Ben*22] to improve the learning ability of the neural network.

Nevertheless, our initial attempts were not successful, as the generalization outside the

sampled region became worse. We leave optimizations of the neural network architecture as

future work.

To learn the parameters of the network, we define a loss function that combines two

terms. One is the L2 error of estimated contact displacements vs. ground-truth training

displacements, summed over points in the volume of the deformable object X . The other

term is the L2 error of differences of estimated contact displacements vs. differences of

ground-truth training displacements, summer over surface edges of X . We observed best

preservation of contact detail when combining both loss terms.

5.3.2 Sampling the Contact Displacement Function

The generation of training data requires sampling the arguments of f , i.e., the collider space,

z̄, and the relative configuration between object and collider, T (z)−1 · q. Sampling the

collider space is easy. Motivated by the loss function defined above, we use the nodes ¶x̄i♢

of the volumetric mesh of the deformable object, and we transform them to the collider

space through T (z)−1 · x̃(x̄i). Note that the collider-space samples vary depending on the

relative configuration of the deformable object and the collider.

Sampling the relative configuration between the object and the collider is more challenging.

The dimensionality of this space can be seen as the number of degrees of freedom of the

deformable object, leaving the collider fixed. However, under this view, the space would

be very difficult to sample, as we care only about colliding configurations. Alternatively,

we look at the space as the Cartesian product of four subspaces: the configuration Q of the

deformable object after removing rigid transformations, the surface of the deformable object

∂X which defines contact locations, the rotation SO(3) of the collider, and the penetration

depth D ⊂ R between collider and deformable object. The full space can be represented

as Q × ∂X × SO(3) × D. We sample each of these four subspaces independently. For the
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Figure 5.5: Our approach significantly improves the generalization capabilities of the object-centric

method presented in Chapter 4, and closely matches the realism of full simulation. Our

method is able to learn the complex interaction between the star-shape collider and the

deformable jelly using one order of magnitude less neurons and training data than the

original settings in Chapter 4. In contrast, when trained with such reduced dataset, the

object-centric approach from Chapter 4 is unable to learn deformations due to contact.
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penetration depth, we simply use evenly distributed samples up to a maximum depth, with

a bit of random noise. For the other three subspaces, we generate a large potential set of

samples and we pick a representative subset using a greedy furthest-point strategy (based on

surface geodesic distance for ∂X and norm of axis angle for SO(3)).

We pay special attention to sampling the rigid-free configuration Q of the deformable object.

We start by executing interactive contact simulations between the deformable object and the

collider, leveraging the speed of the subspace simulation model of the deformable object. To

represent the rigid-free configuration space Q, we build a graph of handle connectivity of the

subspace model, and for each state q of the deformable object we compute relative handle

transformations for all edges in the graph. Given a data set of relative transformations, we

normalize separately the entries corresponding to each edge. Based on this definition of

rigid-free configurations, for furthest-point selection we use the Euclidean distance between

normalized edge transformations.

Thanks to the smoothness of collider-space contact displacements, together with our de-

composition of the relative configuration between the object and the collider, and the

furthest-point sample selection discussed above, we manage to drastically reduce the num-

ber of samples needed in Q, the configuration of the deformable object. This is arguably

the hardest subspace to sample, and a naïve learning strategy would require exhaustive

exploration of the configuration space. Instead, as shown in our results in Section 5.5, we

sample complex high-dimensional configuration spaces (29 point handles in the ‘duck’)

with fewer than 10 configuration samples, yet the learned model generalizes well to unseen

states.

5.3.3 Ground-Truth Contact Displacements

Using the procedure described above, we can sample representative contact configurations

of the collider and the deformable object in an efficient manner. Next, for each of these

configurations we must compute ground-truth contact displacements r(z̄), as the difference

between full-space deformations x(x̄) and subspace deformations x̃(x̄). However, it is

important that the subspace states q of these deformation fields match.

The subspace deformation is directly given by the interactive generation of contact con-

figurations. Therefore, we are left to compute a full-space deformation constrained to the

same subspace state. Even though this task is part of preprocessing, a typical constrained

dynamics solve based on Lagrange multipliers could be very time-consuming, due to the

large number of simulations and the size of the full-space representation. Instead, we restrict
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Figure 5.6: Qualitative evaluation. We show 3 frames of a sequence where a collider (semitranspar-

ent, for better visualization) interacts with a rubber duck. Our method (center), closely

matches the natural deformations due to contact that emerge using a full simulation

model (left). In contrast, a linear model [Wan*15] (right) is unable to deform correctly.
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the full-space simulation to the null-space of the subspace using a projection method. Given

the basis U of the subspace, the matrix P = I − U


UT U
−1

UT represents a projection

to the null-space of the subspace. To run the full-space simulation, we use the modified

conjugate gradient method [AB03], with P as projection matrix. Note that we do not

explicitly compute P, we only compute the Cholesky factorization of UT U, which is small

and fast, and we apply the various matrix multiplications on each iteration of conjugate

gradient.

5.4 Simulation of Dynamic Deformations

Our novel contact-centric learned deformations can be added to a dynamic subspace simu-

lation model, retaining the fast subspace formulation in the combined simulation. In this

section, we formulate the full dynamics problem, paying special attention to the inclusion

of the learning-based contact displacement function N described in 5.3.1.

We find it convenient to formulate dynamics as an optimization problem, using the optimization-

formulation of backward Euler [Mar*11; Gas*15]. In this way, we can seamlessly use

our deformation field definitions (Section 5.2.1), integrate quantities on the full-space,

and optimize only subspace degrees of freedom. Given a collider configuration z, and

an explicit-Euler update of full-space positions x∗(x̄), the subspace configuration of the

deformable object is computed as:

q = arg min Winertial + Welastic + Wcontact (5.5)

Winertial =

∫

X

ρ

2 h2
∥x(x̄, q, z) − x∗(x̄)∥2 dx̄,

Welastic =

∫

X
Ψ(x(x̄, q, z)) dx̄,

Wcontact =

∫

∂X
Φ(T (z)−1 · x(x̄, q, z)) dx̄.

Here, ρ is the mass density of the object, h is the time step, and the full-space deformation

field x(x̄) is defined by combining (5.1), (5.2) and (5.4):

x(x̄, q, z) = x̃(x̄, q) (5.6)

+ T (z) · N


z̄ = T (z)−1 · x̃(x̄, q), W(x̄) · T (z)−1 · q


.

In this expression, we show the explicit dependencies of the deformable object configuration

q, as these are important for the evaluation of gradients.
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Table 5.1: Details about dataset size and runtime performance for the different objects used to

showcase our method. For descriptions about sample types (e.g., Q, ∂X , SO(3), D), see

Section 5.3.2.

Example
handles mesh size # samples

neurons
fps

point/bone tris/tets Q ∂X SO(3) D linear full ours

Duck 29/0 37,049 8 64 30 5 500 277 2 25

Floater 24/0 39,450 8 64 30 5 500 211 1 23

Hand 0/16 82,395 1 300 48 5 500 81 1 36

Jelly 2D 8/1 13,720 5 21 32 5 300 548 5 53

Jelly 3D 18/1 60,830 5 64 30 5 500 191 1 19

Worm 0/3 20,213 7 64 32 5 300 428 3 50

In (5.5) above, Ψ is an elastic energy model. In our case, we have used the stable Neo-

Hookean formulation. Φ is a contact potential based on a signed distance field precomputed

for the collider. It is zero for negative distances and cubic for positive distances. We integrate

the inertial and elastic terms using cubature [AKJ08], with cubature points and weights

estimated using the data-oblivious approach presented in Section 3.7.2. We integrate the

contact term using all surface mesh points instead.

To solve the optimization (5.5), we use a Newton-CG solver. To evaluate gradients of the

learning function ∂r
∂q

, we perform back propagation on the neural network. We do not store

the Hessian explicitly, but instead execute Hessian-vector products. In this regard, we ignore

the Hessian of the learning function, and we implement gradient-vector products through

an auxiliary back propagation step as explained in Section 4.3.3. Despite the small size of

the subspace Hessian, we found more convenient to use Newton-CG than a direct solver,

as each Newton step required very few CG iterations in practice, and hence minimized the

number of network evaluations.

5.5 Experiments

In this section we quantitatively and qualitatively evaluate our method in a variety of objects,

scenarios, and interactions. Additionally, we compare it to the method presented in Chapter

4, where we also model contact deformations using a data-driven approach. As baseline,

we also show results using a linear subspace model based on Wang et al. [Wan*15]. All

the examples were executed on an Intel Core i7-7700K 4-core 4.20 GHz PC with 32 GB of

RAM.
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In Table 5.1 we provide details of the objects and datasets used to generate our results,

including the mesh discretization of the full-space simulations.

Jelly 2D. Figure 5.5 shows frames of a star-shape collider interacting with a 2D jelly,

using 4 different methods: full simulation, our contact-centric approach, object-centric

method from Chapter 4, and the linear method of Wang et al. [Wan*15]. To stress the

generalization capabilities of our approach, we used a reduced version of the dataset from

Chapter 4, consisting of 16,800 ground truth samples (≈ 15× less than the original dataset).

To quantitatively evaluate our results, we also plot the mean per-vertex error of each method

through a test sequence of more than 2,000 frames. Notice, moreover, that our model

requires only 300 neurons while the object-centric method in Chapter 4 requires 3,000

neurons.

Jelly 3D. Figure 5.7 shows a similar comparison in 3D, with a pointy collider interacting

with a 3D jelly. We demonstrate that our collider-centric learning approach is accurate

when trained with just 5 configurations of the jelly. The training cost is dominated by the

simulation of all training samples (48, 000 in total, accounting for all sampled configurations

of the collider), which took 37 hours. With the same training data, object-centric learning

(Chapter 4) fails to produce accurate results. Object-centric learning suffers the curse of

dimensionality, and multiplying the training data to 25 configurations of the jelly (184

hours) barely improved the results. The errors for all configurations are also compared

numerically in Table 5.2. The test examples have been generated by projecting static full-

space deformations to the handle-based subspace, and then adding learning-based contact

deformations. Errors are normalized with respect to the difference between full-space and

linear subspace deformation.

These results show that, when using the same amount of training data, our method gener-

alizes much better than the object-centric method presented in Chapter 4, and it closely

reproduces the realism of a full simulation. Importantly, our method is not only able to train

with less data, but also to model more complex and highly deformable contact interactions

at real-time framerates.

Table 5.2: Relative error for the different methods and training settings of the 3D Jelly example

shown in Fig. 5.7.

# samples Q 5 25

Ours 57% 56%
Object-centric (Chapter 4) 99% 86%
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Figure 5.7: The generalization capabilities of our collider-centric method are also evident in this

3D jelly example. Our method is accurate when trained with just 5 poses of the jelly,

and increasing the number of poses to 25 provides little gain. In contrast, object-centric

learning as done in Chapter 4 fails to learn contact deformations with 5 poses, and

only slightly improves with 25 poses. In Table 5.2 we provide numerical comparisons.

Object-centric learning suffers the curse of dimensionality, and would require an

intractable number of training poses.
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Figure 5.8: To depict the good generalization capabilities of our method, here we visualize the

closest training sample (bottom) to a wide range of different states of the deformable

duck (top). Frames were randomly picked from a sequence where the collider interacts

in real time with the duck. For this particular demo, we use only 8 samples of the duck

state Q to train. Since our approach is collider-centric, it generalizes well to unseen

states of the deformable duck.

Worm 2D. We have used the worm in Figures 5.3 and 5.4 to evaluate the qualitative and

quantitative effect of the sparsification of the learning function. We have compared the

error with respect to a full-space simulation, with and without sparsification, for different

amounts of training data (varying the samples of the worm’s configuration space). The

errors reported in Table 5.3 confirm that sparsification allows a drastic reduction in the

amount of training data required.

Hand. Figure 5.1 showcase an interactive sequence where a 3D hand manipulates a

rigid cube. The subspace deformation is built with the MANO model [RTB17], and the

skeleton is dynamically simulated. The runtime interaction was produced interactively with

a LeapMotion device for hand tracking, and commanding the hand’s skeleton through spring

forces. Notice how the skin surface of the hand naturally deforms when it touches the cube,

even on sharp edges and corners, all in real time. This example was trained on a single flat

pose of the hand. Despite such extremely simple sampling of the configuration space of

the hand, our contact-centric formulation, together with the sparsifying weights, achieve

excellent generalization to unseen hand poses. We demonstrate that the accuracy of the

Table 5.3: Relative error in the Worm example in Figures 5.3 and 5.4, with and without sparsifica-

tion, for different amounts of training data.

# samples Q 1 3 7

sparse 44% 43% 39%
no sparse 96% 76% 47%
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Figure 5.9: A full-space floater (left) falls on top of a rigid shell and it deforms, to let the shell

pass through. This motion is well represented with our method (middle), while a linear

subspace (right) fails to represent the necessary deformations, and the shell gets stuck.

contact deformation is well-kept across all hand regions, including palm and fingertips, and

for any hand pose.

Ducks. Figure 5.6 shows frames of a sequence where a collider closely interacts with a

rubber duck, and qualitatively compares our results to the deformations obtained with a

linear subspace model [Wan*15] and a full-space simulation. The linear model, bounded

by the limited expressivity of the subspace, is unable to reproduce the deformations due to

contact, producing an unnatural behavior. In contrast, our approach is capable of accurately

modeling deformations due to contact, closely matching the realism of the full-space

simulation, even in situations with strong interactions and heavily deformed states.

In Figure 5.8, to qualitatively evaluate the generalization capabilities of our approach, we

show frames of a sequence where we interactively manipulate the duck with a collider. For

each frame, we show the closest duck deformation in the training set. Notice that, even when

the closest sample is far from the current state of the duck, our method is able to accurately

reproduce the deformations due to contact. In the particular case of the Duck scenario, our

contact-centric representation is able to learn accurate contact with a deformable object

using as few as 8 deformed examples. Importantly, even if we learn deformations without

dynamics or friction, at runtime our method generalizes well to those settings.

Floater. Our method does not explicitly rely on geometric features of the deformable

object or the collider, such as genus or symmetries. Figure 5.9 shows a scene with a

deformable floater of genus 1 and a shell collider. The floater falls on top of the shell and it

deforms, to let the shell pass through. With a linear subspace method, the shell fails to pass
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through the floater, as the necessary deformations are not well represented. Our method, on

the other hand, represents them correctly.

5.6 Conclusions

In this work, we have presented a contact-centric method to learn contact-driven deforma-

tions. These deformations are added to a subspace dynamic simulation model, to produce

real-time dynamic simulations of deformable objects with rich contact detail. We have

demonstrated that contact-centric parameterization of the learning function drastically sim-

plifies its complexity: the space of configurations can be sparsely sampled, and the resulting

learning models are smaller, more efficient, and easier to learn. We further complement

contact-centric modeling with a continuous field representation and sparsification of the

learning function, which contribute to excellent generalization capabilities.

Our work is not free of limitations, and some of these suggest directions for non-trivial

future work. We learn a deformation model per collider object. This could find applicability

in interactive applications where colliders are known in advance, but it fails to address

applications where multiple colliders interact in complex ways or where colliders are

defined dynamically. We also assume that the collider is rigid, which again covers a large

set of use cases, but it does not account for deformable-deformable contact.

We have introduced our contact-centric modeling approach in the context of deformable

object simulation. However, this approach might find applicability in other problems of

interaction with objects, such as joint tracking of hands and objects, or grasp synthesis.
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Learning Generalized Contact

Deformations

6

This chapter presents a learning-based method for the simulation of rich contact deformations

on reduced deformation models. Previous works, including our models in Chapters 4 and 5,

learn deformation models for specific pairs of objects; we lift this limitation by designing a

neural model that supports general rigid collider shapes. We do this by formulating a novel

collider descriptor that characterizes local geometry in a region of interest. The chapter

shows that the learning-based deformation model can be trained on a library of colliders,

but it accurately supports unseen collider shapes at runtime. We showcase our method on

interactive dynamic simulations with animation of rich deformation detail, manipulation

and exploration of untrained objects, and augmentation of contact information suitable

for high-fidelity haptics. The method presented in this chapter has led to the following

publication:

• Cristian Romero, Dan Casas, Maurizio M. Chiaramonte, and Miguel

A. Otaduy.

“Learning Contact Deformations with General Collider Descriptors”.

SIGGRAPH ASIA Conference Proceedings (2023)

6.1 Introduction

The simulation of contact deformations remains an open challenge in computer graphics and

beyond. Despite the continuous development of algorithms for faster, more accurate, and/or

more robust contact deformations [BEH18; HZ13; SGK18; Li*20], the targets of resolution

and performance grow unstopably, and call for even faster and more accurate methods. This

is particularly relevant as we envision real-time applications where we interact with objects

that appear and feel real.

In recent years, machine learning has been explored as an approach to accelerate the runtime

computation of rich deformations [Pfa*21; Hol*19; Ful*19], via exhaustive precomputation
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of the parameters of neural models. Few of these learning-based methods address the

computation of deformations induced by contact, and those that do make many limiting

assumptions about the nature of the colliding objects, as we do in Chapters 4 and 5. For

instance, to the best of our knowledge, learning-based models for rich contact deformation

are trained on specific pairs of objects, and therefore do not scale to the combinatorial

complexity of object-object interactions.

In this work, we lift a crucial limitation of learning-based contact deformation models, and

we present the first model that generalizes the collider geometry, i.e., it is not trained on a

specific collider. Our learning-based deformation model augments a reduced deformable

model (which is fast but lacks detail) with rich contact deformations induced by any rigid

collider shape. Our key observation is that contact deformations not captured by the reduced

model are local, hence we train the learning-based model on local shape descriptors of

colliders, not on the full collider shape. In Section 6.2 we describe the collider descriptor in

detail, as well as the formulation and training of the neural contact deformation model. Our

learning-based deformation model is trained on a library of colliders, but supports general

colliders at runtime. In Section 6.3 we discuss efficient runtime evaluation of the collider

descriptor.

Our proposed collider descriptor can be connected to shape descriptors. However, while

shape descriptors are typically used for labeling or classification problems [Qi*17a; Wan*19],

we use our collider descriptor as a conditional signal for a neural deformation field. We

find that, for our application of contact deformation, it is convenient to design a descriptor

that encodes together local geometry and the relative configuration with respect to this local

geometry. Moreover, in the design of the collider descriptor, we have addressed challenges

concerning spatial smoothness and rotational invariance.

In our examples, we have integrated the learning-based contact deformation model in

interactive dynamic simulations. We show that our model can reach the accuracy of previous

works trained on specific colliders, while our model supports general collider shapes and

therefore infinitely more diverse runtime contact scenarios, as shown in Fig. 6.1. Moreover,

we showcase interesting applications beyond visual animation of deformation detail, such as

exploration and manipulation of products for e.g. online retail, or augmentation of contact

information suitable for high-fidelity haptics.
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Figure 6.1: Interactive tactile exploration of diverse objects. We compute detailed contact defor-

mations in real time using a learning-based model that generalizes to collider shapes.

None of the colliders shown in the images were used for training.
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6.2 Deformation Based on Collider Descriptors

Given an arbitrary rigid collider and a certain reduced deformable object, we seek to

design a neural deformation model that augments the reduced model with rich and detailed

deformations resulting from the interaction with the collider. We start this section by

formalizing the definition of the contact deformation model and motivating the collider

descriptor that serves as input to the model. We continue with a detailed discussion of the

components of the collider descriptor. To conclude, we formalize the neural model and we

discuss how it is trained on a library of rigid colliders. Fig. 6.2 outlines the computational

pipeline of our contact deformation model.

6.2.1 Motivation of the Collider Descriptor

Let us formally define the kinematics and shape of both the rigid collider and the deformable

object, and then the main components of our proposed model. We characterize the rigid

collider by its rest-shape Z ⊂ R
3 and a rigid transformation T ∈ SE(3). Conversely,

we characterize the deformable object by its reduced degrees of freedom (DoFs) q ∈

R
nr . Given a rest-shape parameterization x̄ ∈ R

3, the baseline reduced deformed state is

x̃(x̄, q). We have demonstrated our neural deformation model on handle-based reduced

deformations [Wan*15], but our formulation is agnostic of the reduced model for the most

part. We only leverage the handle-based representation to parameterize several heuristics.

We generally define a contact deformation field u(x̄) ∈ R
3 as a function of the point

of interest in space x̃, the reduced deformation state q, the shape of the collider Z , and

the transformation of the collider T . Formally, u(x̄) = f(x̃(x̄, q), q, Z, T ). Adding this

contact deformation field to the baseline reduced deformation, we obtain the full deformed

state x̃(x̄) + u(x̄).

Our goal is to learn an accurate approximation of the contact deformation function f , which

can be applied to generic colliders. To this end, we observe that contact deformation details

not captured by the reduced model are local, and hence only need local information of the

shape of the collider Z in the vicinity of the point of interest x̃. Generally, we wish to

construct a collider descriptor Ẑ(x̃, Z, T ), which depends on the point of interest and the

transformed shape of the collider. Then, our contact deformation can be generally expressed

as u(x̄) = f(Ẑ, q, x̃, T ), i.e., a function of the collider descriptor Ẑ , the deformed state q

of the object, the point of interest x̃, and the rigid transformation of the collider T .
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Figure 6.2: Summary of the computational pipeline of our contact deformation model. The

pipeline has two parts: (left) the evaluation of a local collider descriptor, and (right)

the evaluation of the neural deformation. The collider descriptor takes as runtime input

the shape of the collider Z (characterized by its SDF ϕ), the rigid transformation of

the collider T , the deformed state of the colliding object q, and the deformed point of

interest x̃. The evaluation of the collider descriptor includes two parts: a contact frame

R and a local SDF descriptor ϕ̂. Then, the deformed point of interest x̃ is transformed

to the local reference of the contact frame, it is weighted by sparsifying weights W,

and the result is input to the neural deformation model together with the local SDF

descriptor. As a result, we obtain a local contact deformation r that is then transformed

back to world space and added to x̃.

To build a local collider descriptor, we choose a radius of influence d around the point of

interest x̃. Since large deformations are captured by the underlying reduced model, we

choose d as the average rest-shape distance between handles of the reduced model. In the

rest of the chapter, we refer as d-ball to a sphere of radius d.

Our choice of collider descriptor includes two components, Ẑ = ¶R, ϕ̂♢. R ∈ SO(3) is

a local contact frame, and ϕ̂ is a local descriptor of the signed-distance-field (SDF) of the

collider. In the following subsections, we provide more detail about both components R

and ϕ̂.

6.2.2 Contact Frame

Thanks to a local contact frame R, we can design a neural deformation model in local

coordinates of the contact, and then transform this deformation to world space:

u(x̃(x̄)) = T R(x̃) r(x̃). (6.1)

As shown in Chapter 5, a contact-centric representation increases the learning ability

of contact deformations. However, unlike this previous method, which used simply the
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Smoothed gradient (Ours) Raw gradient

Figure 6.3: This collider with holes (left) produces many SDF gradient discontinuities. Using the

raw gradient to define the contact frame (right) makes learning difficult, while our

smoothed gradient (middle) helps learning.

transformation T of the collider and did not generalize to arbitrary colliders, we fit the frame

R to the local shape of the collider, thus avoiding a collider-specific choice.

To fit the frame R, we separate the computation of a normal axis n from the computation of

two tangent axes t1 and t2. For the tangent axes, we use different policies during training

and during runtime inference, as discussed below.

Normal Axis. To fit the normal axis, we analyze the surface geometry of the collider in

the vicinity of the point of interest x̃. The SDF ϕ of the collider serves as representation of

this local geometry, hence we fit n based on the gradient of the SDF. However, as opposed to

just evaluating the SDF gradient at x̃, we compute a smooth approximation of the gradient

operation on the d-ball centered at x̃. This provides a continuous and smooth normal for the

frame, which simplifies the learning task as shown in Fig. 6.3.

Given a triple of orthogonal R3 vectors B = ¶b1, b2, b3♢, we define a finite-difference

approximation of the SDF gradient as:

∇Bϕ(x̃) =
3
∑

i=1

ϕ(T −1(x̃) + bi) − ϕ(T −1(x̃) − bi)

2 ∥bi∥2
bi. (6.2)

Note that the SDF ϕ is constant in local coordinates of the rigid collider, hence the point

of interest x̃ is first transformed to the local reference system of the collider. Given the

finite-difference approximation above, we define a smooth approximation ∇̃ϕ(x̃) of the

SDF gradient by sampling vector triples Bj on the d-ball at x̃:

∇̃ϕ(x̃) =
1

N

N
∑

j=1

∇Bj
ϕ(x̃). (6.3)

To generate the random vector triples Bj , we sample directions uniformly and we sample

lengths from a normal distribution with standard deviation d.
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Figure 6.4: Even under smooth colliders (left), our consistency loss is necessary to ensure robust-

ness with respect to tangent rotations of the contact frame (middle); deformations are

not correctly learned without this loss (right).

Finally, we normalize the smoothed gradient to obtain the normal of the frame R, n =
∇̃

∥∇̃∥
.

Tangent Axes during Training. To make the deformation model r robust to relative

transformations between the deformable object and the collider, we train it for random

tangent rotations, but we enforce consistency of the output. To generate random rotations,

we draw the tangent axis t1 from a uniform distribution of orientations normal to n, and

we define t2 = n × t1. To enforce output consistency, we generate several random frames

R for each point of interest x̃, and we add an explicit consistency loss term that penalizes

the difference in the resulting contact deformation u for all these random frames. Fig. 6.4

compares the result with and without the consistency loss. Please see more details about

model training in Section 6.2.4.

As an alternative to random rotations, we explored aligning the tangents t1 and t2 to principal

directions of the SDF, similar to how we align the normal n to the gradient of the SDF.

However, to deal with SDF discontinuities and locally flat regions, we found it was necessary

to apply a similar randomization followed by smoothing. We did not see an improvement

in quality despite the extra cost of computing principal directions through SVD, hence we

opted for fully random tangent rotations.

Tangent Axes at Runtime. While random sampling of tangent axes makes the model

robust to rotations during training, it adds some flickering during runtime inference. As

an alternative, at runtime we opt to bias model inference, to achieve both temporal and

spatial coherence, as demonstrated in Fig. 6.5. We pick arbitrary tangent directions as

t1 = n×(1,0,0)
∥n×(1,0,0)∥ and t2 = n × t1.
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Biased tangent (Ours) Random tangent

Figure 6.5: For runtime inference, we bias the tangent rotation of the contact frame to maximize

spatial and temporal coherence (middle). Using random rotations at runtime leads to

noise (right).

When n is exactly aligned with the tangent bias direction (1, 0, 0), there is a singularity, and

the result naturally defaults to a random choice of tangent frame. However, this situation

is so rare, and the possible flickering due to the random frame so small, that the combined

effect is imperceptible. There is a robust solution to the singularity, based on evaluating the

model with two tangent bias directions (e.g. (1, 0, 0) and (0, 1, 0)), and then interpolating

the result (e.g. based on the angle between the normal and the bias directions). However,

this approach doubles the inference cost, with almost identical results. Therefore, we discard

this option in practice.

6.2.3 Local SDF Descriptor

We seek a descriptor of the local shape of the collider in the vicinity of the point of interest

x̃. To this end, we resort again to the SDF ϕ of the collider, but this time we look at the

complete SDF within the d-ball at x̃.

We construct the descriptor ϕ̂ by concatenating the values of the SDF ϕ on a finite number

of samples ¶wi ∈ R
3♢ around x̃, scaled by d and oriented according to the local contact

frame R.

ϕ̂ = ¶ϕ(T −1(x̃) + R d wi)♢. (6.4)

We choose the (normalized) sampling pattern ¶wi♢ to be the cubature rule for degree-7

integration inside a sphere (which yields 64 samples) [Str71], plus a sample at the center.

By orienting the sampling pattern according to the frame R, we achieve invariance of

the descriptor with respect to rotations of the collider normal. Recall that R does not

provide rotation invariance on the tangent plane, but the randomized training discussed in

Section 6.2.2 makes the model robust to rotation.
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SDF descriptor (Ours)

Single sample Half samples

Figure 6.6: This collider has a cylindrical void, not a hole passing all the way through (top left). Our

local SDF descriptor correctly captures the deformation produced by the flat collider

face, unaffected by the void (top right). When using a single SDF sample (bottom left)

or half the samples as descriptor (bottom right), local shape is not correctly represented,

and the void erroneously affects the deformation.

Fig. 6.6 demonstrates how the local SDF descriptor provides relevant local shape information

for the computation of contact deformations. We compare our descriptor to using (a)

ϕ̂ = ϕ(T −1(x̃)), i.e., just the SDF at the point of interest x̃, and (b) ϕ̂ = ¶ϕ(T −1(x̃) +

R d wi), wT
i (1, 0, 0) ≤ 0♢, i.e., only half of the sampling pattern along −n.

6.2.4 Neural Deformation Model

Given both components R and ϕ̂ of the collider descriptor Ẑ , we can formulate a neural

model to compute the local contact deformations r in (6.1). We input to the model the local

SDF descriptor ϕ̂ and the deformation of the object q. Again, we adapt from Chapter 5

the definition of the deformation input in local coordinates of the contact, but we use the

local contact frame R, which generalizes to arbitrary colliders, as opposed to their global

collider frame T , which is collider-specific. We also follow Chapter 5 in using sparsifying

weights W(x̄) = diag(U(x̄)), where U denotes the basis of the deformation model. This

sparsification is a benefit of the handle-based reduced model.

Altogether, the neural model of contact deformation N is formally defined as:

r(x̃(x̄)) = N



ϕ̂(x̃), W(x̄) (R(x̃)−1 T −1 (q − x̃))


. (6.5)
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Figure 6.7: Given a precomputed grid of collider descriptor values, we fetch the descriptor values

from grid points, evaluate the neural contact deformation model, and then interpolate

the deformation result (middle). Interpolating the descriptor and then evaluating the

model only once saves cost, but suffers strong noise (right).

To express the deformation input q in local coordinates of the contact frame R, again

we leverage the handle-based discretization of our reduced deformation model. For point

handles in q, which define a translation, we use the transformation to R as expressed in

(6.5) above. For frame handles, we use the same transformation for the translation part, and

we simply omit the subtraction −x̃ for the rotation part.

Network Structure. In our experiments, we use a simple neural network structure to

parameterize N. Specifically, we use networks of 6 layers, with (150,150,150,150,50,10)

neurons in each hidden layer, fully connected and with ELU as activation function.

Training of the Network. We train the model N for a particular deformable object in a

supervised manner, providing ground-truth data of contact deformations for a variety of

collider objects no, reduced object deformations nd, and contact configurations nc. The

major loss term simply compares the error between predicted and ground-truth values of

contact deformations. As already mentioned in Section 6.2.2, we add a self-supervised

consistency loss for robust handling of the tangential orientation of the contact frame.

For each collider object, we start by executing an interactive simulation between the reduced

deformable object and the collider, and we pick the nd most distant deformations of the

deformable object. For the rest of the ground-truth data generation, we freeze the reduced

deformed state, and we execute full-space simulations constrained to this reduced state.

We sample nc contact configurations, which include a contact location on the surface of

the deforming object, a relative transformation of the collider, and a collision depth. This

procedure is similar to the one described in 5.3.2.

For each training deformation, we include in the supervision data a random set of points

of interest x̃. To select these points, we consider the interior of the collider object together
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Figure 6.8: We compare our method to our collider-specific method presented in Chapter 5, and we

achieve on par accuracy. We use as baseline for comparison the same reduced model

with data-driven internal corrections.

with points within a d-ball from the collider surface, but we sample with lower probability

points outside the collider, according to a normal distribution with standard deviation d.

Furthermore, we force ground-truth deformations to attenuate toward 0 for points of interest

at distance d from the surface of the collider, to ensure that the trained model does not suffer

discontinuities.

6.3 Runtime Model Evaluation

To evaluate the contact deformation model at runtime, we propose an acceleration by

precomputing the collider descriptor for each collider. In this section, we first discuss this

precomputation on a grid, and then we describe the runtime interpolation from the grid to

arbitrary points.
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6.3.1 Precomputation of the Collider Descriptor

As described in the previous section, the central ingredient of our contact deformation model

is a collider descriptor Ẑ = ¶R, ϕ̂♢. While the neural deformation model N is trained on

a library of colliders for a specific deformable object, the collider descriptor Ẑ is specific

to each collider and agnostic of the deformable object. Following this observation, we can

leverage per-collider precomputation of the collider descriptor. This approach brings an

interesting consequence for application development. To use an arbitrary new collider with

a given deformable object, we just need to execute a quick precomputation of the collider

descriptor.

Recall that the collider descriptor Ẑ is evaluated at points of interest x̃, which are trans-

formed through T −1 to the local reference system of the collider. Therefore, we choose

to precompute Ẑ (both the contact frame R and the local SDF descriptor ϕ̂) on a grid

surrounding the collider. We set up the grid on the bounding box of the collider enlarged

by the ball radius d. In our experiments, we have used regular grids, with size 50 along the

largest dimension for small colliders, and 90 for large colliders (in the finger and soft-ball

examples, see Section 6.4). Finally, we cull the precomputation of the descriptor on points

that are further than d from the surface of the collider. In our experiments, we obtained

speed-ups between 1.6× and 3.3× (larger as d grows) when precomputing the collider

descriptor.

Note that we only precompute the collider descriptor for runtime inference. As discussed in

Section 6.2.2, for training we randomize the contact frame R, and hence we cannot leverage

precomputation.

6.3.2 Grid Interpolation

Given collider descriptors at grid points, we need to evaluate the contact deformation model

at arbitrary points of interest x̃. To do this, we transform x̃ to the local reference system of

the collider, locate its grid cell, fetch the collider descriptor at all 8 grid corners, evaluate

the neural contact deformation model N at the grid corners, and trilinearly interpolate the

deformations. First interpolating the collider descriptor and then evaluating the neural model

just once is more efficient, but far less robust due to the interpolation of frames, as shown in

Fig. 6.7.
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Figure 6.9: Collider objects (all from Thingi10K [ZJ16]) used for training (top, in red) and quanti-

tative testing (bottom, in blue) our deformation model. Average error of our model is

17.0% on the train colliders and 17.8% on the test colliders, demonstrating its general-

ization capabilities.

Table 6.1: Complexity of the deformable objects used in the experiments, their training data set

size (see Section 6.2.4), train and test error, and runtime performance.

Object
Handles

Tets
# Samples Error % fps

point/bone no nd nc train test linear full ours

Ball 15/0 29,244 30 1 150 20.8 21.0 129 1 9

Hand 0/16 82,395 30 1 525 17.1 16.8 81 1 26

Jelly 18/1 60,830 30 5 105 16.2 17.9 200 1 24

Finger 7/2 31,218 30 1 32 14.0 15.5 142 1 11

6.4 Experiments

6.4.1 Objects and Accuracy

Fig. 6.9 shows the 30 colliders used for training and the 22 colliders used for quantitative

testing in our experiments. All collider objects are part of the Thingi10K library [ZJ16],

and they were selected to represent a variety of smooth and sharp shapes, voids and holes,

and organic and synthetic objects. Note that in some experiments we use scene-specific

colliders too, but they were not used for quantitative testing.
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Table 6.1 summarizes the deformable objects used in our experiments. For each object, we

indicate its reduced-model and mesh complexity, the number of objects × deformations

× contact samples used for training, the train and test error, and runtime performance. To

quantify error, we define as 100% error the mean square of ground-truth u(x̃), i.e., the

difference in deformation between the underlying linear reduced model and the full-space

deformation. As shown in the table, the average error with train colliders is 17.0%, and it

barely grows to 17.8% with test colliders, demonstrating the generalization capabilities of

the proposed model.

We have also compared the accuracy of our model to the collider-specific method presented

in Chapter 5. The Jelly object was trained in Chapter 5 with a pointy collider (see Fig. 6.8),

reporting 57% error on a contact interaction sequence. With our model, even if the pointy

collider is not used for training, error barely changes to 58%.

6.4.2 Dynamic Simulation and Performance

In our experiments, we show the contact deformation model fully embedded in dynamic

simulations. We formulate and solve the simulations using the optimization version of

backward Euler [Kan*00], which boils down to solving for the deformation DoFs that

minimize an energy Ψ(x(q)) subject to the total deformation given by x(q) = x̃(q)+u(q).

We use a Newton solver with just one iteration per time step and conjugate gradient for the

linear solve. We compute gradients ∂Ψ
∂x

∂x
∂q

, which requires back propagation of the neural

model, and we approximate Hessian-vector products in the linear solve as ∂x
∂q

T ∂2Ψ
∂x2

∂x
∂q

· v,

using an auxiliary back propagation as described in Section 4.3.3.

We have executed all our experiments on an Intel Core i7-7700K 4-core 4.20 GHz PC

with 32 GB of RAM, and we have implemented the neural networks using LibTorch on

C++/CUDA. Table 6.1 summarizes the performance of our experiments. Speed-ups with

respect to full-space simulations range between 9× and 26×.

6.4.3 Examples

In Fig. 6.10, we showcase an example where the dynamics of the rigid collider are also

simulated. Deformations and contact are detailed and robust in this case too, and they are

excessively smooth for the linear reduced model.
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Figure 6.10: Dynamic rigid colliders falling on the jelly. With our model (left of the pairs), the

colliders produce detailed contact deformations. With the linear reduced model (right

of the pairs), deformations are too smooth.
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Figure 6.11: The images compare our method (left images), a full simulation (middle images),

and the linear reduced model (right images), simulating contact of a soft spiky ball

with rigid bars not seen at training. With the linear reduced model, deformations

are too smooth and the spikes retain much of their shape. With our model, the bars

produce clear indentations, and the spikes collapse under contact, much like with the

full model.
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Figure 6.12: A soft finger reading braille. Our model (first and third column) resolves the detailed

deformations produced by braille dots, while the linear reduced model (second and

fourth column) fails. The bottom images show the norm of Green strain.

In Fig. 6.11, we showcase an example where the soft object, a spiky ball, has surface detail,

showing that our method works well for objects whose surface is not smooth. With the

linear reduced model, deformations are too smooth and the spikes retain much of their

shape. With our model, on the other hand, the bars produce clear indentations, and the

spikes collapse under contact, much like with the full model.

Fig. 6.1 shows detailed contact deformations of a hand model exploring interactively

different objects. None of the colliders in this example were used for training. This example

also demonstrates the applicability to fine tactile exploration of objects in e-commerce

applications, where the objects can be readily used for simulation without object-specific

precomputation.

Finally, Fig. 6.12 demonstrates the applicability of our method for virtual touch problems.

A soft finger model reads the word “touch” written in braille. While the linear reduced

model fails to resolve the deformations produced by braille dots, our model produces highly

detailed deformations. Note that the braille collider is far from those used for training. The

high-resolution strain field is also suitable for driving high-fidelity haptics [VCO20].
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Figure 6.13: The quality of the deformations produced by our model is limited by the sampling

resolution of the descriptor and the mesh resolution of the input deformation dataset.

For this hat collider with a pointy end (left), our model fails to resolve a deformation

with sufficient detail (middle), resulting in noticeable intersections (right).

6.5 Conclusions

We have introduced a learning-based method for the computation of highly detailed contact

deformations. Our method overcomes a major scalability limitation of previous works, and

generalizes to colliders of arbitrary shape, by learning deformations as a function of local

collider shape. Key to this feature was the design of a local shape descriptor as a condition

signal for a neural field model.

Despite the novelty of our approach and results, there are still limitations that could inspire

future work. In terms of low-level technical limitations, one is that the accuracy of defor-

mations may be limited by the sampling resolution of the SDF descriptor as well as the

mesh resolution of the input deformation dataset. Deformations with pointy features are

not always resolved correctly, as shown in the example in Fig. 6.13. Another low-level

technical limitation is that our model needs to be trained with respect to rotations of the

collider. This is for two reasons: the need to represent the result of the model (i.e., a vector

quantity, the displacement field) in some reference system, and the definition of the SDF

descriptor through sampling aligned with the local geometry. It would be interesting to

bake the rotational invariance directly in the neural model, and avoid the construction of an

explicit contact frame.

In terms of high-level limitations, our method works only for rigid colliders, and it must be

trained independently for each deformable object. It would be interesting to explore models

that are conditioned by local shape, material and deformation, thus enabling learning-based

contact deformation for arbitrary object-object interactions. Our method also makes the

underlying assumption that the deformable object is well described by a reduced number of

degrees of freedom, and does not clearly extend to objects whose deformation is inherently

high-dimensional (e.g., cloth that can be folded arbitrarily).
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Conclusions 7
In this last chapter, we review the most relevant contributions of this work, also discussing

open challenges to be explored and promising ideas for the future. Finally, a more general

overview of the research conducted during this thesis is provided, along with some insights

of the process.

7.1 Discussion

In this thesis we have presented important contributions for the simulation of deformable

objects, by introducing new simulation models for soft avatars, reduced deformation and

contact. In the process, we have solved some interesting challenges to achieve expressive,

efficient and general deformation methods.

One of the most challenging aspects of modeling deformable objects is replicating their

potentially complex behavior using simple and efficient models, and in this regard, the

human body is a specially challenging system. Being of central importance for many

applications, in this thesis we have dedicated special attention to efficiently modeling the

deformation of human soft-tissues, successfully validating our methods. In Chapter 3 we

have presented an accurate soft-avatar model with full body dynamic deformations. In

Chapters 4 ,5 and 6, we apply our novel contact deformation methods to demonstrate the

applicability in specifically relevant body parts such as hands (Fig. 5.1 and Fig. 6.1) or

fingers (Fig. 4.12 and Fig. 6.12). Not just for visual purposes, our methods can be also

applied for controlling haptic devices and applications where force feedback is required. As

opposed to surface models, we can easily calculate stresses inside the soft-tissue, thanks to

our volumetric description (colormaps in Fig. 6.12).

Nevertheless, there is still room for improvements when capturing the deformation of com-

plex objects. On one hand, finding constitutive models with more flexible parameterizations

will further increase the expressiveness and the ability to describe real world behaviors, e.g.

using novel material models for homogenization or using multiple heterogeneous soft-tissue

layers. On the other hand, to estimate a large number of model parameters from real data,
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we still need to support efficient differentiability and gradient computations. It would even

be interesting to explore ways for an efficient second-order optimization of properties.

Another important challenge that we have addressed is the slow runtime performance of

high-quality physical simulations. To overcome this limitation, we design fast reduced

simulation methods with data-driven deformation corrections. Our choice of reduced model

provides proper dynamic behaviors by construction, something challenging to achieve in

pure data-driven methods, even if they are designed for time dynamics [Hol*19]. In addition,

our methods use data-driven models and neural networks to substitute complex deformation

relationships, building from captured [Lop*15] or simulated example data. This avoids the

need for a comprehensive physics-based model and gives us much more room for efficient

approximations.

Our reduced models are efficient, but still have some limitations. We use handle-based

subspaces, which are particularly useful thanks to their affine transformation properties

and geometric nature. However, currently there is some manual work involved when

selecting the location of the handles on the object. In this context, designing an automatic

handle placement and selection approach can be a useful improvement. Also, instead

of using the simple geometric smoothness criteria for building our biharmonic handle

subspaces [Wan*15], it might be a good idea to take into account the material and energy

properties of the deformable object. Finally, our focus has been mostly on reducing the

number of simulated DoFs by improving the kinematics of reduced deformation models, but

force computation and cubature can also be improved with data-driven techniques, specially

for contact, where we are not using any cubature approximation. In this line it would be

interesting to explore also contact-centric alternatives to improve the efficiency of contact

force computations.

The improvements presented by our methods are largely based on novel data-driven defor-

mation techniques. We have devoted much of this thesis to improving their generalization

capabilities, reduce the overfitting, and achieve more practical and less data-intensive mod-

els. To a large extent, this was made possible thanks to our efficient representations and

generalized descriptors for learning arbitrary contact deformations. We must emphasize

also the importance of our combined data-driven and reduced subspace simulations, with

a significant contribution to the generalization. Same as reduced simulations, our models

can solve general time dynamics, and can be easily coupled to other physical models for

general interaction. e.g. bidirectional coupling with simulated cloth (Fig. 3.6), bidirectional

coupling with simulated rigid body colliders (Fig. 6.10), or external force-based interactions

(Fig. 4.10).
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Our novel data-driven methods reduce drastically the amount of required data. Even so, in

Chapters 4, 5, and 6, most of the computational resources are used for the generation of

contact deformation examples. Motivated by the reduction of preprocessing times, it may

worth exploring a self-supervised approach for learning contact deformations following

recent works in this line [SOC22; BME22]. In a complementary way, the design of

improved sampling strategies for collider configurations can help in reducing the required

number of representative deformation examples. Also, the sampling of configurations and

corresponding data generation are currently performed as separate processes. However, as

a more exploratory path, it might be interesting to perform both actions simultaneously.

This could generate a more physically informed sampling process reducing even more the

number of required examples.

Finally, as an interesting option, it would also be possible to train our contact models

with real contact deformation data, instead of using simulated examples as we currently

do. However, to be useful at runtime, this would require an estimation of the material

parameters as well, unlike our methods presented in Chapters 4, 5, and 6, where the material

properties are explicitly assigned. With appropriate data capture systems and using dynamic

and static deformation examples, the material estimation method presented in Chapter 3 can

be combined with our contact deformation learning methods.

Overall, in this thesis we have introduced novel methods for the simulation of deformable

objects, successfully combining data-driven techniques and physically-based simulations.

As discussed in this chapter, there are still many aspects to be explored, but I hope that

the presented work helps to bridge the gap between precise and interactive models, paving

the way towards general methods that allow us to simulate efficiently and accurately the

behavior of our own bodies and the deformable objects around us.

7.2 General Insights

The methods presented in this thesis are the result of five years of dedicated research. In this

process, we have explored different ideas, discarding some of them, but also corroborating

interesting insights as we moved forward with our discoveries. Looking back, there are

some guiding concepts that I have been internalizing during this journey.

One of these concepts is the importance of exploiting the particularities of each problem to

achieve the desired objectives, choosing the proper representation for each problem. It might

sound trivial, but it has been critical in our decision-making process, moving us forward in
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our research. Specially in the context of our efficient simulations, this has been a key insight

for shaping the models and achieving our objective of interactive methods. I think this also

applies when taking inspiration from ideas originally designed for different engineering

applications. They can be a productive starting point, but to be truly effective and useful,

they require a careful rethinking process to adapt them to our problems in computer graphics.

I believe that keeping this idea in mind during our research can helps as a compass.

Another relevant concept that has been gaining momentum in my mind during these years is

the productive interplay between physics and data. Physical insights provide us efficient

ways to build preliminary models for a given phenomenon. However, first principles are

difficult to apply in the description of complex systems, and only go up to a certain level

before resulting in very complex and convoluted models. One example is the complexity

of different materials and soft tissues necessary to model the human avatar of Chapter 3

using a pure physics-based method. However, using data and data-driven representations

we can complement simple and efficient physical models. When doing so, we tend to lose

some interpretability, but this can be a good entry point to start playing with the problem.

Building data-driven models can help understanding the problems, and I will risk to say

that it can even help to design new physical models. In fact, this is very similar to what

experimental scientists do.

This thesis is a clear example of the described interplay. Our goal of improving the gen-

eralization of data-driven methods has required us to understand and use the physics and

geometry of the problem. For example, our initial attempt in Chapter 4 for a contact de-

formation model operates as a black box, mapping collider configurations to the expected

deformations. Then, thanks to the lessons learned and after understanding the geometric

aspects of contact deformations, in Chapter 5 we changed to a new contact-centric represen-

tation, augmenting the interpretablility of our model and reducing the data requirements.

Similarly, in Chapter 6 we went further in this direction, this time realizing also about the

importance of the local collider shape in contact deformations, obtaining an even more

general method, and requiring even less data. Will this path lead perhaps to an effective

contact model based just on physics and geometry? Whether this is achieved or not, it is an

interesting direction to continue exploring.

Looking ahead to the future of computer graphics and the efficient modeling of deformable

object, I think the ideas described in this section are going to be more relevant than ever. In

the next years, new methods may adopt novel representations to describe deformations, and

the journey will continue exploring the interplay between data-driven methods and physics.

Of course, as in any good adventure, this one will also be full of obstacles, but if I have

discovered something during these past five years, it is the extraordinary personal reward

you get after experiencing such adventures.
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Resumen A
Muchos de los objetos con los que interactuamos a diario son deformables. De hecho,

los materiales deformables son un elemento fundamental en la fabricación de mobiliario,

accesorios y herramientas, entre otras muchas cosas. Una de las principales razones de su

uso tan extendido es su característico comportamiento mecánico. Estos materiales pueden

cambiar de forma, se adaptan mejor a las interacciones, y tienden a ser más cómodos y

ergonómicos. No sólo en la fabricación de objetos, los materiales deformables también son

muy comunes en los seres vivos, como los humanos. A excepción de los huesos, nuestro

cuerpo está formado principalmente por tejidos blandos, como músculos y grasa. De hecho,

podríamos decir que nuestro cuerpo es uno de los objetos deformables más importantes en

nuestras interacciones cotidianas.

Por lo tanto, modelar y comprender adecuadamente el comportamiento de los materiales

deformables es esencial para el progreso de distintas aplicaciones en computación gráfica,

ingeniería mecánica y biomecánica. Además de ayudar a comprender nuestro entorno, el

modelado de objetos deformables también es importante en entornos virtuales como juegos,

simuladores de entrenamiento o realidad virtual. En este contexto, los mundos virtuales

realistas exigen interacciones deformables complejas, con avatares, objetos y ropa, todo

ello usando modelos de deformación adecuados para aportar una experiencia de inmersión

completa.

En el campo de la computación gráfica se han propuesto diversos métodos computacionales

para el modelado de objetos deformables, con distinto alcance y dominio de aplicación,

abarcando desde métodos aproximados e interactivos, a métodos más precisos. Por des-

gracia, aún no existe un modelo de deformación general que se adapte de forma práctica

a todos los casos de uso. Motivados por esta limitación, en esta tesis utilizamos métodos

basados en datos para acortar la brecha existente entre los modelos de simulación precisos y

los interactivos. El objetivo de esta tesis es desarrollar métodos de simulación útiles para

objetos deformables que sean rápidos y precisos, con especial atención a modelar eficiente-

mente comportamientos dinámicos, interacciones externas y deformaciones producidas por

contacto. Para ello, investigamos la combinación de modelos físicos y técnicas basadas en

datos.
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Figure A.1: Algunas deformaciones producidas por nuestros métodos en tiempo real. Las defor-

maciones de contacto aprendidas en esta mano generalizan ante interacciones con

distintos objetos.

A.1 Antecedentes

Desde el trabajo pionero de Terzopoulos y Witkin [TW88], la comunidad de computación

gráfica ha estado cada vez más interesada en la animación de objetos deformables basada

en físicas. En las últimas décadas, se han presentado diferentes métodos para mejorar la

eficiencia y expresividad de las deformaciones producidas, con muchos artículos y cursos

que discuten la evolución y el desarrollo actual de la simulación de los objetos deformables,

por ejemplo, [Nea*06; SB12; BS19].

Se han propuesto diferentes técnicas de rigging para la deformación controlable de obje-

tos blandos, como es el lineal blend skinning o los métodos basados en puntos de con-

trol [Jac*14], mejorando las deformaciones con correcciones dependientes de la pose [LCF00].

Además, la simulación de cuerpos articulados deformables ha motivado muchos trabajos

que enriquecen las técnicas de rigging con deformaciones dinámicas [Cap*02; Cap*05]

acoplando bidireccionalmente el tejido blando y el cuerpo articulado [Liu*13]. Dejando a un

lado los rigs articulados, otros métodos de animación utilizan definiciones más diversas de

la pose global, agregando la deformación local de la superficie para modelar caras [Bic*08]

o tela [Kav*11; ZBO13].

Se ha dedicado un esfuerzo importante a mejorar la eficiencia de las simulaciones físicas

para objetos deformables [Gal*07; McA*11; LLK19]. De forma relevante, se han utilizado

modelos reducidos de subespacio para aproximar las ecuaciones del movimiento, ignorando

las deformaciones de alta frecuencia [SB12], utilizando análisis modal [PW89] o usando

análisis de componentes principales a partir de ejemplos de deformación [KLM01]. Un

problema común de las simulaciones reducidas es que las deformaciones de contacto no

se resuelven con gran precisión, especialmente en el caso de las interacciones con objetos

detallados. Algunos trabajos han abordado esta limitación, enriqueciendo el subespacio con

bases de deformación local [HZ13] o simulando detalles en una región local [Ten*15].
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Los subespacios tradicionales suelen tener soporte global, lo que significa que cada grado de

libertad del deformable depende cinemáticamente de todos los grados de libertad del sube-

spacio. Esto no es necesariamente realista, y puede provocar que nuevas interacciones no

consideradas originalmente en el diseño produzcan artefactos poco plausibles. Algunos tra-

bajos han aliviado este problema utilizando técnicas de descomposición de dominio [BZ11;

KJ11; WMW15], mientras que otros abordan directamente el diseño de subespacios locales

utilizando puntos de control [Wan*15] o transformaciones interpolados [Gil*11; Fau*11;

BEH18]. También se han empleado subespacios en combinación con modelos de rigging.

Los primeros trabajos capturan la deformación con una base de autovectores [KJP02], y tra-

bajos posteriores mejoran este enfoque para la simulación dinámica de personajes [Gal*09]

o telas [Hah*14].

En los últimos años, se han aplicado métodos basados en datos para aprender diferentes

tipos de modelos de deformación. Entre otras aplicaciones, se han utilizado para sintetizar

detalles de deformación de alta resolución condicionados por representaciones de baja

dimensión [Lop*15; Bai*18], para inferir automáticamente subespacios no lineales com-

pactos para deformaciones dinámicas [Ful*19], o para aprender las interacciones dinámicas

entre un objeto deformable y algún(os) rigido(s) de colisión [Hol*19]. Otros trabajos han

abordado la personalización de los modelos basados en físicas mediante la estimación de

propiedades geométricas y de material a partir de datos observados [Kad*16; KK19] u

optimizando los materiales a partir de mediciones locales [Pai*18].

Los métodos basados en datos y aprendizaje automático se caracterizan por usar novedosas

representaciones en sus modelos. Entre estas representaciones, las más utilizadas son las

denominadas redes neuronales artificiales, y los modelos que las utilizan se conocen como

representaciones neuronales [Xie*21]. A la hora de modelar magnitudes de naturaleza

espacial, estas representaciones neuronales han demostrado tener características interesantes,

por sus propiedades de aproximación universales, su flexibilidad de parametrización, y la

facilidad de realizar evaluaciones en puntos espaciales arbitrarios sin requerir de discretiza-

ciones.

Estas representaciones se han extendido rápidamente para abordar muchos problemas difer-

entes en visión por computador y computación gráfica [Che*21]. Desde sintetizar nuevas

vistas de escenas complejas [Mil*20], hasta reconstruir formas tridimensionales a partir

de imágenes [Sai*19; Sai*20]. Los trabajos más recientes utilizan modelos neuronales

implícitos para codificar formas tridimensionales, aprendiendo a aproximar las superfi-

cies mediante función de ocupación en puntos espaciales arbitrarios [Mes*19; CZ19], o

aprendiendo distancias a la superficie [Par*19; CZ19; AL20].
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A.2 Objetivos

Como ya se ha indicado, nuestro principal objetivo es diseñar modelos computacionales para

la simulación eficiente de objetos y materiales deformables. A continuación enumeramos

los objetivos más importantes que debe cumplir un modelo de deformación para ser útil en

aplicaciones generales de computación gráfica:

• Expresividad. Nuestro objetivo son los modelos de deformación que generen resulta-

dos realistas y precisos desde el punto de vista perceptual. Una respuesta mecánica

adecuada y un comportamiento dinámico también son propiedades relevantes a tener

en cuenta. Es importante señalar que en las aplicaciones de computación gráfica,

la evaluación final de la calidad suele realizarse mediante nuestros sentidos, lo que

permite aproximaciones en los modelos que podrían no ser aceptables en otros campos

de la ingeniería. Por lo tanto, buscamos modelos de deformación cuyos resultados

sean lo suficientemente correctos como para parecer realistas.

• Eficiencia. Los modelos eficientes pueden utilizarse en distintos entornos, facilitan

la exploración y permiten tiempos de simulación interactivos. Particularmente en

computación gráfica, necesitamos modelos de deformación eficientes en términos

de recursos computacionales. La razón es que en este contexto muchas de las

aplicaciones requieren de una ejecución interactiva, ya sea para permitir experiencias

inmersivas o para proporcionar previsualizaciones de los resultados finales. Además,

estos modelos suelen ejecutarse en dispositivos con capacidades limitadas, como

ordenadores personales, dispositivos móviles o cascos de realidad virtual, lo que

motiva aún más la necesidad de eficiencia.

• Generalización. Para que un modelo de deformación sea útil, debe ser estable, permi-

tir interacciones precisas y soportar deformaciones generales por contacto. Además,

para ser aplicables en entornos poco controlados, los modelos de deformación deben

responder con robustez a una amplia variedad de situaciones. Esto es especialmente

relevante en las interacciones por contacto con otros objetos, en las que las defor-

maciones generadas pueden ser muy diversas. Por lo tanto, los modelos tienen que

generalizar adecuadamente a esta diversidad.

Los métodos actuales para simular objetos deformables no cumplen todos los objetivos

mencionados. Los modelos precisos basados en leyes físicas producen resultados detalla-

dos [SB12; Kim*17] y generalizan adecuadamente a deformaciones de contacto comple-

jas [Li*20], sin embargo, a costa de perder eficiencia. Por otro lado, los modelos diseñados
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para aplicaciones interactivas son eficientes, pero muestran una expresividad y general-

ización limitadas a la hora de capturar respuestas realistas de los materiales [KB18; LLK19]

y deformaciones por contacto de alta frecuencia espacial [PW89; BJ05; Hah*12; Hah*13;

BEH18].

En esta situación, nosotros proponemos combinar modelos reducidos de simulación física

con métodos basados en datos, para construir así modelos con todos los objetivos deseados.

Apoyarnos en simulaciones físicas nos proporciona generalización, interacciones intuitivas

basadas en fuerzas y dinámicas expresivas sin amortiguamiento. Además, utilizando técnicas

novedosas basadas en datos, podemos mejorar la capacidad de generalización de los modelos

aproximados de deformación, preservando el realismo de los modelos de alta resolución.

A.3 Metodología

Los modelos deformables útiles deben ser expresivos, eficientes y deben generalizar a

diversas interacciones. A continuación analizamos la metodología seguida en esta tesis para

conseguir métodos de simulación prácticos con estas propiedades:

• Revisar la bibliografía. Comenzamos nuestro proceso de investigación con la

intuición de que combinar métodos de simulación física con técnicas basadas en

datos podría ser una buena estrategia para mejorar el estado del arte en lo que

respecta a los objetivos planteados en esta tesis. Para poner a prueba esta intuición, se

realizó una revisión bibliográfica, recopilando distintos trabajos con ideas similares, y

encontrando en el proceso una línea de trabajo interesante aplicada a la simulación

de avatares deformables. Durante todo el proceso de esta tesis, se ha realizado una

revisión periódica de las publicaciones más recientes, tanto para garantizar la novedad

de nuestras contribuciones futuras, como para estar al día de las novedades más

relevantes que pudieran aportar algo en nuestra línea de trabajo.

• Capturar la complejidad de los objetos reales. El cuerpo humano es un sistema

especialmente complejo, con múltiples huesos, capas de tejidos blandos y mecanis-

mos articulados acoplados. Por lo tanto, modelizar eficientemente el comportamiento

de estos sistemas basándose únicamente en modelos físicas es casi imposible. Para

resolver este reto, comenzamos nuestra investigación diseñando técnicas basadas en

datos para reducir la complejidad de los modelos físicos, sustituyendo esta comple-

jidad por datos. Entre otras cosas, optimizamos los parámetros de los materiales

deformables y su grosor a partir de datos reales, diseñamos modelos de materiales
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expresivos, calculamos la deformación elástica en la pose de reposo y combinamos

dinámicas simuladas con deformaciones cuasiestáticas capturadas del mundo real.

• Mejorar el rendimiento de las simulaciones físicas. Las simulaciones físicas siguen

siendo la preferencia a la hora de calcular deformaciones de uso general, con un

comportamiento preciso y dinámico. Sin embargo, para obtener resultados realistas

se requieren simulaciones de alta resolución, y estas suelen ser lentas. Además, estos

métodos pueden sufrir inestabilidades si no se toman medidas adicionales. Para

evitar estas limitaciones, en esta tesis utilizamos modelos reducidos. Combinamos

las simulaciones de subespacios con el alto nivel de detalle de las deformaciones

basados en aprendizaje automático, presentando modelos eficientes, dinámicos y

que responden de forma natural a las interacciones externas. Nuestros modelos

utilizan subespacios basados en puntos de control, sobre los que añadimos eficientes

correcciones no lineales generadas mediante datos, desacoplando las deformaciones

internas y las externas generadas por contactos.

• Aumentar la generalización de los métodos basados en datos. Los modelos basados

en datos tienden a no generalizar correctamente si no se proporcionan suficientes

ejemplos de deformación. Es especialmente difícil soportar interacciones generales

y deformaciones de contacto arbitrarias en modelos basados en datos, debido al

gran número de tipos de interacción. Sin embargo, obtener conjuntos de datos

exhaustivos puede ser muy caro o incluso imposible, y los modelos resultantes pueden

ser ineficientes y de gran tamaño. Para abordar este problema, presentamos métodos

para reducir la cantidad de datos necesarios, con resultados de buena calidad y usando

pocos recursos computacionales. Nuestro enfoque se basa en generar ejemplos de

deformación con una cobertura eficiente del espacio de interacciones, y en codificar

los modelos de deformación con una representación adecuada para el problema en

cuestión, por ejemplo, modelando las deformaciones de contacto desde el punto de

vista del objeto que las genera, o utilizando descriptores locales para los contactos.

A.4 Resultados

Aquí recogemos las contribuciones de esta tesis, junto con los resultados clave de cada una

de ellas, acompañado de las publicaciones resultantes:

• Avatares con deformaciones de tejido blando dinámicas y precisas. Presentamos

un modelo de avatar animado con deformaciones híbridas de tejido blando, construido
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mediante la combinación de un modelo de cuerpo humano basado en datos y una

simulación mecánica por elementos finitos. Como contribución clave, definimos

la mecánica de la deformación en la pose de referencia del cuerpo, conservando

en la medida de lo posible las deformaciones precisas del modelo basado en datos.

También introducimos un material anisótropo no lineal para una dinámica precisa,

optimizando automáticamente el grosor de la piel y las propiedades del material a

partir de capturas de humanos reales. Por último, para lograr tiempos interactivos,

aumentamos el modelo de avatar con una cuidadosa elección de subespacio para

simulaciones reducidas. Estas contribuciones se analizan en el capítulo 3 y han dado

lugar a las siguientes publicaciones:

- Cristian Romero, Miguel A. Otaduy, Dan Casas and Jesús Pérez. “Modeling and

Estimation of Nonlinear Skin Mechanics for Animated Avatars”. Computer Graphics

Forum (Proc. of Eurographics) (2020)

- Javier Tapia, Cristian Romero, Jesús Pérez and Miguel A. Otaduy. “Parametric

Skeletons with Reduced Soft-Tissue Deformations”. Computer Graphics Forum

(2021)

• Modelo rápido de simulación reducida con correcciones de deformación apren-

didas. Hemos diseñado un nuevo método de subespacio para la simulación de

deformaciones dinámicas, aumentando los subespacios lineales basados en puntos

de control con correcciones no lineales aprendidas. De esta forma combinamos la

dinámica de los rápidos métodos de subespacio con las deformaciones altamente detal-

ladas de los métodos basados en aprendizaje automático. Aplicamos las correcciones

no lineales en el estado no deformado, y para mejorar la generalización desacoplamos

las correcciones internas y las externas generadas por contactos. Además, diseñamos

un proceso de entrenamiento para generar ejemplos que cubran eficientemente el

espacio de interacción. Estas contribuciones se discuten en el capítulo 4 y se han

recogido en la siguiente publicación:

- Cristian Romero, Dan Casas, Jesús Pérez, and Miguel A. Otaduy. “Learning Contact

Corrections for Handle-Based Subspace Dynamics”. ACM Transactions on Graphics

(SIGGRAPH) (2021)

• Representación eficiente para el aprendizaje de deformaciones por contacto.

Presentamos un método eficiente para el aprendizaje automático de las deformaciones

no lineales producidas por contacto. Utilizando una nueva representación adaptada al

problema, obtenemos simulaciones dinámicas detalladas en tiempo real. Para ello, nos
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apartamos de estrategias anteriores, modelando las deformaciones de contacto desde el

punto de vista del objeto que genera la deformación. Además, aprendemos un campo

vectorial continuo para las deformaciones, en lugar de emplear una aproximación

discreta. Estas contribuciones se discuten en el capítulo 5 y han dado lugar a la

siguiente publicación:

- Cristian Romero, Dan Casas, Maurizio M. Chiaramonte, and Miguel A. Otaduy.

“Contact-Centric Deformation Learning”. ACM Transactions on Graphics (SIG-

GRAPH) (2022)

• Aprendizaje generalizado para deformaciones de contacto arbitrarias. Formu-

lamos un método basado en aprendizaje automático para la simulación de deforma-

ciones producidas por contacto, generalizando el modelo de deformación introducido

previamente a objetos de colisión arbitrarios. Gracias a un novedoso descriptor que

caracteriza la geometría local en las regiones de interés, diseñamos un nuevo modelo

neuronal que admite formas generales como objetos de colisión. Para validar nuestro

enfoque, demostramos nuestro método con simulaciones dinámicas interactivas y

deformaciones por contacto detalladas. Estas contribuciones se discuten en el capítulo

6 y han culminado en la siguiente publicación:

- Cristian Romero, Dan Casas, Maurizio M. Chiaramonte, and Miguel A. Otaduy.

“Learning Contact Deformations with General Collider Descriptors”. SIGGRAPH

ASIA Conference Proceedings (2023)

A.5 Conclusiones

En esta tesis hemos presentado importantes contribuciones para la simulación de objetos

deformables, mediante la introducción de nuevos modelos de simulación para avatares con

tejido blando, modelos reducidos y contacto. En el proceso, hemos resuelto distintos retos

interesantes para conseguir métodos de deformación expresivos, eficientes y generales.

Siendo de vital importancia para muchas aplicaciones, hemos dedicado especial atención a

modelar eficientemente la deformación de los tejidos blandos del cuerpo humano, validando

exitosamente nuestros métodos. En el Capítulo 3 hemos presentado un modelo de avatar

animado con deformaciones dinámicas de cuerpo completo. En los capítulos 4 ,5 y 6

aplicamos nuestros novedosos métodos de deformación por contacto para demostrar su
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utilidad en partes del cuerpo específicamente relevantes, como las manos (Fig. 5.1 y Fig. 6.1)

o los dedos (Fig. 4.12 y Fig. 6.12).

No obstante, aún hay margen de mejora a la hora de capturar la deformación de objetos

complejos. Por un lado, para aumentar aún más la expresividad y la capacidad de describir

comportamientos del mundo real, es necesario encontrar modelos constitutivos de material

con parametrizaciones más flexibles. Por otro lado, para poder estimar un gran número de

parámetros a partir de datos reales, seguimos necesitando soportar métodos más eficientes

para el cálculo de derivadas en nuestros modelos.

Otro reto importante que hemos abordado es la dificultad para obtener tiempos interactivos

en las simulaciones físicas de alta calidad. Para superar esta limitación, hemos diseñado

modelos reducidos de simulación rápida con correcciones de deformaciones aprendidas.

Además, utilizamos modelos basados en datos y redes neuronales para sustituir complejas

relaciones de deformación, construidas a partir de datos de ejemplos capturados [Lop*15]

o simulados. Esto evita la necesidad de un modelo exhaustivo basado en físicas y nos brinda

mucho más margen para realizar aproximaciones eficientes.

Aunque nuestros modelos reducidos sean eficientes, siguen teniendo algunas limitaciones.

Utilizamos subespacios basados en puntos de control, los cuales resultan especialmente

útiles gracias a su naturaleza geométrica. Sin embargo, el proceso de seleccionar la ubicación

de los puntos de control requiere de cierto trabajo manual. En este contexto, el diseño

de un enfoque automático para la colocación de los puntos supondría una mejora en la

utilidad. Por otro lado, en esta tesis nos hemos centrado principalmente en reducir el número

de grados de libertad simulados, mejorando la cinemática de los modelos reducidos de

deformación. Sin embargo, el cálculo de fuerzas y su aproximación también se pueden

mejorar con técnicas basadas en datos, especialmente para el contacto, donde no estamos

utilizando ninguna aproximación.

Las mejoras que presentamos se basan en gran medida en nuevas técnicas de deformación

basadas en datos. Hemos dedicado gran parte de esta tesis a mejorar sus capacidades de

generalización para lograr modelos más prácticos y que requieran de menos datos. Esto

ha sido posible gracias a nuestras representaciones eficientes y descriptores generalizados

para el aprendizaje de deformaciones generales por contacto. Debemos destacar también

la importancia de nuestras simulaciones combinadas utilizando aprendizaje automático

y subespacios de reducción, contribuyendo significativamente a la generalización. Al

igual que las simulaciones reducidas, nuestros modelos pueden generar comportamientos

dinámicos temporales, además de poder acoplarse fácilmente a otros modelos físicos para

una interacción natural. Por ejemplo, mostramos ejemplos de acoplamiento bidireccional
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Figure A.2: Nuestros modelos permiten simular sistemas complejos como estos avatares de-

formables, con efectos dinámicos, interacciones realistas y acoplamientos con ropa.

con tela simulada (Fig. 3.6), acoplamiento bidireccional con objetos rígidos (Fig. 6.10), o

interacciones basadas en fuerzas externas (Fig. 4.10).

Nuestras representaciones reducen drásticamente la cantidad de datos necesarios para el

aprendizaje automático. Aún así, en los capítulos 4, 5, y 6, la mayor parte de los recursos

computacionales son utilizados para la generación de ejemplos de deformación por contacto.

Con la motivación de reducir los tiempos de este preprocesado, puede merecer la pena

explorar un enfoque autosupervisado para el aprendizaje de las deformaciones, siguiendo los

trabajos publicados recientemente en esta línea [SOC22; BME22]. Por último, como opción

interesante, también sería posible entrenar nuestros modelos con datos reales de deformación

de contacto, en lugar de utilizar ejemplos simulados como hacemos actualmente.

En conclusión, en esta tesis hemos introducido métodos novedosos para la simulación de

objetos deformables, combinando con éxito técnicas basadas en datos y simulaciones físicas.

Como se ha comentado en este capítulo, aún quedan muchos aspectos por explorar, pero

espero que el trabajo presentado ayude a acortar la distancia entre los modelos de alta

precisión y los interactivos, allanando el camino hacia métodos generales que nos permitan

simular de forma eficiente y precisa el comportamiento de nuestros propios cuerpos y de los

objetos deformables que nos rodean.
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