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This document presents all the implementation details to reproduce the pipeline shown in Figure 2
from the main paper.

A Per-garment preprocess

In total, we have tested the untangling using 5 garment models from the Berkeley Garment Library
[9, 6]. For each garment, independently, we precompute the implicit surface model that estimates the
signed distance field and covariant field conditioned to body shape, Table 1 shows the preprocessing
cost per garment. Notice that this is a per-garment operation, which does not see multi-garment
outfits or any tangled configuration at any time.

Vertices Triangles Cloth simulation Training (explicit) Training (implicit)

T-shirt 4424 8710 1h 53min 54s 1h 2min
Top 4306 8454 43min 52s 1h 1min
Tank 3010 5825 1h 11min 50s 54min
Pants 3893 7696 50min 52s 56min
Dress 14297 28168 3h 42min 1min 29s 2h 36min

Table 1: Preprocessing per garment

All our models are implemented in PyTorch, using Adam [3] for training, and a linear learn rate
scheduler that reduces the initial learning rate by a factor of 0.001 by the end of the training. Next,
we define the aspects that are specific to each model.

A.1 Explicit garment model.

The explicit garment model receives β ∈ R2 as input and produces the garment deformation
X(β) ∈ R|V |×3 in canonical space, were |V | is the number of vertices of the garment mesh. We use
the two first coefficients of the SMPL model [4] since these are enough to capture the largest body
deformations. To train the regressor X(β, θexplicit), where θexplicit are the trainable parameters, we
minimize the difference w.r.t ground-truth data:

θexplicit = argmin
∑
β

∥X(β, θexplicit)−XGT(β)∥22 (1)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Data. We compute ground-truth garment deformations using ARCSim [6, 5]. To this end, first we
sample the space of body shapes by selecting 11 evenly-spaced values in [−2.5, 2.5] and then we
simulate the garments for each possible combination of those values. With two shape coefficients,
this yields 121 body shapes. To simulate, we use the gray-interlock material included in the cloth
simulator that models an interlock knit fabric made of 60% cotton and 40% polyester. Since the
simulations require a collision-free initial state, we start all the simulations using the mean body shape
(for which we have a manually created collision-free configuration) and perform 20 interpolation
steps towards the target body shapes. Then we simulate for 200 additional steps or until the garment
reaches equilibrium.

Preprocessing. The preprocessing consists on projecting the simulation data to the canonical space
proposed by Santesteban et al. [7], which removes the influence of body shape in the garment
deformation. For example, the height of the avatar introduces a translation in the vertical axis that
results in completely different vertex positions, even if the overall deformation remains similar.
Removing the influence of body shape is a way of removing this undesired variance in the training
data. To make the learning task easier, we also normalize the data per-vertex by subtracting the mean
and dividing by the standard deviation.

Network architecture and training. The function X(β, θexplicit) is modeled as a Multilayer Per-
ceptron (MLP) network with 3 hidden layers of size 256 and ReLU activations. The output layer has
size 3|V | and after reshaping and denormalizing we obtain the deformed garment X(β, θexplicit) in
canonical space. We train the model for 1000 epochs using batches of size 8 and an initial learning
rate of 1e-3.

A.2 Implicit garment model.

The implicit garment model receives the body shape coefficients β ∈ R2 and a point x ∈ R3 and
returns the value of f(x) and h(x) (i.e., the signed distance field and the covariant field evaluated at
point x). Our goal is to train an implicit model that is consistent with the explicit model for all body
shapes.

Data. To generate the ground truth data for the implicit network, at the beginning of each epoch
we randomly sample 20 body shapes from U(−2.5, 2.5), evaluate the explicit garment regressor to
obtain the deformed garment surfaces and, for each surface, we compute ground-truth values of f(x),
h(x) and their gradients for all the vertices of the surface as well as 3000 points sampled randomly in
the volume (in our implementation, the volume is the bounding-box of the garment and the sampling
is done uniformly along each axis). In total, the dataset has 20(|V |+ 3000) samples. Since the cost
of computing the dataset is similar to the cost of a training epoch, while the network trains on the
GPU we regenerate the dataset on the CPU. This way we can sample the input space exhaustively
and enforce consistency between the implicit and explicit models for any body shape, not just the 121
body shapes used to train the deformation regressor.

Network architecture and training. The implicit garment model is implemented as a MLP
network with 4 hidden layers of size 256 and ELU activation functions. The input 3D position x
is mapped to a higher dimensional space using Fourier features [8]. The mapping is computed as
γ(x) = [cos(2πBx), sin(2πBx)] where B is a random Gaussian matrix of size 64× 3 whose values
are sampled from N (0, 2). The model is trained for 1000 epochs using batches of size 516 and an
initial learning rate of 1e-3. The weight λ of the gradient loss terms is set to 0.1.

B Untangling operator.

The untangling operator is trained once and reused for any combination of up to N garments.

Data. We sample random values of f∗ ∈ RN from U(−0.2, 1.5) and h∗ ∈ RN from U(−1.0, 1.0).
For each pair of f∗ and h∗ we compute ground-truth values of the untangled surfaces f using the
method by Buffet et al. [1]. In total, the training set of the untangling operator has 1 million samples.
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Network architecture. The untangling operator is implemented as a MLP network with 4 hidden
layers of size 256 and ELU activation functions. Since the MLP requires a fixed input size, we set
N=7 so that it can handle up to 7 garment layers, which is more than enough for common outfits. To
untangle outfits with less than N layers we simply set h = 1 for all the unused slots. The model is
trained for 3000 epochs using batches of size 516 and an initial learning rate of 1e-3.

C Optimization.

We solve the optimization of the untangled garments using Pytorch’s implementation of L-BFGS,
with the step size set to 1.0, history size to 100, and line search activated for additional robustness
(strong Wolfe method). Empirically, we set ω = 1e− 5 so that the optimization avoids large triangle
distortions without interfering with our main goal of moving the vertices to the untangled surfaces.
For the results shown in the paper, we run the optimization until convergence. For the interactive
demo, we found that running the optimization for just 4 steps is enough to resolve most collisions
and achieve interactive frame rates. We address residual collisions using the rendering solution from
[2], which applies a small offset to the depth buffer of the outer layer. This solution only works for
very small collisions as large depth offsets introduce very noticeable artifacts.
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