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Fig. 1. The left images show a dynamic simulation of an FEM Neo-Hookean jelly with 12,469 triangles. The deformation is rich but slow (20 fps). The central
images show the same scene using a linear subspace model built with just 8 point handles. The simulation is fast (420 fps), but it misses all the detail and
suffers distortion under moderate forces. The right images show the result with our model, which augments the linear model with nonlinear learning-based
corrections. We retain fast dynamics close to the linear model (140 fps), but we recover the detailed contact-driven deformations of the full model.

This paper introduces a novel subspacemethod for the simulation of dynamic
deformations. The method augments existing linear handle-based subspace
formulations with nonlinear learning-based corrections parameterized by
the same subspace. Together, they produce a compact nonlinear model that
combines the fast dynamics and overall contact-based interaction of subspace
methods, with the highly detailed deformations of learning-based methods.
We propose a formulation of the model with nonlinear corrections applied on
the local undeformed setting, and decoupling internal and external contact-
driven corrections. We define a simple mapping of these corrections to the
global setting, an efficient implementation for dynamic simulation, and a
training pipeline to generate examples that efficiently cover the interaction
space. Altogether, the method achieves unprecedented combination of speed
and contact-driven deformation detail.
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1 INTRODUCTION
Subspace simulation models define a compact space for the anima-
tion of complex objects, without the constraints of mesh resolution.
They have demonstrated the ability to produce expressive simula-
tions under low computational cost [An et al. 2008; Barbič and James
2005; Hauser et al. 2003; Krysl et al. 2001; Pentland and Williams
1989]. They are not free of limitations though, as they suffer to
produce high-frequency details, e.g., resulting from contact.

Learning methods find effective parameterizations to model com-
plex nonlinear functions. Despite recent important breakthroughs
[Battaglia et al. 2016; Chang et al. 2017; Greydanus et al. 2019; Li
et al. 2019; Sanchez-Gonzalez et al. 2018; Wiewel et al. 2019], it is
yet unclear whether learning approaches can represent the gen-
erality of high-resolution dynamics under contact. However, they
have succeeded at capturing high-resolution skeletal and rig-based
animations [Patel et al. 2020; Santesteban et al. 2020, 2019; Song
et al. 2020].
In our work, we want to combine the best features of subspace

and learning models for dynamic simulation of deformable objects.
To do so, we design a new subspace simulation model, presented
in Section 3. The model aggregates a linear global deformation and
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a nonlinear local correction, both parameterized by a common set
of subspace handle-based degrees of freedom. We also define an
efficient mapping of the nonlinear corrections to the global setting,
as a function of the subspace. Thanks to learning-based model-
ing of the local corrections, we attain highly detailed and accurate
contact-driven deformations. At the same time, thanks to the sub-
space parameterization of the aggregate deformation, we attain
fast dynamics and overall contact-based interaction. Combining
the features of subspace and learning models, we achieve dynamic
simulations with unprecedented combination of speed and contact-
driven deformation detail.
Our method captures in a consistent way nonlinear corrections

due to both internal deformations and external interactions. We
have designed a data-generation and training pipeline that supports
different types of corrections and interactions. As we describe in Sec-
tion 4, this pipeline requires mapping interactions and full-space
deformations to the linear subspace, and we discuss how the choice
of subspace can simplify this task.

All in all, we introduce a simple method that allows the efficient
simulation of many interesting phenomena. We showcase simula-
tions where dynamics are efficiently resolved in a subspace, and
they are enriched with accurate data-driven quasi-static corrections.
As the human eye is less perceptive of detail under motion, and high-
frequency oscillations tend to dampen quicker than low-frequency
oscillations, we find that our approach produces simulations that
are barely distinguishable from full-space results. We also tackle
the simulation of local contact deformations, a classic challenge for
subspace methods. We showcase simulations where we learn these
high-detail deformations as a function of the relative configuration
between colliding objects and the subspace, and seamlessly aggre-
gate the corrections with the subspace dynamics. We demonstrate
the method on examples that signify its applicability, such as the
simulation of microtextures, soft robots, or soft skeletal bodies, as
shown in Figure 1 and throughout the paper.

2 RELATED WORK
Our work is related to multiple methods for simulation and anima-
tion of deformable objects. We classify them into three categories:
methods that combine global and local deformations for simula-
tion or animation; subspace simulation or model reduction; and
learning-based simulation.

2.1 Aggregation of Global and Local Deformations
Our subspace deformation model can be regarded as a relative of
pose-space deformation (PSD) [Lewis et al. 2000], in the sense that
local deformations are parameterized by the subspace pose, they are
defined in an unposed setting, and they are mapped to the global
setting as a function of pose. There are many differences though.
PSD is typically used for artist- or mocap-driven animation, not for
dynamic simulation; the subspace of PSD is a skeletal pose, not a
generic linear deformation model; local corrections model internal
deformations, not external interactions; and the mapping of local
corrections is explicitly defined by the skinning transformation, not
derived from an arbitrary global deformation model as in our case.

Nevertheless, the basic PSD scheme has been extended in multiple
ways, and some bring closer ties to some of our model’s features.
EigenSkin [Kry et al. 2002], for instance, reduces the dimensionality
of the correction field for human hands using principal component
analysis, as we do. SMPL [Loper et al. 2015] models corrections of
human bodies using blendshapes, which are trained from multiple
scans. Bailey et al. [2018] recently proposed a machine-learning
method to efficiently approximate complex character skinning rigs
as a local nonlinear correction to the base linear skinning. Many
other works also train correction models from example data, and
the approach has been successfully applied to the skeletal animation
of cloth [Wang et al. 2010]. As an alternative to learning corrections,
the method of Wang et al. [2007] learns deformation gradients and
then reconstructs the deformation. Other animation methods use
more diverse definitions of pose, to extend beyond skeletal anima-
tion, such as local surface deformation for faces [Bickel et al. 2008]
or cloth [Kavan et al. 2011; Zurdo et al. 2013]. The recent work
of Song et al. [2020] uses an animation rig as a generalization of
pose, and learns both global and local deformation as a function
of the rig parameters. In contrast, we use a linear subspace model
for global deformation and learn only nonlinear corrections, which
largely simplifies the model, in particular for its use in dynamic sim-
ulation. Recent works leverage machine-learning methods to learn
dynamic corrections as a function of pose and its time evolution.
The approach has been applied to bodies [Pons-Moll et al. 2015] and
cloth [Santesteban et al. 2019].

Three major differences stand out in our work in contrast to PSD
and its many derivatives. First, we define a compact subspace model
of global plus local deformations for general deformable objects,
not just skeleton-driven shapes. Second, our local corrections are
also parameterized by external interactions, and hence allow data-
driven contact simulation. And third, we use the subspace model
for dynamic simulation, which requires derivatives of the model,
and careful interpretation and approximation of these derivatives
for efficiency.
If we look at dynamic simulations, there are other ways of com-

bining global and local deformations. In this area, the focus is not
necessarily on dimensionality reduction, and the local corrections
are represented in a high-dimensional space. Separation into global
and local deformations may have other advantages, such as better
modeling of mechanical phenomena or faster solvers. Two promi-
nent examples of aggregate global-local dynamic simulation meth-
ods are Eulerian-on-Lagrangian simulation [Fan et al. 2013] and
multifarious hierarchies [Malgat et al. 2015]. Our model shares with
these works the need to define a mapping for the local corrections,
and we define the mapping similar to Malgat et al., through lineariza-
tion of the global deformation. However, because in our case both
global and local deformations are parameterized by the same sub-
space, we pay more attention to the interpretation of the mapping
and its approximation in the context of dynamic simulation. To the
best of our knowledge, no previous work applied this idea to linear
subspace models. We show that the mapping can be defined by a
modulation of the linear subspace, computed by finding gradients
of the basis components.
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2.2 Subspace Simulation Methods
In the context of dynamic simulation, the creation of subspace mod-
els allows fast approximation to the equations of motion, by ignoring
high-frequency deformations. The most popular approach is to use
a linear subspace model to approximate global deformations, built
from modal analysis [Pentland and Williams 1989], principal com-
ponent analysis of deformation examples [Krysl et al. 2001], modal
derivatives [Barbič and James 2005], sparse frames [Brandt et al.
2018; Gilles et al. 2011], or sparse handles [Wang et al. 2015]. Some
notable exceptions, which use nonlinear subspaces, are based on
animation rigs [Hahn et al. 2012, 2013] or rotation-strain coordi-
nates [Pan et al. 2015]. Recently, Fulton et al. [2019] introduced
the use of variational autoencoders to automatically infer compact
nonlinear subspaces for dynamic deformations. On the contrary,
we use machine learning to model only nonlinear corrections, and
we parameterize these corrections explicitly, as a function of both
the linear subspace and external interactions. We achieve detailed
deformations not shown by purely learning-based subspace models.
Linear subspace models have also been used to simulate only

local deformations on top of some different global deformation
model [Kim and James 2011]. Moreover, subspace local deforma-
tions can be aggregated with other deformations, such as pose-based
blendshapes [Tapia et al. 2021]. As a way to increase the accuracy
of subspace deformations, several works [Hahn et al. 2014; Xu and
Barbič 2016] blend local linear subspace models in a pose-dependent
manner. This approach can be regarded as an alternative to our local
nonlinear model. However, finding the appropriate local linear mod-
els and blending functions is not a simple task for general deformable
objects. We demonstrate that modern machine-learning methods
allow one to bypass this task, learning a nonlinear model instead.
Note also that in our model local deformations are parameterized
by a combination of the global deformation and an interaction state,
while the methods cited above use additional degrees of freedom.

A different approach to increase the accuracy of subspace sim-
ulation methods, particularly for contact-based interactions, is to
locally enrich the simulation model. Harmon and Zorin [2013] en-
rich a linear subspace model with locally supported basis functions
precomputed using a Boussinesq contact model. Teng et al. [2015]
select submeshes that are simulated with nodal degrees of freedom,
while the rest of the object uses a linear subspace representation.
Both regions are coupled accurately and efficiently using a conden-
sation method. Enrichment methods present pros and cons with
respect to our approach, and we see them better suited for different
types of applications. Our approach is highly optimized for mod-
eling external interactions that admit a compact parameterization,
such as interaction with rigid colliders. Enrichment methods, on the
other hand, support general interaction, but cannot be optimized for
particular interactions. An additional challenge for contact simula-
tions with subspace methods is the efficient yet accurate evaluation
of contact forces. To this end, Teng et al. [2014] presented a cubature
method for self-collisions in subspace skeletal deformations.

2.3 Learning-Based Deformable Simulation
Prior to the explosion of neural-network methods, de Aguiar et
al. [2010] designed a learning-based second-order model of cloth

Fig. 2. Our subspace model (center) disentangles the deformations due to
three different sources (global linear, local nonlinear internal, local nonlin-
ear external), enabling an efficient learning of nonlinear corrections, and
accurate matching of full simulations (left). Directly learning the full defor-
mation, on the other hand, leads to poor generalization capability (right). In
the example, the subspace model is made of three bones, and deformations
are produced by pulling with a spring from the circle at the bottom. Both
our model and the fully learned approach use neural networks of the same
complexity.

deformation with stability guarantees. Kim et al. [2013] showed
how to encode complex dynamics of cloth using motion graphs.
In recent years, and mostly based on neural networks, machine
learningmethods have been used in very diverse ways in deformable
object simulation.
NNWarp [Luo et al. 2020] learns the correction between linear

and nonlinear materials as a warping function, and thus simplifies
the simulation of complex nonlinear materials. Holden et al. [2019]
propose a learning-based representation of the full dynamic interac-
tion between a dynamic object and some collider(s). Their method
bears some similarities to ours; however, by trying to learn the full
dynamic behavior, they pay a loss of detail and accuracy. They also
model the deforming object using a subspace representation, but
deformation detail is limited to the global linear subspace, whereas
our approach learns nonlinear corrections with fine detail. Their
learning model also takes as input the interaction space described by
the configuration of the collider, but dynamics are strongly damped
on test scenes, whereas our approach retains full dynamics of the
linear subspace. As shown in Figure 2, learning local nonlinear cor-
rections, as we do, is a simpler problem, and leads to higher detail
and better generalization.

Several other works have modeled deformations driven by skele-
tal motion, a problem that falls in the scope of the PSD methods
described above in Section 2.1. Some of the interesting developments
include the use of convolutional networks for mesh-based deforma-
tions [Chentanez et al. 2020], and robust learning of deformation
dynamics under scarce training data [Santesteban et al. 2020].
Beyond computer graphics, recent efforts on machine learning

look at representations of the common invariants and/or processes
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Fig. 3. The deformation behavior of a full simulation (left) is accurately
modeled when nonlinear corrections are learned on a local setting (center).
Global corrections are more difficult to learn, and suffer artifacts (right). In
the example, both local and global corrections use the same training data
and neural-network architecture.

involved in mechanics. Some of the examples include modeling
collisions and deformations using graph representations [Battaglia
et al. 2016], producing generic neural-network representations of
mechanical evolution using composable objects and their inter-
actions [Chang et al. 2017], modeling multi-physics phenomena
through learned particle-based models [Li et al. 2019], or model-
ing physical processes by learning invariants and training with
measurable functions of these invariants [Greydanus et al. 2019].

3 CORRECTED SUBSPACE DEFORMATIONS
In this section, we present our subspace deformation model. We
start by formulating the combination of a linear subspace model,
nonlinear local corrections, and the mapping of these corrections to
the global setting. All these components are parameterized by the
same reduced handle-based degrees of freedom (DoFs). To allow the
computation of forces and velocities, we also derive the Jacobian
of our aggregate subspace model, and we analyze computationally
efficient approximations. We conclude by discussing the application
of variational solvers for dynamic and static deformations.

3.1 Formulation of the Subspace
As outlined in the introduction, we construct the subspace model as
the addition of a reduced-order linear deformation and a nonlinear
local correction. For the linear deformation, we choose the bihar-
monic generalized barycentric coordinates (BGBC) [Wang et al.
2015]. BGBC allow an intuitive definition of the linear subspace
basis, formed by the transformations of points and rigid frames
(referred to as handles), and we leverage this intuitive basis to con-
struct compact parameterizations of the corrections in Section 4.
Other choices of frame-based models [Brandt et al. 2018; Gilles et al.
2011] would also be suited for the definition of the subspace. With
handle DoFs q and BGBC basis U, the linear portion of our subspace
model is Uq. To extend the accuracy of the linear handle-based

Fig. 4. To maximize runtime efficiency, we have evaluated different approxi-
mations to the Jacobian of our deformation model (3). The behavior with
the full Jacobian (top) is accurately matched when we ignore the change in
the deformation gradient (middle), as in (4). However, deformation errors
are evident (bottom) if we use the Jacobian of the linear subspace and ignore
the change in the corrections 𝜕r

𝜕q ; hence we retain this term.

subspace, we construct a nonlinear correction. In Section 4 we will
discuss the details of this correction; for now we consider a general
correction with nonlinear dependency on the reduced DoFs, r(q).
Similar to pose-space deformation [Lewis et al. 2000], we express
the correction in a local setting. This choice simplifies learning and
hence maximizes the accuracy of the correction field, as shown
in Figure 3. We map the local corrections to the full space using
the deformation gradient F(q) of the linear subspace deformation.
Notice that this mapping corresponds to a first-order approxima-
tion of a correction applied to the undeformed setting [Malgat et al.
2015]. Adding the linear and nonlinear components together, we
can express our nonlinear subspace deformation model as:

x(q) = Uq + F(q) r(q). (1)

In practice, we compute the deformation gradient on tetrahedral el-
ements [Irving et al. 2004] and then perform a moving least-squares
approximation on nodes [Müller et al. 2004]. In the remainder of
the section, we drop the explicit dependency of q from the various
terms in (1).

Interestingly, the nonlinear correction to the linear subspace de-
formation can also be interpreted as a modulation of the linear
basis. To this end, we rewrite (1) by reversing the order of F r as
mat(r) vec(F). Furthermore, the deformation gradient can be ex-
pressed through a linear operation mat(∇) on the subspace defor-
mation u. Using the matrices mat(r) and mat(∇), we rewrite our
corrected subspace model (1) as

x = (I +W) Uq, (2)

with W = mat(r)mat(∇). As evidenced in this expression, the non-
linear correction can be interpreted as an incremental modulation
WU to the linear subspace basis U. This modulation weights the
gradient of the subspace basis by the corrections. In practice, for the
evaluation of full-space positions x, we use (1), after computing F
explicitly. For the transformation of forces to the subspace, however,
it is convenient to analyze the basis modulation (2), as we see next.
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Fig. 5. This example highlights the aggregation of deformations in our
model. The left column shows the linear deformation Uq. The right column
shows the addition of nonlinear corrections. The top-right image includes
only internal corrections rint, which restore nonlinear deformations. The
middle-right and bottom-right images include both internal and external
corrections, with the middle-right example highlighting external corrections
rext, which introduce accurate contact-driven details.

3.2 Jacobian of Subspace Kinematics
A key ingredient of the subspace model is the Jacobian J that lin-
earizes the mapping between the subspace DoFs q and the full-space
deformation x. Differentiating (1) and (2), we obtain:

J =
𝜕x
𝜕q

= (I +W) U + F
𝜕r
𝜕q

. (3)

Using this Jacobian, one can transform subspace velocities ¤q to
the full-space as ¤x = J ¤q, and full-space forces fx to the subspace as
fq = J𝑇 fx.

Most of the computational overhead of our subspace corrections
lies in the evaluation of the Jacobian. Therefore, we pay attention
to the relevance of the terms W and 𝜕r

𝜕q in (3). Figure 4 shows a
representative example where we evaluate different approximations
of J. We have observed that the term 𝜕r

𝜕q bears an important role
in the computation of forces and resulting deformations, hence it
should not be ignored.

On the other hand, the termW, which carries the Jacobian of the
deformation gradient, can be safely discarded in the computation
of forces. This is no surprise; as subspace deformations are smooth,
the Jacobian of their deformation gradient is comparatively small.
Dropping this term can be paralleled to ignoring the derivative
of rotations in corotational elasticity models [Müller and Gross
2004; Xu et al. 2015], but the effect is even milder for subspace
deformations.

Based on our experiments, we conclude to approximate the Jaco-
bian (3) as

J ≈ U + F
𝜕r
𝜕q

. (4)

We have also experimented with using this Jacobian for force compu-
tations and the approximation J ≈ U to build the Hessian. However,
this approximation results in excessive damping and slows down
the convergence of Newton solves.

Fig. 6. The nonlinear deformation of a full simulation (top) is accurately
matched when internal and external corrections are learned separately
(center). Trying to learn both types of corrections together complicates
data generation and learning, and fails to reproduce external contact-driven
corrections (bottom). In the example, the complexity of the neural-network
architecture for coupled learning is equal to the added complexity of the
decoupled architectures.

3.3 Dynamics and Integration
In our examples, we show both dynamic and (quasi-)static deforma-
tions. For a unified solution to both types of simulations, we use a
variational formulation of backward Euler integration [Gast et al.
2015; Martin et al. 2011]. As done by Pan et al. [2015], the variational
form of the subspace integration is easily formulated by expressing
the objective function in the full space, with the subspace DoFs q as
search variables. With an explicit update x∗ = xold + ℎ ¤xold of the
full-space positions and time step ℎ, time integration results in

q = arg min 1
2ℎ2 (x − x∗)𝑇 M (x − x∗) +𝑉 (x) . (5)

To time-step the rigid frames in the BGBC reduced DoFs q, we
parameterize the rotations in their tangent-space [Taylor and Krieg-
man 1994].M denotes the full-space mass matrix and𝑉 the potential
energy. Full-space forces are defined as fx = −∇𝑉 . Our work admits
general elasticity models and discretizations for the definition of
full-space forces. In our examples, we have used a Neo-Hookean
material [Smith et al. 2018] with tetrahedral FEM discretization.

The optimality of (5) yields the following nonlinear equations:

J𝑇
1
ℎ2 M (x − x∗) − J𝑇 fx = 0. (6)

We solve these equations using a quasi-Newton method, where we
approximate the Hessian of (5) as J𝑇

(
1
ℎ2 M − 𝜕fx

𝜕x

)
J.

As done often for subspace methods, we use a cubature approxi-
mation of forces and Hessians [An et al. 2008]. After training cuba-
ture points {x𝑘 } and weights {𝑤𝑘 } [von Tycowicz et al. 2013], one
can approximate subspace forces (and similarly their Jacobian) as
fq ≈ ∑

𝑘 𝑤𝑘 J𝑇𝑘 fx,𝑘 , where fx,𝑘 and J𝑘 are, respectively, the force
and the Jacobian at the cubature point. In our implementation, we
use the same cubature approximation to project the mass matrix M
to the subspace.
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Fig. 7. Data generation pipeline. First, a) we interactively record a linear-subspace dynamic simulation, and b) use the recorded interaction to generate an
offline full dynamic simulation. c) For each frame, we extract a representative subspace state q̄. Then, we fix the DoFs corresponding to the subspace (in
purple) and run two full static simulations, d) ignoring and f) including, external interactions. Nonlinear corrections are then computed by considering the
difference between these full static deformations and the linear subspace solution Uq̄ in e). Internal corrections are generated by g) mapping the difference to
the undeformed setting using F−1. Finally, external corrections are generated in two steps: first, h) the difference w.r.t. the linear subspace solution is again
mapped to the undeformed setting; and second, i) internal corrections are substracted to account only for the effect of external interactions.

4 LEARNING CORRECTIONS
In a fully dynamic setting, the deformation of an object depends
on its velocity, acceleration, and external forces. We represent dy-
namics in the linear subspace, but we want to retain the accuracy of
nonlinear (quasi-)static deformations. We consider two sources of
error in the linear subspace, and therefore model two separate cor-
rections: internal corrections rint, which correct the linear subspace
deformation in the absence of contact, and external corrections rext,
which correct the additional deviation introduced by contact. This
separation into internal and external corrections, highlighted in
Figure 5, simplifies the generation of representative training data,
and hence maximizes the accuracy of the aggregate correction, as
shown in Figure 6.
We start this section with a detailed definition and formulation

of the internal and external corrections. Then, we describe the gen-
eration of training data for both types of corrections, following the
pipeline outlined in Figure 7. And we conclude with a discussion of
implementation details of the learning architecture.

4.1 Internal and External Corrections
Given a subspace state q and constant external forces (i.e., gravity),
but no other external interactions, the internal corrections rint rep-
resent the deviation between the full-space equilibrium deformation
and the full-space positions given by the linear subspace, Uq. On
the other hand, given a subspace state q and an external interaction
state, the external corrections rext represent the deviation between
the full-space equilibrium deformation and the full-space positions
given by the internally corrected subspace, Uq + F rint. Figure 5
demonstrates the aggregation of internal and external corrections.
We have considered external interactions due to kinematic col-

liders, but the formulation could be extended to other types of
interactions. Note that interactions produced by prescribing some
subspace DoFs q (e.g., moving handles of the subspace model) can

be represented as part of internal corrections. We denote the inter-
action state as z, which in our case may include the state and size
of rigid colliders. For better learning ability, we parameterize the
corrections expressing the interaction state relative to the subspace
state q. Here, handle-based reduced models such as BGBC come
handy. We can define rigid transformations A(q) for the handles,
and invert them to define relative external interactions A(q)−1 z.

Formally, our nonlinear correction is then split into internal and
external corrections as:

r = rint (q) + rext (A(q)−1 z) . (7)

By separating internal and external corrections, we avoid the
combinatorial complexity of training for all possible internal and
external interaction states. We can train internal corrections free of
external interactions, and we can train external interactions only
in the vicinity of the deformable object. Next, we describe our data
generation pipeline.

4.2 Data Generation
The generation of training data follows a strategy parallel to the
decoupling of internal and external corrections. We visit separately
(i) the configuration space of the deformable object, and (ii) the
relative configuration space of the collider. For (i), as the space is
very large and difficult to predict, we follow a user-guided sampling
approach [Barbič and James 2005]. For (ii), we follow an automated
sampling approach, and traverse with the collider the surface of
the deformable object on the configurations obtained in (i). Our
decoupled sampling of (i) and (ii) is beneficial in two ways: it re-
moves the need to explore (i) and (ii) together, which is hard even
through user interaction, and it naturally produces training data
to separately learn internal and external corrections. Based on this
decoupling, the data generation pipeline proceeds in three steps:
generation of representative states, generation and training of inter-
nal corrections, and generation and training of external corrections.
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Table 1. Model size and performance data of the examples shown in the paper. For the worm, we show data with 1 and 6 colliders. Note that in both cases the
corrections are trained with just 1 collider.

Example Handles Colliders Full mesh Cubature PCA corr. Neurons Train frames Ours Linear Full
(points/frames) (tris or tets) points (int/ext) (int/ext) (int/ext) fps fps fps

Jelly+Circle 8/1 1 12,469 599 –/50 –/200 –/9,747 201 444 22.7
Jelly+Comb 8/1 1 (rot.) 12,469 599 –/100 –/3000 –/187,039 135 410 19.0
Jelly+Star 8/1 1 (rot.) 12,469 599 –/100 –/3000 –/270,000 145 432 21.2
Accordion 16/2 0 17,457 836 15/– 200/– 5,880/– 85 119 10.4
Auxetic 16/2 0 12,921 615 15/– 200/– 6,291/– 99 122 11.7
Worm 0/3 1 (×6) 10,656 505 15/120 200/2,000 3,730/138,379 13.6 (6.9) 403 2.5
Bunny 24/1 1 17,062 341 –/120 –/1,500 –/17,425 48 87 7.1
Finger 0/4 1 10,163 203 –/120 –/2,000 –/25,128 10.9 143 1.9

A detailed representation of the data generation pipeline is shown
in Figure 7.
To generate representative states, we first execute fast dynamic

simulations using the baseline linear subspace model (Figure 7, a).
These simulations are interactive in our examples, and one can
move colliders and apply forces to quickly visit a large number
of states. Next, we replay the same interactions, but we simulate
deformations using the full-space model (Figure 7, b). For each frame
of these simulations, we project the full-space positions x to the
subspace, using a least-squares mapping q = (U𝑇 U)−1 U𝑇 x. This
projection yields a set of representative subspace states {q̄𝑖 } and
the corresponding full-space positions {Uq̄𝑖 } (Figure 7, c and e).

To generate internal correction targets, we must remove the effect
of dynamics and external interactions from the full-space deforma-
tions described above, but leaving the subspace state unchanged.
To this end, we compute constrained static deformations (Figure 7,
d). For each representative subspace state q̄𝑖 , we compute the static
full-space deformation x̄int,𝑖 , such that it is constrained to the given
subspace state. With our choice of handle-based subspace model,
enforcing the constraints is as simple as fixing the full-space DoFs
corresponding to the handles. From the subspace and full states, we
obtain target internal corrections simply by undoing our nonlinear
subspace formulation (1):

r̄int,𝑖 (q̄𝑖 ) = F(q̄𝑖 )−1 (
x̄int,𝑖 − U q̄𝑖

)
. (8)

At this point, we use these internal correction targets to train the
internal correction rint (q) (Figure 7, g).
To generate external correction targets, we need to reintroduce

the effect of external interactions on the representative subspace
states. For each representative subspace state, we generate multiple
interaction states, traversing with the collider the surface of the
deformable object at varying depths. Without loss of generality, in
the remainder we refer to one pair of subspace and interaction states.
Given an interaction z𝑖 , we compute the static full-space deforma-
tion x̄ext,𝑖 that is constrained to a given subspace state q̄𝑖 (Figure 7,
f). From the subspace and full states, we obtain target external cor-
rections simply by undoing the subspace formulation (1) (Figure 7,
h). However, this time we also subtract the internal corrections:

r̄ext,𝑖 (A(q̄𝑖 )−1 z𝑖 ) = F(q̄𝑖 )−1 (
x̄ext,𝑖 − U q̄𝑖

)
− r̄int,𝑖 (q̄𝑖 ). (9)

At this point, we use these external correction targets to train the
external correction rext (A(q)−1 z) (Figure 7, i).

4.3 Learning Architecture and Training
We learn separate models for internal and external corrections, but
we follow the same methodology for both. Therefore, in this section
we refer to arbitrary corrections r. We have observed that correc-
tions exhibit high coherence, hence we use principal component
analysis (PCA) to reduce their dimensionality.

We use a fully connected, 2-layer neural network to model each
type of nonlinear correction. For internal corrections, the input is
the subspace state q, and for external corrections, the input is the
relative interaction stateA(q)−1 z, as shown in (7). In both cases, the
output of the network is the PCA representation of the corrections.
We use tanh as activation function, and we have implemented the
neural networks using PyTorch.
We use as training data the target corrections discussed in the

previous section, together with their corresponding subspace and
interaction states. We use as loss function the 𝐿2 norm of the dif-
ference between target and estimated corrections, and we optimize
the networks using Adam, 1000 to 2000 epochs, a batch size of 512,
and learning rate of 1e-3. As done typically in machine learning
methods, we separate a random subset of the training data and we
use it as test data to monitor the convergence of the optimization of
the neural network. This test data is different from that shown in the
examples and video, which is made of completely new interactions,
not used during training at all.

At runtime, the neural network is needed for the evaluation of dis-
placements, but also for the transformation of full-space forces and
the system Hessian to the subspace, as discussed in Section 3.3. Re-
call that the approximation of the Jacobian of our subspace model (3),
requires the Jacobian of nonlinear corrections 𝜕r

𝜕q , as shown in (4).
We use a matrix-free implementation of a conjugate-gradient solver,
which in turn uses products 𝜕r

𝜕q
𝑇 v and 𝜕r

𝜕q v with vectors v. Our
implementation of the neural network on PyTorch includes gra-
dient back-propagation capabilities, which address the evaluation
of 𝜕r

𝜕q
T v. For 𝜕r

𝜕q v, we do the following. We implement a function

y = 𝜕r
𝜕q

𝑇 w once per system solve, by back-propagation of an ar-
bitrary vector w through the network. Then, on each conjugate
gradient iteration, we back-propagate the vector v through the func-
tion y(w) to obtain 𝜕r

𝜕q v =
𝜕y
𝜕w

𝑇
v.
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Fig. 8. We simulate two types of microstructures, an auxetic structure (top) and accordion-like heterogeneous stripes (bottom), with subspace models defined
by just 2 frames and 16 points. A purely linear model is incapable of showing nonlinear effects produced by material heterogeneity, such as the negative
Poisson’s ratio of the auxetic structure and the ripples of the striped structure. Our method practically matches the full solution, yet 9× faster.

5 EXPERIMENTS AND DISCUSSION
Table 1 summarizes the settings, model size, and performance of
the examples shown in the paper. Please watch the accompanying
video for results produced by spontaneous user interactions, which
demonstrate generalization outside the training data. All the ex-
amples were executed on an Intel Core i7-7700K 4-core 4.20 GHz
PC with 32 GB of RAM. Next, we discuss in detail the different
experiments.

Microstructures. The combination of different materials at a
microscopic level can produce interesting macroscopic mechanical
behaviors. However, the simulation of such microstructures at full
resolution yields a very high computational cost. One approach
to avoid this cost is to use numerical coarsening methods [Schu-
macher et al. 2015]. Nevertheless, numerical coarsening methods
assume a linear response of themicrostructurewith respect to coarse
DoFs [Chen et al. 2018; Kharevych et al. 2009; Torres et al. 2016].
We have explored the use of our model for the simulation of

microstructures, by augmenting the linear subspace model with
nonlinear internal corrections. In Figure 8 we show the application
of our model to two different microstructures: an auxetic microstruc-
ture (top), and heterogeneous accordion-like stripes (bottom). In
both cases, the difference with respect to the full-resolution simula-
tion is almost imperceptible. With just 2 rigid handles (controlled
by the user) and 16 point handles, both dynamics and detailed static
deformations are reproduced very accurately. Notice how the purely
linear model misses the fundamental behavior of the auxetic mate-
rial (negative Poisson’s ratio) and the ripples of the accordion-like
stripes. Both effects are matched with our learning-based nonlinear
corrections.

Jelly. This example (see Figure 1) showcases soft 2D dynamics
augmented with data-driven contact. The object is modeled on a
subspace defined by just 1 rigid handle (controlled by the user) and
8 point handles, and we learn separately, as two disjoint models,
external corrections produced by a comb-like collider which com-
bines both a large contact area and small protrusions, and a star

with pointy features. The purely linear subspace model suffers no-
table distortions and misses detailed contact deformations. Previous
methods for local enrichment of subspace models [Harmon and
Zorin 2013; Teng et al. 2015] assume a moderate contact area to be
efficient, and would not scale well on the comb example. Our model,
on the other hand, matches accurately the deformations of the full
model, with a performance that comes close to the linear subspace
model. Note also that dynamics are well captured in the subspace,
i.e., high-resolution dynamics of the full model are quickly damped.

The proposed subspacemodel succeeds to capture detailed contact-
driven deformations, but the challenge to accurately learn these
deformations grows with the complexity and configuration space of
the collider. In Table 2, we compare quantitatively the accuracy of
the subspace jelly model for three different colliders: (i) the comb-
like collider of Figure 1, which produces a large and complex contact
area and has a 3D configuration space (translation and rotation in
2D); (ii) the same comb-like collider but restricted to a 2D configu-
ration space (with no rotation); (iii) and a small circle-like collider,
which produces a small contact area and has a 2D configuration
space. As summarized in the table, our model learns well the in-
teraction with the small circle even with a small neural network

Table 2. Evaluation of model accuracy as a function of the complexity of
the collider and its configuration space, the size of the training data set, and
the complexity of the neural network architecture. The benchmark for the
comparisons is the jelly object in Figure 1, using as colliders a small circle
and a large comb-like object. Accuracy is measured as the RMSE of vertex
displacements w.r.t. the linear model across all vertices in the object and
all frames of the test data set, normalized by the RMS of the same vertex
displacements. See also Figure 9 for a visual comparison of some cases.

Training Neurons Neurons Neurons
frames 200 1000 3000 200 1000 3000 200 1000 3000
9,748 11% - - 24% 22% - 25% 23% 12%
30,486 - - - 15% 14% - 21% 17% 12%
187,039 - - - - - - 15% 13% 10%

Circle Comb (no rotation) Comb
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Fig. 9. Our subspace model successfully represents contact deformations due to both small and large colliders with high-resolution features. Nevertheless, large
colliders with larger configuration space (e.g., the comb-like object on the right) require a larger training set and larger network architecture. A quantitative
analysis of the error is summarized in Table 2.

Fig. 10. In this example, we pull a worm-like soft robot through a narrow passage. A purely linear subspace model (top) suffers strong distortions (see the soft
regions between bones), and cannot deform locally to conform to the shape of the pins. Our model (bottom), even though it is built from a subspace of just 3
bones, follows closely the motion and deformations of a full model (middle). The plot shows the pulling force as each worm traverses the passage. The purely
linear model suffers locking and reaches a peak force 5.6× larger than the full model. With our model, the peak force is just 1.8× larger. For this benchmark,
we trained our external corrections for just one pin. At runtime, we evaluated the same function of external corrections six times, for each pin in the passage.
Thanks to the separation of internal and external corrections in our model, external corrections are local in practice, and we can apply superposition of multiple
external corrections as long as the colliders are sufficiently far from each other.

and a small training set. However, as the complexity and configura-
tion space of the collider grow, both the complexity of the neural
network and the training set must grow. With small network and
training set, the model captures well the global correction to the
linear deformation, but fails to learn high-frequency details of the
interaction with the complex comb. A qualitative comparison of
results is shown in Figure 9. The star collider of Figure 1 also re-
quires a complex network and a large training set, like the comb,
due to the size of its configuration space and its pointy features, as
indicated in Table 1.

Soft-Robot Worm. We have modeled a worm-like soft robot,
with three bones surrounded by soft material (See Figure 10). We
simulate the worm using just 3 rigid handles, colocated with the
bones, and no point handles. Even under such a compact subspace,
we show that our corrected model succeeds to match the dynamic
and contact-driven deformations of a full simulation.

We produce training data by pulling with springs from the bones,
and interacting with just one circular pin. Note that we use up to
six pins in one example at runtime, as discussed below. We train
internal and external corrections, following the procedure described
in Section 4. Figure 5 showcases both the internal and external cor-
rections during spontaneous interactions outside the training data.
Internal corrections are most evident in the soft regions between the
bones. Conversely, the purely linear model suffers evident locking,
and as a result it cannot stretch as it should. External corrections
are most evident at the head of the worm. Conversely, the head of
the purely linear model remains locally rigid.
We also test the worm model on a more complex setting, well

outside the training settings. Figure 10 shows the worm being pulled
through a narrow passage, where it collides against six pins. By
modeling external corrections separately from internal corrections,
their effect is mostly local. Then, if multiple colliders act sufficiently
far from each other, we can safely assume superposition of their
effects. Therefore, in this example, we train with just one pin, but we
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Fig. 11. This model of Big Buck Bunny contains a soft-tissue layer on top of a
rigid core. We learn contact-driven corrections to augment a linear subspace
model (point frames highlighted in the inset). As shown in the examples,
with our method contact-driven deformations do not suffer the resolution
limitations of the linear model, and match closely the deformations of a full
simulation model.

run the simulation with six pins, reusing six times the same neural
network of external corrections. As we pull the worm through the
passage, we monitor the necessary pulling force. With our model,
the peak force is 1.8× larger than with the full model. With the
purely linear model, however, the peak force is 5.6× larger. The
linear model suffers strong distortions in the regions between bones,
and cannot deform locally to conform to the shape of the pins. Our
model does not suffer any of these limitations, and hence the force
and overall motion are closer to the full model.
In our model, we decouple different sources of deformation, as

we hypothesize that this explicit disentanglement simplifies learn-
ing and provides higher accuracy. To validate this hypothesis, we
try to learn a fully nonlinear subspace model for the worm, on a
simple example with no contact, as shown in Figure 2. We use the
same DoFs as in our model, i.e., the rigid transformations of the
bones, and we use a neural network with the same complexity. To
define the output of the model, we run PCA on the full positions
of the training data. With our subspace model, the RMSE of vertex
displacements w.r.t. the linear model across all vertices in the worm
object and all frames of the test data set, normalized by the RMS of
those same vertex displacements, is just 15%. With the fully learned
model this error grows beyond 4, 000%. Learning corrections on a
global frame is not sufficient, and the error remains high at 75%, as
depicted in Figure 3. We cannot claim that it is not possible to learn
full deformations directly; in fact Holden et al. [2019] managed to

Fig. 12. We model a finger with just 3 frame handles located at the pha-
langes. The full nonlinear deformation of the surrounding tissue is captured
by our learning-based corrections. Moreover, in this example we learn exter-
nal corrections as a function of the size of the spherical collider, opening
the possibility of using parametric shape models.

learn full deformations, albeit with a more complex neural network,
and with poor generalization and overdamped dynamics. Neverthe-
less, we confirm that our explicit disentanglement simplifies the
problem. The decoupling of internal and external corrections is also
critical for the accuracy of our model. Figure 6 shows a different
comparison, this time including contact, of our model vs. a model of
the same total network complexity with coupled learning of internal
and external corrections. In this comparison, the normalized RMSE
with our model is 19%, and grows to 51% with coupled corrections.

Bunny. In Figure 11 we show how we use our model to augment a
linear subspace model of Big Buck Bunny with data-driven contact
deformations. The model contains a rigid core surrounded by a soft
layer, and the linear subspace model is built using the inner rigid
core as a frame handle, together with 24 point handles on the outer
surface. We train external corrections due to contact with a spherical
collider, following the pipeline described in Section 4.2. In the test
simulation, it becomes apparent that the linear subspace model fails
to produce correct contact deformations, as the point handles are
too sparse. Our model, on the other hand, succeeds at producing
contact deformations very close to those of the full model. Please
watch the video to see contact deformations together with dynamics.

Finger. To conclude, we have also used our model to simulate
deformations of a soft skeletal finger model, shown in Figure 12.
The finger is modeled with rigid anthropomorphic phalanges, sur-
rounded by homogeneous soft tissue. We have built the linear model
using just the 3 moving phalanges and the fixed palm as rigid han-
dles, with no point handles.We fix the pose of the fingerwith springs,
and as a result the change of finger pose in the example is small.
Therefore, we have opted not to model internal corrections, and we
have trained external corrections on a fixed pose of the phalanges.
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The results demonstrate that our approach produces an extremely
compact subspace model, with contact-driven deformations that
are far from the resolution that can be achieved with the purely
linear model. At this point, the limiting factor was the resolution
of the mesh, not the size of the collider. We would need to increase
the resolution of the mesh to ensure smooth contact as a smaller
collider traverses the surface.

On this example, we also explored the ability to learn corrections
as a function of other interaction parameters, such as the size of
the collider. We generated training data with 4 different sphere
radii, and at runtime we tested arbitrary in-between values. Even
though the example explores a very limited shape parameterization,
it opens up the possibility of training interactions with parametric
and generative shape models [Loper et al. 2015; Wu et al. 2016].

6 LIMITATIONS AND FUTURE WORK
We have presented an approach to design compact yet accurate sub-
space simulation models, by aggregating global linear handle-based
subspace deformations and local nonlinear corrections. We have
shown that local corrections can be effectively learned from defor-
mation examples, through a separation into internal and external
(contact-driven) corrections. The model enables fast simulations
with a combination of interaction dynamics and deformation detail
that is unprecedented to the best of our knowledge. Nevertheless,
there are interesting avenues for future work, which could address
current limitations and extend the applicability of the approach.
The method is heavy on preprocessing, as it requires extensive

precomputation of high-resolution contact simulations in order to
accurately learn contact-driven deformations. This could be allevi-
ated through more sparse sampling of contact simulations, perhaps
thanks to changes to the neural network architecture and/or opti-
mization method to achieve better generalization under sparse data,
through self-supervised training methods, or by designing more
atomic correction strategies not at the whole object level as we do.
The model cannot handle arbitrary contact, and it is currently

limited to rigid kinematic colliders. The formulation is general and it
admits deformable colliders, by inputting their state to the external
correction model. However, scalability is unclear, both in terms of
training complexity and generalization ability. At a theoretical level,
the formulation can also be extended to support simulated colliders,
and in that case the elastic energy of the object under study would
depend on the state of the collider through the corrections. At a
practical level, this dependency could complicate runtime efficiency
though, potentially introducing dense coupling in the Hessian of
the full simulation.

Our implementation of the subspace model uses a frame-based ap-
proach for the linear basis, but the formulation admits more general
linear subspace models, such as modal bases [Pentland andWilliams
1989] or modal derivatives [Barbič and James 2005]. The parame-
terization of nonlinear corrections and the data generation process
exploit the handle-based basis, and would need to be reformulated
for more general linear models. As described in Section 4.1, we learn
external corrections as a function of relative transformations of the
collider, A(q)−1 z. A(q)−1 works only for handle-based models, but
for general linear models relative transformations could be encoded

using more general feature vectors, such as pairwise distances be-
tween sets of points in the object and the collider. As described in
Section 4.2, in a couple steps of the data generation process we must
constrain the full-space deformation to the subspace. For general
linear subspace models, this can be executed using the least-squares
mapping q = (U𝑇 U)−1 U𝑇 x from full space to subspace, and setting
a constraint on the resulting subspace configuration.

Currently, the model admits only quasi-static corrections, but no
dynamic corrections. Learning-based dynamic corrections could be
approached in two ways, as done by other methods: by explicitly
inputting previous states to the learning architecture [Casas and
Otaduy 2018; Holden et al. 2019], or by building a recurrent learning
architecture [Santesteban et al. 2019]. Friction is another source of
trajectory-dependent deformations. Friction could be handled in a
way similar to dynamics, e.g., by introducing previous states of the
collider to the learning architecture, or also by modeling the friction
state as an input explicitly [Verschoor et al. 2020].
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