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Figure 1: Interactive tactile exploration of diverse objects. We compute detailed contact deformations in real time using a
learning-based model that generalizes to collider shapes. None of the colliders shown in the images were used for training.

ABSTRACT
This paper presents a learning-based method for the simulation of
rich contact deformations on reduced deformation models. Previous
works learn deformation models for speci�c pairs of objects; we lift
this limitation by designing a neural model that supports general
rigid collider shapes. We do this by formulating a novel collider
descriptor that characterizes local geometry in a region of interest.
The paper shows that the learning-based deformation model can be
trained on a library of colliders, but it accurately supports unseen
collider shapes at runtime. We showcase our method on interactive
dynamic simulations with animation of rich deformation detail, ma-
nipulation and exploration of untrained objects, and augmentation
of contact information suitable for high-�delity haptics.
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1 INTRODUCTION
The simulation of contact deformations remains an open challenge
in computer graphics and beyond. Despite the continuous develop-
ment of algorithms for faster, more accurate, and/or more robust
contact deformations [Brandt et al. 2018; Harmon and Zorin 2013;
Li et al. 2020; Smith et al. 2018], the targets of resolution and perfor-
mance grow unstopably, and call for even faster and more accurate
methods. This is particularly relevant as we envision real-time
applications where we interact with objects that appear and feel
real.

In recent years, machine learning has been explored as an ap-
proach to accelerate the runtime computation of rich deforma-
tions [Fulton et al. 2019; Holden et al. 2019; Pfa� et al. 2021; Romero
et al. 2021], via exhaustive precomputation of the parameters of
neural models. Few of these learning-based methods address the
computation of deformations induced by contact, and those that do
make many limiting assumptions about the nature of the colliding
objects. For instance, to the best of our knowledge, learning-based
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models for rich contact deformation are trained on speci�c pairs of
objects, and therefore do not scale to the combinatorial complexity
of object-object interactions.

In this work, we lift a crucial limitation of learning-based contact
deformation models, and we present the �rst model that generalizes
the collider geometry, i.e., it is not trained on a speci�c collider.
Our learning-based deformation model augments a reduced de-
formable model (which is fast but lacks detail) with rich contact
deformations induced by any rigid collider shape. Our key obser-
vation is that contact deformations not captured by the reduced
model are local, hence we train the learning-based model on local
shape descriptors of colliders, not on the full collider shape. In
Section 3 we describe the collider descriptor in detail, as well as the
formulation and training of the neural contact deformation model.
Our learning-based deformation model is trained on a library of
colliders, but supports general colliders at runtime. In Section 4 we
discuss e�cient runtime evaluation of the collider descriptor.

Our proposed collider descriptor can be connected to shape
descriptors. However, while shape descriptors are typically used
for labeling or classi�cation problems [Qi et al. 2017a; Wang et al.
2019], we use our collider descriptor as a conditional signal for
a neural deformation �eld. We �nd that, for our application of
contact deformation, it is convenient to design a descriptor that
encodes together local geometry and the relative con�guration
with respect to this local geometry. Moreover, in the design of the
collider descriptor, we have addressed challenges concerning spatial
smoothness and rotational invariance.

In our examples, we have integrated the learning-based contact
deformation model in interactive dynamic simulations. We show
that our model can reach the accuracy of previous works trained on
speci�c colliders, while our model supports general collider shapes
and therefore in�nitely more diverse runtime contact scenarios, as
shown in Figure 1. Moreover, we showcase interesting applications
beyond visual animation of deformation detail, such as exploration
and manipulation of products for e.g. online retail, or augmentation
of contact information suitable for high-�delity haptics.

2 RELATEDWORK
2.1 Learning-Based Deformation and Contact
In recent years, learning methods have been applied to many di�er-
ent types of deformation models. Often, they are used for synthesiz-
ing rich deformation detail conditioned by some low-dimensional
code, e.g., linear deformation driving nonlinear deformation [Luo
et al. 2020], coarse deformation driving numerical coarsening (i.e.,
high-order shape functions) [Ni et al. 2023], upscaling of dynamics
to objects of di�erent topology [Zheng et al. 2021], skeletal motion
driving nonlinear soft-tissue deformation [Bailey et al. 2018] or
soft-tissue dynamics [Casas and Otaduy 2018; Santesteban et al.
2020], skeletal motion driving cloth deformation [Bertiche et al.
2022; Santesteban et al. 2022a], or upscaling of low-resolution hair
simulation [Lyu et al. 2022]. These problems are somewhat similar
to ours, as the high-dimensional deformation is conditioned by a
low-dimensional code; however the input, output and constraints
di�er strongly.

In the case of cloth deformation, particular attention has been
placed on solving contact, with self-supervised learning of a latent

space free of body collisions [Santesteban et al. 2021], by adding a
repulsive force unit to the network architecture [Tan et al. 2022b],
or untangling multiple cloth layers through projection operations
on implicit representations [Santesteban et al. 2022b]. Learning has
also been used for resolving self-collisions, e.g., by computing di�er-
entiable collision classi�ers as a function of mesh deformation [Tan
et al. 2022a], or con�guration-space distances conditioned by the
deformation state of reduced models [Cai et al. 2022]. In our work,
the focus is on computing detailed contact deformation between
pairs of objects, and we approach it through problem-speci�c choice
of the input and output of the neural model, to maximize learning
ability.

We use a learning approach to augment a reduced deformation
model. We choose explicitly the reduced kinematic representation,
but other works use learning to represent the kinematics in a latent
space [Fulton et al. 2019], with constraints to enforce conservation
laws [Lee and Carlberg 2021], with learning-based cubature [Shen
et al. 2021], or even with a neural continuous representation of
the reduced model, completely eliminating discretization of the
kinematics [Chen et al. 2023]. Very recent work has also placed the
attention on training the reduced representation without example
data [Sharp et al. 2023]. Continuous reduced models are even used
for modeling muscle activation of soft characters [Yang et al. 2022].

Closest to our work are methods that learn contact response
in deformable object simulation. Holden et al. [2019] learned the
dynamic update of a reduced simulation upon contact. We aim
to learn only contact deformation and solve the reduced state up-
date through state-of-the-art numerical integration. As a result, our
method is slower, but it models considerably �ner deformation de-
tail. Similar to us, Romero et al. [2021] also solved detailed contact
deformations on top of a reduced simulation. In their follow-up
work [Romero et al. 2022], they vastly improved learning ability and
supported more complex deformations by reformulating the learn-
ing problem in a contact-centric manner. Aigerman et al. [2022]
applied to the same problem a more general methodology for learn-
ing Jacobian �elds, and while the approach worked, it su�ered a
performance penalty. All these works learn collider-speci�c mod-
els, which do not scale to the combinatorial complexity of object
interactions. Instead, we model a problem of much higher dimen-
sionality, as we consider general collider geometries as part of the
dynamic input to the problem.

2.2 Shape Descriptors in Neural Models
The key component of our work that enables generalization of the
collider shape is the collider descriptor. As mentioned in the intro-
duction, this collider descriptor can be related to shape descriptors.

Neural representations for unstructured point clouds, starting
with PointNet [Qi et al. 2017a], have opened the possibility to en-
code rich latent shape information. In a nutshell, they aggregate
individual point features into a global signature. PointNet++ [Qi
et al. 2017b] extends the original PointNet with a hierarchical struc-
ture, allowing the representation of local features at di�erent scales.
PCPNet [Guerrero et al. 2018] learns local features robust to com-
mon point imperfections (e.g., varying noise level, sampling den-
sity, level of detail, missing data), by enforcing perturbations in the
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Figure 2: Summary of the computational pipeline of our contact deformation model. The pipeline has two parts: (left) the
evaluation of a local collider descriptor, and (right) the evaluation of the neural deformation. The collider descriptor takes as
runtime input the shape of the collider ( (characterized by its SDF q), the rigid transformation of the collider ) , the deformed
state of the colliding object @, and the deformed point of interest G . The evaluation of the collider descriptor includes two parts:
a contact frame ' and a local SDF descriptor q̂ . Then, the deformed point of interest G is transformed to the local reference of
the contact frame, it is weighted by sparsifying weights, , and the result is input to the neural deformation model together
with the local SDF descriptor. As a result, we obtain a local contact deformation Alocal that is then transformed back to world
space and added to G .

training data. Point2Sequence [Liu et al. 2019] aggregates the infor-
mation of di�erent local regions thanks to an attention mechanism.
EdgeConv [Wang et al. 2019] arranges dynamic graphs on point
clouds to enable more powerful operations. While such shape de-
scriptors may encode some of the information relevant for contact
deformations, they are mostly used for problems such as object de-
tection, shape classi�cation, or part segmentation. Contact requires
information of shape, together with relative con�guration, to act
as conditional signal for deformation.

The magnitude of contact deformations is inherently invariant to
rigid transformations of the colliding objects. However, since defor-
mations constitute a vector �eld, they require the choice of a refer-
ence frame, thus breaking rotation invariance. Several works have
studied the neural computation of vector quantities on surfaces,
which su�ers a similar problem due to the choice of reference frame
on the tangent plane. Multi-Directional Geodesic CNNs [Poulenard
and Ovsjanikov 2018] address the challenge by computing quan-
tities on multiple frames. Harmonic Surface Networks [Wiersma
et al. 2020], on the other hand, extend harmonic nets to surfaces and
achieve rotation-equivariance of vector quantities. In our collider
descriptor, we adopt three di�erent strategies: we compute a ro-
bust normal axis and thus achieve rotation-invariance with respect
to the orientation of the normal of the collider, we use multiple
random sampling of the tangential direction at training, and we
apply bias on the tangential direction for e�ciency and coherence
at runtime.

Our collider descriptor is built from signed distance �eld (SDF)
information. Other works also use SDF data to construct shape de-
scriptors, such as probabilistic directed distance �elds [Aumentado-
Armstrong et al. 2022] or neural omnidirectional distance �elds
[Houchens et al. 2022]. However, these representations are more
complex than the actual SDF and are designed for ray queries. Our

approach is much simpler, as it only requires regular SDF infor-
mation, not directional information. Deep Local Shapes [Chabra
et al. 2020] reconstruct large surfaces from continuous local deep
SDFs. In contrast, we do not use the SDF as intermediate shape
representation, but as condition signal for the contact deformation
�eld.

As anticipated in the introduction, in our work we explore a
novel use case of shape descriptors for contact simulation. Neural
Descriptor Fields [Simeonov et al. 2022] are a distant relative to our
work. A neural descriptor encodes object manipulation conditioned
by pose, and is used for inverse modeling of contact manipulation
tasks. In our work, the descriptor is the input to the neural contact
model, not the output. Interestingly, Chun et al. [2023] recently
generalized Neural Descriptor Fields to unseen objects by utiliz-
ing local descriptors, similar in spirit to our extension to unseen
colliders.

3 DEFORMATION BASED ON COLLIDER
DESCRIPTORS

Given an arbitrary rigid collider and a certain reduced deformable
object, we seek to design a neural deformation model that augments
the reduced model with rich and detailed deformations resulting
from the interaction with the collider. We start this section by
formalizing the de�nition of the contact deformation model and
motivating the collider descriptor that serves as input to the model.
We continue with a detailed discussion of the components of the
collider descriptor. To conclude, we formalize the neural model and
we discuss how it is trained on a library of rigid colliders. Figure 2
outlines the computational pipeline of our contact deformation
model.



SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Romero, Casas, Chiaramonte and Otaduy

Smoothed gradient (Ours) Raw gradient

Figure 3: This collider with holes (left) produces many SDF
gradient discontinuities. Using the raw gradient to de�ne
the contact frame (right) makes learning di�cult, while our
smoothed gradient (middle) helps learning.

3.1 Motivation of the Collider Descriptor
Let us formally de�ne the kinematics and shape of both the rigid
collider and the deformable object, and then the main components
of our proposed model. We characterize the rigid collider by its rest-
shape S ⇢ R3 and a rigid transformation ) 2 (⇢ (3). Conversely,
we characterize the deformable object by its reduced degrees of
freedom (DoFs) @ 2 R=A . Given a rest-shape parameterization
Ḡ 2 R3, the baseline reduced deformed state is G (Ḡ,@) = Ḡ +D (Ḡ,@),
with D 2 R3 the reduced displacement �eld. We have demonstrated
our neural deformation model on handle-based reduced deforma-
tions [Wang et al. 2015], but our formulation is agnostic of the
reduced model for the most part. We only leverage the handle-
based representation to parameterize several heuristics.

We generally de�ne a contact deformation �eld A (Ḡ) 2 R3 as a
function of the point of interest in space G , the reduced deformation
state @, the shape of the collider S, and the transformation of the
collider ) . Formally, A (Ḡ) = 5 (G (Ḡ,@),@,S,) ). Adding this contact
deformation �eld to the baseline reduced deformation, we obtain
the full deformed state G (Ḡ) + A (Ḡ).

Our goal is to learn an accurate approximation of the contact
deformation function 5 , which can be applied to generic colliders.
To this end, we observe that contact deformation details not cap-
tured by the reduced model are local, and hence only need local
information of the shape of the collider S in the vicinity of the
point of interest G . Generally, we wish to construct a collider de-
scriptor Ŝ(G,S,) ), which depends on the point of interest and the
transformed shape of the collider. Then, our contact deformation
can be generally expressed as A (Ḡ) = 5 (Ŝ,@, G,) ), i.e., a function
of the collider descriptor Ŝ, the deformed state @ of the object, the
point of interest G , and the rigid transformation of the collider ) .

To build a local collider descriptor, we choose a radius of in-
�uence 3 around the point of interest G . Since large deformations
are captured by the underlying reduced model, we choose 3 as the
average rest-shape distance between handles of the reduced model.
In the rest of the paper, we refer as 3-ball to a sphere of radius 3 .

Our choice of collider descriptor includes two components, Ŝ =
{', q̂}. ' 2 ($ (3) is a local contact frame, and q̂ is a local descriptor
of the signed-distance-�eld (SDF) of the collider. In the following
subsections, we provide more detail about both components ' and
q̂ .

3.2 Contact Frame
Thanks to a local contact frame ', we can design a neural deforma-
tion model in local coordinates of the contact, and then transform

w/ consistency loss (Ours) w/o consistency loss

Figure 4: Even under smooth colliders (left), our consistency
loss is necessary to ensure robustness with respect to tangent
rotations of the contact frame (middle); deformations are not
correctly learned without this loss (right).

this deformation to world space:

A (G (Ḡ)) = ) '(G) Alocal (G). (1)

By an abuse of notation, here ) denotes only the rotational part of
the collider transformation.

As shown by Romero et al. [2022], a contact-centric representa-
tion increases the learning ability of contact deformations. However,
unlike their method, which used simply the transformation) of the
collider and did not generalize to arbitrary colliders, we �t the frame
' to the local shape of the collider, thus avoiding a collider-speci�c
choice.

To �t the frame ', we separate the computation of a normal
axis = from the computation of two tangent axes C1 and C2. For the
tangent axes, we use di�erent policies during training and during
runtime inference, as discussed below.

Normal Axis. To �t the normal axis, we analyze the surface
geometry of the collider in the vicinity of the point of interest G .
The SDF q (G) 2 R of the collider serves as representation of this
local geometry, hence we �t = based on the gradient of the SDF.
However, as opposed to just evaluating the SDF gradient at G , we
compute a smooth approximation of the gradient operation on
the 3-ball centered at G . This provides a continuous and smooth
normal for the frame, which simpli�es the learning task as shown
in Figure 3.

Given a triple of orthogonalR3 vectors⌫ = {11,12,13}, we de�ne
a �nite-di�erence approximation of the SDF gradient as:

r⌫q (G) =
3’

8=1

q () �1 (G) + 18 ) � q () �1 (G) � 18 )
2 k18 k2

18 . (2)

Note that the SDF q is constant in local coordinates of the rigid
collider, hence the point of interest G is �rst transformed to the
local reference system of the collider. Given the �nite-di�erence
approximation above, we de�ne a smooth approximation r̃q (G) of
the SDF gradient by sampling vector triples ⌫ 9 on the 3-ball at G :

r̃q (G) = 1
#

#’
9=1

r⌫ 9q (G). (3)

To generate the random vector triples ⌫ 9 , we sample directions
uniformly and we sample lengths from a normal distribution with
standard deviation 3 .

Finally, we normalize the smoothed gradient to obtain the normal
of the frame ', = = r̃

k r̃ k .
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Figure 5: For runtime inference, we bias the tangent rotation
of the contact frame to maximize spatial and temporal co-
herence (middle). Using random rotations at runtime leads
to noise (right).

Tangent Axes during Training. To make the deformation model
Alocal robust to relative transformations between the deformable
object and the collider, we train it for random tangent rotations,
but we enforce consistency of the output. To generate random
rotations, we draw the tangent axis C1 from a uniform distribution
of orientations normal to =, and we de�ne C2 = = ⇥ C1. To enforce
output consistency, we generate several random frames ' for each
point of interest G , and we add an explicit consistency loss term
that penalizes the di�erence in the resulting contact deformation A
for all these random frames. Figure 4 compares the result with and
without the consistency loss. Please see more details about model
training in Section 3.4.

As an alternative to random rotations, we explored aligning the
tangents C1 and C2 to principal directions of the SDF, similar to how
we align the normal = to the gradient of the SDF. However, to deal
with SDF discontinuities and locally �at regions, we found it was
necessary to apply a similar randomization followed by smoothing.
We did not see an improvement in quality despite the extra cost of
computing principal directions through SVD, hence we opted for
fully random tangent rotations.

Tangent Axes at Runtime. While random sampling of tangent
axes makes the model robust to rotations during training, it adds
some �ickering during runtime inference. As an alternative, at run-
time we opt to bias model inference, to achieve both temporal and
spatial coherence, as demonstrated in Figure 5. We pick arbitrary
tangent directions as C1 = =⇥ (1,0,0)

k=⇥ (1,0,0) k and C2 = = ⇥ C1.
When = is exactly aligned with the tangent bias direction (1, 0, 0),

there is a singularity, and the result naturally defaults to a random
choice of tangent frame. However, this situation is so rare, and
the possible �ickering due to the random frame so small, that the
combined e�ect is imperceptible. There is a robust solution to the
singularity, based on evaluating the model with two tangent bias
directions (e.g. (1, 0, 0) and (0, 1, 0)), and then interpolating the
result (e.g. based on the angle between the normal and the bias
directions). However, this approach doubles the inference cost,
with almost identical results. Therefore, we discard this option in
practice.

3.3 Local SDF Descriptor
We seek a descriptor of the local shape of the collider in the vicinity
of the point of interest G . To this end, we resort again to the SDF q

SDF descriptor (Ours)

Single sample Half samples

Figure 6: This collider has a cylindrical void, not a hole pass-
ing all the way through (top left). Our local SDF descriptor
correctly captures the deformation produced by the �at col-
lider face, una�ected by the void (top right). When using a
single SDF sample (bottom left) or half the samples as descrip-
tor (bottom right), local shape is not correctly represented,
and the void erroneously a�ects the deformation.

of the collider, but this time we look at the complete SDF within
the 3-ball at G .

We construct the descriptor q̂ by concatenating the values of the
SDF q on a �nite number of samples {F8 2 R3} around G , scaled
by 3 and oriented according to the local contact frame '.

q̂ = {q () �1 (G) + ' 3 F8 )}. (4)

We choose the (normalized) sampling pattern {F8 } to be the cuba-
ture rule for degree-7 integration inside a sphere (which yields 64
samples) [Stroud 1971], plus a sample at the center. By orienting the
sampling pattern according to the frame ', we achieve invariance
of the descriptor with respect to rotations of the collider normal.
Recall that ' does not provide rotation invariance on the tangent
plane, but the randomized training discussed in Section 3.2 makes
the model robust to rotation.

Figure 6 demonstrates how the local SDF descriptor provides
relevant local shape information for the computation of contact de-
formations. We compare our descriptor to using (a) q̂ = q () �1 (G)),
i.e., just the SDF at the point of interest G , and (b) q̂ = {q () �1 (G) +
' 3 F8 ) | F)

8 (1, 0, 0)  0}, i.e., only half of the sampling pattern
along �=.

3.4 Neural Deformation Model
Given both components ' and q̂ of the collider descriptor Ŝ, we can
formulate a neural model to compute the local contact deformations
Alocal in (1).

We input to the model the local SDF descriptor q̂ and the defor-
mation of the object @. Again, we adapt from Romero et al. [2022]
the de�nition of the deformation input in local coordinates of the
contact, but we use the local contact frame ', which generalizes
to arbitrary colliders, as opposed to their global collider frame ) ,
which is collider-speci�c. We also follow Romero et al. in using
sparsifying weights, (Ḡ) = diag(* (Ḡ)), where* denotes the ba-
sis of the deformation model. This sparsi�cation is a bene�t of the
handle-based reduced model.
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Figure 7: Given a precomputed grid of collider descriptor val-
ues, we fetch the descriptor values from grid points, evaluate
the neural contact deformation model, and then interpolate
the deformation result (middle). Interpolating the descriptor
and then evaluating the model only once saves cost, but suf-
fers strong noise (right).

Altogether, the neural model of contact deformationN is formally
de�ned as:

Alocal (G (Ḡ)) = N
⇣
q̂ (G),, (Ḡ) ('(G)�1) �1 (@ � G))

⌘
. (5)

To express the deformation input @ in local coordinates of the
contact frame ', again we leverage the handle-based discretization
of our reduced deformation model. For point handles in @, which
de�ne a translation, we use the transformation to ' as expressed in
(5) above. For frame handles, we use the same transformation for
the translation part, and we simply omit the subtraction �G for the
rotation part.

Network Structure. In our experiments, we use a simple neural
network structure to parameterize N. Speci�cally, we use networks
of 6 fully connected layers, with (150,150,150,150,50,10) neurons in
each hidden layer, with ELU as activation function.

Training of the Network. We train the model N for a particular
deformable object in a supervised manner, providing ground-truth
data of contact deformations for a variety of collider objects => ,
reduced object deformations =3 , and contact con�gurations =2 . The
major loss term simply compares the error between predicted and
ground-truth values of contact deformations. As already mentioned
in Section 3.2, we add a self-supervised consistency loss for robust
handling of the tangential orientation of the contact frame.

For each collider object, we start by executing an interactive
simulation between the reduced deformable object and the collider,
and we pick the =3 most distant deformations of the deformable
object. For the rest of the ground-truth data generation, we freeze
the reduced deformed state, and we execute full-space simulations
constrained to this reduced state. We sample =2 contact con�g-
urations, which include a contact location on the surface of the
deforming object, a relative transformation of the collider, and a
collision depth. This procedure is similar to the one in [Romero
et al. 2022],

For each training deformation, we include in the supervision data
a random set of points of interest G . To select these points, we con-
sider the interior of the collider object together with points within
a 3-ball from the collider surface, but we sample with lower proba-
bility points outside the collider, according to a normal distribution
with standard deviation 3 . Furthermore, we force ground-truth de-
formations to attenuate toward 0 for points of interest at distance

Table 1: Complexity of the deformable objects used in the
experiments, their training data set size (see Section 3.4),
train and test error, and runtime performance.

Object Handles Tets # Samples Error % fps
point/bone => =3 =2 train test linear full ours

Ball 15/0 29,244 30 1 150 20.8 21.0 129 1 9
Hand 0/16 82,395 30 1 525 17.1 16.8 81 1 26
Jelly 18/1 60,830 30 5 105 16.2 17.9 200 1 24
Finger 7/2 31,218 30 1 32 14.0 15.5 142 1 11

3 from the surface of the collider, to ensure that the trained model
does not su�er discontinuities.

4 RUNTIME MODEL EVALUATION
To evaluate the contact deformation model at runtime, we propose
an acceleration by precomputing the collider descriptor for each
collider. In this section, we �rst discuss this precomputation on a
grid, and then we describe the runtime interpolation from the grid
to arbitrary points.

4.1 Precomputation of the Collider Descriptor
As described in the previous section, the central ingredient of our
contact deformationmodel is a collider descriptor Ŝ = {', q̂}. While
the neural deformation model N is trained on a library of colliders
for a speci�c deformable object, the collider descriptor Ŝ is speci�c
to each collider and agnostic of the deformable object. Following
this observation, we can leverage per-collider precomputation of
the collider descriptor. This approach brings an interesting con-
sequence for application development. To use an arbitrary new
collider with a given deformable object, we just need to execute a
quick precomputation of the collider descriptor.

Recall that the collider descriptor Ŝ is evaluated at points of
interest G , which are transformed through ) �1 to the local refer-
ence system of the collider. Therefore, we choose to precompute Ŝ
(both the contact frame ' and the local SDF descriptor q̂) on a grid
surrounding the collider. We set up the grid on the bounding box
of the collider enlarged by the ball radius 3 . In our experiments, we
have used regular grids, with size 50 along the largest dimension for
small colliders, and 90 for large colliders (in the �nger and soft-ball
examples, see Section 5). Finally, we cull the precomputation of
the descriptor on points that are further than 3 from the surface of
the collider. In our experiments, we obtained speed-ups between
1.6⇥ and 3.3⇥ (larger as 3 grows) when precomputing the collider
descriptor.

Note that we only precompute the collider descriptor for runtime
inference. As discussed in Section 3.2, for training we randomize
the contact frame ', and hence we cannot leverage precomputation.

4.2 Grid Interpolation
Given collider descriptors at grid points, we need to evaluate the
contact deformation model at arbitrary points of interest G . To do
this, we transform G to the local reference system of the collider,
locate its grid cell, fetch the collider descriptor at all 8 grid corners,
evaluate the neural contact deformationmodelN at the grid corners,
and trilinearly interpolate the deformations. First interpolating the
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Figure 8: Collider objects (all from Thingi10K [Zhou and Jacobson 2016]) used for training (left, in red) and quantitative testing
(right, in blue) our deformation model. Average error of our model is 17.0% on the train colliders and 17.8% on the test colliders,
demonstrating its generalization capabilities.

collider descriptor and then evaluating the neural model just once is
more e�cient, but far less robust due to the interpolation of frames,
as shown in Figure 7.

5 EXPERIMENTS AND RESULTS
5.1 Objects and Accuracy
Figure 8 shows the 30 colliders used for training and the 22 colliders
used for quantitative testing in our experiments. All collider objects
are part of the Thingi10K library [Zhou and Jacobson 2016], and
they were selected to represent a variety of smooth and sharp
shapes, voids and holes, and organic and synthetic objects. Note
that in some experiments we use scene-speci�c colliders too, but
they were not used for quantitative testing.

Table 1 summarizes the deformable objects used in our exper-
iments. For each object, we indicate its reduced-model and mesh
complexity, the number of objects ⇥ deformations ⇥ contact sam-
ples used for training, the train and test error, and runtime perfor-
mance. To quantify error, we de�ne as 100% error the mean square
of ground-truth A (G), i.e., the di�erence in deformation between the
underlying linear reduced model and the full-space deformation. As
shown in the table, the average error with train colliders is 17.0%,
and it barely grows to 17.8% with test colliders, demonstrating the
generalization capabilities of the proposed model.

Figure 9: We compare our method to previous collider-
speci�c work [Romero et al. 2022], and we achieve on par
accuracy. We use as baseline for comparison their reduced
model with data-driven internal corrections.

We have also compared the accuracy of our model to collider-
speci�c previous work [Romero et al. 2022]. The Jelly object was
trained by Romero et al. with a pointy collider (see Figure 9), report-
ing 57% error on a contact interaction sequence. With our model,
even if the pointy collider is not used for training, error barely
changes to 58% (see a side-by-side comparison in the video).

5.2 Dynamic Simulation and Performance
In our experiments, we show the contact deformation model fully
embedded in dynamic simulations. We formulate and solve the
simulations using the optimization version of backward Euler [Kane
et al. 2000], which boils down to solving for the deformation DoFs
that minimize an energy  (A (@)). We use a Newton solver with
just one iteration per time step and conjugate gradient for the
linear solve. We compute gradients m 

mA
mA
m@ , which requires back

propagation of the neural model, and we approximate Hessian-
vector products in the linear solve as mA

m@
) m2 

mA 2
mA
m@ · E42C>A , using an

auxiliary back propagation [Romero et al. 2021].
We have executed all our experiments on an Intel Core i7-7700K

4-core 4.20 GHz PC with 32 GB of RAM, and we have implemented
the neural networks using LibTorch on C++/CUDA. Table 1 summa-
rizes the performance of our experiments. Speed-ups with respect
to full-space simulations range between 9⇥ and 26⇥.

Figure 10: A soft �nger reading braille. Our model (top) re-
solves the detailed deformations produced by braille dots,
while the linear reducedmodel (bottom) fails. The right-most
images show the norm of Green strain.
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Figure 11: Dynamic rigid colliders falling on the jelly. With our model (top), the colliders produce detailed contact deformations.
With the linear reduced model (bottom), deformations are too smooth.

5.3 Examples
In Figure 11, we showcase an example where the dynamics of
the rigid collider are also simulated. Deformations and contact are
detailed and robust in this case too, and they are excessively smooth
for the linear reduced model.

In Figure 13, we showcase an example where the soft object, a
spiky ball, has surface detail, showing that our method works well
for objects whose surface is not smooth. With the linear reduced
model, deformations are too smooth and the spikes retain much of
their shape. With our model, on the other hand, the bars produce
clear indentations, and the spikes collapse under contact, much like
with the full model.

Figure 1 shows detailed contact deformations of a hand model
exploring interactively di�erent objects. None of the colliders in this
example were used for training. This example also demonstrates
the applicability to �ne tactile exploration of objects in e-commerce
applications, where the objects can be readily used for simulation
without object-speci�c precomputation.

Finally, Figure 10 demonstrates the applicability of our method
for virtual touch problems. A soft �nger model reads the word
“touch” written in braille. While the linear reduced model fails
to resolve the deformations produced by braille dots, our model
produces highly detailed deformations. Note that the braille collider
is far from those used for training. The high-resolution strain �eld
is also suitable for driving high-�delity haptics [Verschoor et al.
2020].

6 DISCUSSION AND FUTUREWORK
We have introduced a learning-based method for the computation
of highly detailed contact deformations. Our method overcomes a

Figure 12: The quality of the deformations produced by our
model is limited by the sampling resolution of the descriptor
and the mesh resolution of the input deformation dataset.
For this hat collider with a pointy end (left), our model fails
to resolve a deformation with su�cient detail (middle), re-
sulting in noticeable intersections (right).

major scalability limitation of previous works, and generalizes to
colliders of arbitrary shape, by learning deformations as a function
of local collider shape. Key to this feature was the design of a local
shape descriptor as a condition signal for a neural �eld model.

Despite the novelty of our approach and results, there are still
limitations that could inspire future work. In terms of low-level tech-
nical limitations, one is that the accuracy of deformations may be
limited by the sampling resolution of the SDF descriptor as well as
the mesh resolution of the input deformation dataset. Deformations
with pointy features are not always resolved correctly, as shown in
the example in Figure 12. Another low-level technical limitation is
that our model needs to be trained with respect to rotations of the
collider. This is for two reasons: the need to represent the result of
the model (i.e. a vector quantity, the displacement �eld) in some
reference system, and the de�nition of the SDF descriptor through
sampling aligned with the local geometry. It would be interesting
to bake the rotational invariance directly in the neural model, and
avoid the construction of an explicit contact frame.

In terms of high-level limitations, our method works only for
rigid colliders, and it must be trained independently for each de-
formable object. It would be interesting to explore models that are
conditioned by local shape, material and deformation, thus enabling
learning-based contact deformation for arbitrary object-object in-
teractions. Our method also makes the underlying assumption that
the deformable object is well described by a reduced number of
degrees of freedom, and does not clearly extend to objects whose
deformation is inherently high-dimensional (e.g., cloth that can be
folded arbitrarily).
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Figure 13: The images compare our method (4 left images), a full simulation (4 middle images), and the linear reduced model
(4 right images), simulating contact of a soft spiky ball with rigid bars not seen at training. With the linear reduced model,
deformations are too smooth and the spikes retain much of their shape. With our model, the bars produce clear indentations,
and the spikes collapse under contact, much like with the full model.
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