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Figure 1: Our soft-tissue avatar combines a statistical model and an FEM simulation. Our custom constitutive material produces highly
dynamic effects and realistic external interactions. We characterize material parameters to match 4D captures using numerical optimization.

Abstract
Data-driven models of human avatars have shown very accurate representations of static poses with soft-tissue deformations.
However they are not yet capable of precisely representing very nonlinear deformations and highly dynamic effects. Nonlinear
skin mechanics are essential for a realistic depiction of animated avatars interacting with the environment, but controlling
physics-only solutions often results in a very complex parameterization task. In this work, we propose a hybrid model in which
the soft-tissue deformation of animated avatars is built as a combination of a data-driven statistical model, which kinematically
drives the animation, an FEM mechanical simulation. Our key contribution is the definition of deformation mechanics in a
reference pose space by inverse skinning of the statistical model. This way, we retain as much as possible of the accurate
static data-driven deformation and use a custom anisotropic nonlinear material to accurately represent skin dynamics. Model
parameters including the heterogeneous distribution of skin thickness and material properties are automatically optimized from
4D captures of humans showing soft-tissue deformations.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Soft-tissue deformation is essential for a realistic depiction of ani-
mated characters. The human body deforms due to its own move-

ment and its interaction with the environment, creating rich and
expressive effects. Not only are soft-tissue deformations unique for
every individual, but they also produce highly nonlinear forces in
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response to the interaction with surrounding objects. A jiggling
belly, the quick transition of skin from soft to stiff when we pull
from it, or the bulging induced by tight apparel, are familiar exam-
ples to all of us. Finding accurate and inexpensive methods for the
animation of soft-tissue characters in highly dynamic and contact-
intensive scenarios has been a long-term goal in the Computer
Graphics community, with numerous applications in VFX, video
games or garment design, among others. In this paper, we present a
model to animate personalized characters with rich soft-tissue dy-
namics produced by both skeletal motion and external interactions.

There are two distinct approaches to produce expressive ani-
mated characters: physics-based and data-driven. Physics-based so-
lutions model the mechanical response of flesh, and simulate defor-
mations by solving the equations of elasticity [LYWG13,KIL∗16].
Their advantage is the ability to respond in a plausible way to arbi-
trary interactions; they are fully generative by construction. Their
challenge, on the other hand, is to design materials that mimic the
properties of skin, and to parameterize them to match the behavior
of each individual. Data-driven solutions learn nonlinear mappings
from skeletal motion to soft-tissue deformation [LMR∗15, PM-
RMB15, CO18]. Their advantage is the ability to reproduce ob-
served data with high accuracy, thanks to high-dimensional param-
eterizations and rich nonlinear building blocks, not constrained by
physics laws. Their challenge, on the other hand, is the lack of re-
sponse to external interactions or, more generally, the need for large
training data and the difficulty to generalize to unseen situations.

We propose a model for avatar animation that combines the ad-
vantages of physics-based and data-driven approaches. The model
responds to external interactions, yet it reproduces accurately ob-
served deformations. The high potential of the combined approach
is evidenced by the work of Kim et al. [KPMP∗17]. However, our
deformation model enjoys major contributions that enhance no-
tably the response to external interactions and the ability to repro-
duce observed deformations (See Fig. 1).

We design a deformation model that reproduces with very high
accuracy static deformations, matches well dynamic deformations,
and exhibits plausible and robust response to unseen interactions.
We build the deformation model by extending the SMPL paramet-
ric human model [LMR∗15] within the volume of the body, and
adding a parametric smooth soft-tissue layer in neutral shape and
pose. We achieve effective personalization of the soft-tissue layer
through shape-and-pose-dependent transformation plus adjustment
of its thickness parameters.

The key to match static deformations with very high accuracy is
a formulation of mechanics in neutral pose, through inverse skin-
ning of the full motion. With this formulation, soft-tissue mechan-
ics ignore static deformations already considered by the paramet-
ric model, and focus instead on accurately capturing highly dy-
namic deformations. We introduce a sound and simple derivation
of this mechanical formulation, and we show how animated char-
acters converge exactly to the output of the parametric model when
they reach a static pose.

For plausible and robust interaction, we design a custom nonlin-
ear skin material. Furthermore, by observing human performance
data, we have identified strong anisotropy in the motion of skin.
Therefore, we augment the custom material with anisotropy, and

define anisotropic error metrics for the estimation of material pa-
rameters from observed motions.

Following the definition of the deformation model and the skin
material, we personalize them by estimating soft-tissue thickness
and heterogeneous material properties from 4D human perfor-
mance data. We execute the estimation as a numerical optimiza-
tion, and to optimize efficiently we design acceleration strategies
for gradient-based optimization methods. As a result of this op-
timization, our method accurately reproduces observed deforma-
tions. While our model does not intend to match real material stress,
it shows realistic behaviors under external interactions.

We structure our paper as follows. After a discussion of related
work, we describe the volumetric parametric human model (Sec-
tion 3), we introduce our deformation model (Section 4), and we
discuss our method for model estimation (Section 5).

2. Related Work

The modeling of deformable human characters has been ap-
proached with a large variety of methods, ranging from fully
physics-based methods to purely data-driven models that ignore
physics altogether.

Works on physics-based models aim at modeling an
anatomically-inspired representation of the human body that
can be deformed in a physics-based simulation framework to
reproduce real-world human body behavior. Anatomical methods
work inside out to represent the musculoskeletal elements of
the body [LST09], and then place a soft layer of skin, which
provides the final appearance. Some early works focus on specific
body parts, including the modeling of head [KHYS02, SNF05],
neck [LT06], hands [AHS03], torso [ZCCD04], or upper-
body [TSB∗05, LST09].

Other simulation methods approximate the skeletal structure us-
ing an articulated body, and model the soft flesh as a continuum,
coupled to the skeleton [LYWG13]. Some works have placed em-
phasis on the properties of the flesh models, including robust-
ness [SGK18] or anisotropy [KDGI19]. Other have placed empha-
sis on the efficiency of the model, as it provides a cost-effective
solution for responsive animated characters [KB18, LLK19].

Setting up a physics-based model of a character provides interac-
tion capabilities and a plausible skin behavior. But personalization
requires, in addition, the estimation of geometric and material prop-
erties from observed data. Some works have addressed the estima-
tion of full-body models [KIL∗16], specific models for particularly
complex areas such as the face [KK19], or soft-tissue layers from
local measurements [PRWH∗18], and some have even addressed
learning of motor control [NZC∗18]. As discussed in the introduc-
tion, the work of Kim et al. [KPMP∗17] is closest to ours, as they
also estimate a soft-tissue model to augment a parametric human
model. Throughout the paper we discuss in detail the differences in
our model, but there are two that are most significant. Our formula-
tion of the mechanics model is fundamentally novel, and it allows
highly accurate matching of static deformations by construction.
The model of Kim et al. relies instead on optimization accuracy,
which is strongly limited. Our material model and the estimation
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metrics support important properties of skin, such as nonlinearity
and anisotropy. Kim et al. use a simple linear material that may pro-
duce decent matches to deformations produced by skeletal motion,
but fails to produce realistic behaviors under external interactions.

At the other end of the spectrum, leaving physics behind, there
are the purely data-driven models. These methods aim at find-
ing a model to represent the surface deformations of the human
body directly from data. Initial works leverage static 3D scans to
build linear models that represent upper torso [ACP02] and full
body [ACCP03] static deformations as a function of body shape.
The seminal work of SCAPE [ASK∗05] went one step further and
learned an articulated human body model parameterized by shape
and pose. Dynamic deformations caused by soft tissue and mus-
cles have been also attempted from a data-driven perspective. Pi-
oneering works used a marker-based tracking system to capture
the trajectory of a few hundred markers to reconstruct [PH06] and
model [PH08] soft-tissue deformations.

With 3D scanning technologies becoming more accessible and
precise, it is nowadays possible to reconstruct full-body sequences
exhibiting highly nonrigid deformations [DTF∗15,PMPHB17,RC-
DAT17, BRPMB17]. Such detailed and dense reconstructions of
human performances have been very recently leveraged to build
data-driven models capable of learning soft-tissue dynamics [PM-
RMB15, CO18], but with no interaction capabilities.

3. Construction of a Soft-Tissue Avatar

Our method creates soft-tissue deformations as a combination of
both data-driven and physics-based components. Our deformable
avatars are composed of a soft-tissue layer with varying thickness
throughout the body that is simulated using a nonlinear FEM. The
data-driven model is used to define the overall shape of the avatar,
to kinematically drive the inner vertices of the soft-tissue layer and
to formulate deformation mechanics in an unposed reference shape.
This provides us with a personalized simulation model that retains
as much as possible of the data-driven deformation for static poses
and only uses mechanics to precisely model the response to exter-
nal interactions as well as highly dynamic effects. In this section,
we first briefly review SMPL, a statistical model, which is capable
of creating static deformations of the body surface for some input
shape and pose parameters. Then, we first describe how we create
a volumetric mesh of the soft-tissue layer with varying thickness,
and adapt SMPL to also account for volumetric deformations. This
pipeline results in a parametric soft-tissue avatar ready to be used
in simulation.

3.1. Body Surface Model

Our model relies on SMPL [LMR∗15], a statistical model of body
surface static deformations that modifies a rigged template mesh
T , with N = 6890 vertices and K = 24 skeletal joints. Vertex posi-
tions are adapted depending on two sets of parameters: i) the pose,
θ, |θ| = 75, encoding the translation and rotations of the skele-
tal chain; and ii) the shape, β, |β| = 10, representing a series of
identity-dependent features that model aspects such as height, slen-
derness or muscularity. Given these parameters, SMPL produces

Figure 2: We generate a volumetric discretization of the soft-tissue
layer with smoothly vayring thickness throughout the body. This
avoids the negative effect that an irregular discretization of the inner
surface might have on the outer surface deformation.

shape and pose dependent surface deformations following the ex-
pression:

S(β,θ) =W (S̄,J(β),θ,W),

S̄(β,θ) = T +Ss(β)+Sp(θ).
(1)

Here, W (S̄,J(β),θ,W) is a linear blend skining function
[MTLT88] that takes as input the surface vertices in a reference
T-pose S̄ ∈ R3N , the joint locations J(β) ∈ R3K , the pose param-
eters θ ∈ R75 and some blend weights W ∈ R3NxK . To create the
reference T-pose S̄, SMPL modifies the template in an additive way
through per-vertex 3D offset functions called blend shapes. While
shape blend shapes, Ss(β), model changes due to identity body fea-
tures, pose blend shapes, Sp(θ), deform the template to compensate
for skinning artifacts and features such as muscle bulging. Both
blend shapes and joint location functions are learnt from 3D human
captures in different poses. We refer to the original work [LMR∗15]
for a more detailed explanation.

3.2. Soft-Tissue Mesh

Simulating the soft-tissue layer requires creating a volume mesh
with varying thickness throughout the body. One straightforward
solution used in [KPMP∗17] would be to compute a volumetric
discretization of the template mesh, T , and then select those ele-
ments within a given distance of the surface. However, this leads to
irregular and jaggy discretizations of the inner surface. This might
potentially affect the robustness of the simulation against element
inversion and the smoothness of the outer surface deformation due
to the highly nonlinear response to external interactions. For this
reason, we propose an alternative method that first creates smooth
outer and inner boundaries of the flesh layer and then generates the
volumetric discretization using a standard meshing software.

The outer surface of the soft-tissue layer corresponds to the tem-
plate mesh T . To define the inner surface B, each vertex of the tem-
plate mesh ti ∈ T , i = 1, . . . ,N is initially projected to the closest
bone of the kinematic chain leading t̂i. This mapping often results
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Figure 3: These are three examples of posed avatars (inset) subject to various soft-tissue deformations expressed in unposed space through
a color map. For a static pose (left), the unposed shape is undeformed and identical to the reference shape. For highly dynamic (center) or
external interaction (right) scenarios, the unposed shape shows high-frequency local deformations.

on failure cases where neighboring vertices in the surface corre-
spond to points on the skeleton which are far from each other. To
correct this issue, we refine this initial solution by iteratively ap-
plying a Laplacian smoothing of vertex projections, which slide
along the skeleton until convergence. This yields a point distri-
bution where each pair of neighboring surface vertices also have
neighboring skeleton projections. In practice, this allows us to ef-
fectively shrink the body surface moving each vertex along the pro-
jection direction ui = (t̂i− ti)/|t̂i− ti|, while preventing face in-
version. Consequently, given some thickness distribution defined
at each vertex of the template mesh, h = {h1, . . . ,hN} , the in-
ner surface B(h) can be easily generated by setting each vertex
bi ∈ B, i = 1, . . . ,N as bi = ti + uihi. Here, thickness values are
kept in a feasible range hi ∈ [hmin

i ,hmax
i ]. The lower bound hmin

i is
equal for all surface vertices and corresponds to a minimum soft-
tissue layer thickness. The upper bound hmax

i varies for each of the
vertices and can be computed as hmax

i = |t̂i− ti|−b, for some com-
mon minimum bone thickness b.

Once both the outer and inner meshes are created, we gener-
ate the volumetric mesh using the Tetgen software package [Si15],
making sure we retain the original topology for the boundaries.
This leads to a parameterized volumetric mesh V(h) with M ver-
tices and D elements. Notice that none of the soft-tissue deforma-
tions affects extremities (i.e., hands, feet and head). In practice, we
remove those parts from the volumetric mesh and enforce thick-
ness to slowly decay to zero at the boundaries. As it can be seen in
Fig. 2, our way of generating the volumetric mesh produces smooth
discretizations that are better suited for simulation.

3.3. Volumetric SMPL

Our deformation method relies on the statistical model to constrain
the kinematics of the inner surface of the soft-tissue layer, as well as
to formulate deformation mechanics in an unposed reference state.
However, the model defined in Equation 1 only handles surfaces
and thus we must adapt the SMPL method to account for volumet-
ric deformations. This is done by interpolating blend shape func-
tions and blending weights from the surface points to the volume
mesh through Laplacian interpolation. More precisely, as the outer
boundary of V is conformal with the template mesh T , we simply

contrain the values at the outer vertices and compute a Laplacian
interpolation matrix L ∈ R3M×3N using the cotangent approxima-
tion [Sor05]. Thus, our volumetric SMPL function simply results

V (β,θ) = Z(V̄ ,J (β),θ,Z),
V̄ (β,θ) = V(h)+Vs(β)+Vp(θ),

(2)

where Vs =L ·Ss, Vp =L ·Sp, Z=L ·W. We notice that this approx-
imation is not exactly equal to effectively applying Laplacian inter-
polation to blend shape functions as done in [KPMP∗17]. However,
we have not detected any significant difference in the performance
of the method.

3.4. Parametric Soft-Tissue Avatar

The statistical method described in the previous section provides
us with a parametric model of a soft-tissue animated avatar ready
to be simulated. The model has a personalized shape β and varying
skin thickness h and can be statically deformed given some time-
dependent pose θ. The separation between fixed and time-varying
properties defines two clearly different parametric shapes that are
used in combination with the FEM simulation:

• The reference shape x̄(h,β) = V(h)+Vs(β), x̄∈R3M , which de-
pends only on character-based properties that are fixed through
the animation and define a natural rest configuration.
• The skinned shape p(x̄,θ) = Z(x̄+Vp(θ),J(β),θ,Z),p ∈ R3M ,

which conversely depends on the time-changing pose and pro-
vides an accurate approximation to soft-tissue static deforma-
tion. Note this function can be expressed in a compact way as an
affine transformation P(θ) of the reference shape p = P(θ) · x̄.

The first expression defines the rest shape of the FEM simula-
tion. In Section 4, we leverage the second expression to drive the
kinematics of the inner surface vertices of the soft-tissue layer, as
well as formulating mechanics in an unposed deformed shape.

4. Soft-Tissue Avatar Mechanics

The volumetric SMPL method introduced in the previous section
provides us with a tool to parametrically deform a volumetric soft-
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Figure 4: This picture shows the resulting deformation for two
static poses when defining the deformation gradient in world space
as in [KPMP∗17]. The color map highlights where the result differs
from the data-driven static deformation of SMPL.

tissue model given some thickness h, shape β, and pose θ param-
eters. We aim to build a hybrid data-driven and physically based
model such that it retains as much as possible of the data-driven
pose-dependent static deformation, while taking advantage of the
capabilities of FEM simulation to capture nonlinear skin dynam-
ics. Overall, this is done by using the volumetric SMPL to impose
kinematic boundary conditions on the internal surface of the soft-
tissue layer, while letting the rest of the vertices deform freely.
However, two design decisions are key for an accurate depiction
of the skin behavior. First, we formulate deformation mechanics in
an unposed reference space by inverse skinning the SMPL transfor-
mation to ignore all pose-dependent deformations already captured
by the SMPL model. And second, we design a custom constitutive
material that is capable of representing two essential features of the
skin: anisotropy and nonlinearity.

In this section, we first formalize the dynamics equation that is
solved to simulate the deformation of the soft-tissue layer. Then,
we explain how we formulate deformation mechanics and discuss
its advantages with respect to other alternatives presented in the
related work. Finally, we describe in detail our custom material.

4.1. Dynamics Problem

Simulating the deformation of the FEM model due to skeletal-
driven animation and external interactions requires solving the sys-
tem of nonlinear differential equations defined by discrete Newto-
nian dynamics. Acceleration and external forces add a deformation
offset to the skinned shape, p(x̄,θ), defined in Section 3.4. We de-
note the resulting configuration of the volumetric mesh x ∈R3M as
deformed shape. Then, the dynamics problem is formulated as:

Mẍ− f− fe = 0

CB ·x = CB ·p(x̄,θ).
(3)

Here, CB is a matrix selecting only those vertices in the inner
boundary of the soft-tissue layer, which are kinematically con-
strained to the skinned configuration defined by the statistical
model p(x̄,θ)∈R3M for a given reference shape x̄∈R3M and time-
dependent pose θ. Additionally, M is the mass matrix, fe groups all
external forces produced by environmental interactions and f is the
sum of all internal forces generated by skin elastic response. In-

ternal forces can be computed from the derivative of a scalar elas-
tic potential U(x) as f = −∇xU . In the following section, we will
focus on how we formulate such elastic potential to ignore pose-
dependent static deformations and maximize its response to local
dynamic interactions.

4.2. Skin Mechanics Formulation

One key concept for our deformation mechanics formulation is that
of inverse skinning. The deformed shape x used in Equation 3 is
expressed in world coordinates. However, we can also express de-
formation in an unposed space by applying the inverse of the skin-
ning affine transformation defined in Section 3.4, P−1(θ). This re-
sults in a configuration that we denote unposed deformed shape
u = P−1(θ) ·x, which has some desirable properties. In absence of
acceleration or external forces, it is identical to the reference shape
u≡ x̄. In other cases, the resulting shape differs from the reference
only in local high-frequency deformations due to external interac-
tions and dynamic effects; big global deformations are undone by
the inverse skinning. This opens the possibility to formulate soft-
tissue mechanics so that only deformations different from the static
pose defined by the skinning transformation produce an actual elas-
tic response. This is similar to the well-known co-rotational formu-
lation [MG04], where the rotational part of the deformation is re-
moved. The co-rotational formulation bears a cost as the estimated
rotation depends on the deformed shape, hence affecting derivative
computations. This is not the case of our method as the skinning
transform depends only on kinematically-defined pose parameters.

Continuum mechanics define the elastic response to deforma-
tion in terms of a strain energy density Ψ(F) that depends on the
deformation gradient F, a tensor field defined at each point of the
volume as the partial derivative of the deformed position w.r.t. the
rest configuration. The total elastic potential is then computed as
the volumetric integral U =

∫
Ψ(F) · dV . FEM provides an inter-

polation framework to define F at each element of the volumetric
discretization and approximate the total potential integral as a sum-
mation [ITF06].

The definition of the deformation gradient F affects the response
to elastic deformation. We propose an alternative definition as the
derivative of the unposed deformed shape w.r.t. the rest configura-
tion, F =∇x̄(P−1x). This way, our local strain metric ignores large
global deformations that are accounted for by the pose-dependent
SMPL model and focuses solely on high-frequency local deforma-
tions that arise from inertial effects and external interactions. With
this formulation, it is not necessary to consider gravity forces be-
cause their effect is already included in the statistical model. Iner-
tia effects appear naturally, since the method does not modify the
definition of kinetic energy. Finally, note that our deformation gra-
dient F measures deviation w.r.t. the unposed reference state and
this might affect the expected stress response for a given strain.
However, we do not aim to model anatomically accurate skin and
so strain magnitudes are not exact anyway. Instead, we seek to pro-
duce realistic behaviors through a simplified model and, to this end,
we optimize material parameters to best fit captured data.

Alternatively, [KPMP∗17] use the standard definition of the de-
formation gradient, i.e., the derivative of deformed shape expressed
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Figure 5: This picture shows the deformation of our material (top)
in comparison with the nonlinear flesh material defined in [SGK18]
(bottom), for two different weights under gravity: 0.5Kg (left) and
2.0Kg (right). It can be clearly seen that our material provides a
higher nonlinear response.

in world coordinates F =∇x̄x. However, this solution does not take
advantage of the deformation data provided by the statistical model
and does not preserve pose-dependent static deformations in ab-
sence of external interactions. As it can be seen in Fig. 4, defor-
mations resulting from the definition of the deformation gradient
in world space significantly differ from SMPL parametric shapes
even for static poses. There is an additional way of defining a de-
formation metric such that static deformations are preserved, the
so-called rest-state retargetting [KDGI19]. In that case, the defor-
mation gradient is computed in world coordinates but the reference
shape is incrementally updated to match the static deformation pro-
duced by the statistical model, i.e., F = ∇px, with p = P(θ) · x̄.
However, this alternative comes with the burden of having to com-
pute all rest-state-dependent magnitudes that remain constant in
other cases. Plus, generating the volumetric mesh might produce
meshing errors for some extreme poses and affect the solution of
the dynamics problem.

Having defined our local measure of strain based on the unposed
reference shape F =∇x̄(P−1x), the response of the material to de-
formation is fully goberned by the properties of the elastic energy
density Ψ(F). In the next section, we will describe in detail how we
define such elastic potential to capture deformation properties that
are key for an accurate depiction of skin deformation.

4.3. A Nonlinear Skin Material

We aim to design an elastic energy function that accurately cap-
tures the complexity of skin dynamics. More precisely, we want
to support two deformation properties: anisotropy and nonlinear-
ity. Skin is a complex structure composed of several layers of het-

erogeneous materials. It has been shown experimentally that this
structure results in a highly nonlinear anisotropic response to tan-
gential and normal components of the deformation. After extensive
experimentation, we designed a custom elastic potential to support
each of these properties as mixture of an orthotropic StVK mate-
rial [LB14], combined with a Fung type exponential saturation to
increase the nonlinear response [SGK18]. The elastic energy den-
sity Ψ(F) results

Ψ(F) =µ(exp(η ·σ)−1)/η+
λ

2
(J−1)2,

σ =
3

∑
i=1

3

∑
j=1

τi j ·Ei j
2, J = det(F).

(4)

Here, Ei j are the coefficients of the Green strain tensor Ē expressed
in an orthonormal basis B that aligns the axes in a meaningful di-
rection for modeling skin anisotropic response, Ē = BT ·E ·B, with
E the Green strain tensor evaluated at unposed deformed shape.
The first term of Equation 4 models material response to stretch and
compression and is controlled through the first Lamè parameter µ∈
[0, inf), together with a saturation parameter η ∈ (0, inf) that regu-
lates the nonlinearity of the elastic response. Anisotropy is achieved
by individually weighting the contribution of each quadratic com-
ponent in σ using weights τi j ∈ [0,1]. The second term depends
on the relative volume change J = det(F) and modulates material
respose to incompressibility through the second Lamè parameter λ.

Fig. 5 shows a comparison between our material and the non-
linear flesh material defined in [SGK18]. In both cases, material
parameters have been estimated from data to best fit target 4D hu-
man captures. The saturation component in Equation 4 produces a
highly nonlinear response preventing very large deformation from
happening even under big external loads. To prove the capabilities
of our method to handle external interactions, we have integrated
the ArcSim cloth simulator [NSO12] in our pipeline as well as in-
corporated collision handling. Fig. 6 shows realistic soft-tissue de-
formations as a result of the avatar wearing tight cloths. In addition,
handling self-contacts improves the default SMPL solution even in
the absence of other external interactions.

4.4. Mechanics Parameterization

Our custom constitutive material requires the characterization of
Lamé parameters and several weigths, {µ,λ,τi j}. In practice, we
estimate the elastic modulus for the normal and tangential direc-
tions YN ,YT ∈ [0, inf), the Poisson’s ratio ν ∈ [0,0.5) and the satu-
ration parameter η ∈ (0, inf). We compute Lamè parameters as

µ =
Ymax

2(1+ν)
, λ =

Ymaxν

(1+ν)(1−2ν)
, (5)

where Ymax = max(YN ,YT ). In a similar way as done in [LB14],
we set the coefficients corresponding to the main stretch directions
relative to elastic moduli, τ00 =YN/Ymax and τ11 = τ22 =YT /Ymax,
and automatically compute the value of shear direction coefficients
as τi j = max(τii,τ j j), i 6= j to ensure a reasonable behavior.

Overall, the mechanical behavior of our animated avatar is com-
pletely determined by the thickness of the soft-tissue layer at each
point of the surface mesh h; and the material parameters mi =
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{YN ,YT ,ν,η} and anisotropy basis Bi at each element of the vol-
umetric mesh. In practice, we fix Poisson’s ratio ν = 0.2 and the
saturation parameter η = 4 to constant values throughout the vol-
ume that were experimentally found to produce reasonable volume
preservation and nonlinear effects. Anisotropy basis Bi are defined
in the surface mesh to be aligned with the surface normals of the
reference shape x̄ defined in Section 3.4, and interpolated through
the volume using Laplacian interpolation.

In the next section, we will present how we characterize the
thickness, h, and material, {YN ,YT }i, parameters from 4D human
captures using numerical optimization. To reduce the computa-
tional burden of solving this problem, we consider the material
distribution is symmetric along the longitudinal axis, thus we only
care about half of the body. Plus, parameters are defined at a re-
duced number C = 42 of control points distributed throughout the
surface and interpolated to surface vertices using biharmonic in-
terpolation [JBPS11]. Finally, material parameters are interpolated
from surface points to volume vertices using again Laplacian in-
terpolation. To ensure that these properties do not decay with the
distance to the surface, values at the vertices of the inner surface
are set equal to the value at vertices in the outer surface. This yields
a reduced parameter space of d ∈ R3C.

Figure 6: This picture shows four instances of soft-tissue deforma-
tion due to the effect of tight cloth, contact and friction. We refer to
the suplementary video for more detailed animations.

5. Data-Driven Estimation

In the previous sections, we have introduced our hybrid method
for the deformation of soft-tissue animated characters. The perfor-
mance of this method heavily depends on having a good charac-
terization of all the parameters affecting the deformation, which
can be an arbitrarily complex task. This includes shape and pose
parameters used by the statistical model in Equation 1 but, more
importantly, the geometry and material constituting the soft-tissue
layer. In this section, we will describe in detail how these parame-
ters are automatically estimatated from 4D captures of people us-
ing numerical optimization. Our key contribution is the definition
of a novel error metric based on the anisotropic motion variance of
surface vertices. This is required to accurately estimate the value
of the anisotropic material parameters. In addition, we use sparsity
acceleration to make gradient-based optimization feasible.

The estimation of SMPL shape β and pose θ parameters that
best approximate an input 4D capture can be formulated as a least-
squares problem and has been previously described. We refer to
e.g. [CO18] for a more detailed explanation. In the following sec-
tions, we will focus on the estimation of the parameters affecting
the mechanical model. First, we will describe the input data and
introduce metrics that can be used to characterize the avatars. And
then, we will pose the optimization problem and describe in detail
the methods used for solving it.

5.1. Input Data

Our input data consists of several sequences of animated 4D
meshes captured from 3 different subjects performing various tasks
[PMRMB15]. For a given subject with V sequences, the i-th se-
quence Zi is composed by a series of frames Zi = {Z1

i , . . . ,Z
Ki
i }

captured at 60 FPS. Each frame is a triangular mesh with N = 6890
vertices and exactly the same topology as the template mesh T
described in Section 3.1. Sequences are initially grouped by sub-
ject and preprocessed to estimate SMPL parameters as described
in [CO18]. This results in a unique shape parameter vector β per
subject and as many pose parameter vectors as the total number of
frames across all sequences {θ1

1 . . .θ
K1
1 ,θ1

2 . . .θ
K2
2 , . . . ,θ1

V . . .θKV
V }.

5.2. Motion Variance Metrics

We aim to minimize some distance metric between the soft-tissue
deformation produced by our hybrid method and the 4D captures
under the same input animation. One straightforward choice would
be to use the L2 distance between the captured and simulated data,
but we are not interested in matching exact trajectories. Instead,
we seek to approximate the characteristic movement of the cap-
tured data and, for that purpose, L2 distance between trajectories
has some undesirable properties. In particular, for static deforma-
tions, the error is not zero because SMPL does not exactly match
captured data. In situations with low dynamic behavior, the base
error caused by the static deformation might hide the contribution
of dynamic effects. For these reasons, we look for a simplified
descriptive metric of the surface motion in order to approximately
match the overall deformation behavior of the skin. We explore the
use of the statistical variance of vertex trajectories.

Through early observation of captured data we noticed a skewed
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Figure 7: Picture showing the trajectory of a vertex for different configurations of material and error metric (from left to right): captured data,
isotropic-isotropic, isotropic-anisotropic, anisotropic-anisotropic. It can be seen that the last configuration clearly outperforms the rest.

distribution of vertex trajectories, where the resulting point cloud
takes the approximated shape of an ellipsoid alligned with the sur-
face normal as shown in Fig. 7. This is caused by the highly nonlin-
ear and anisotropic nature of skin dynamics. As a consequence, in
our initial estimation experiments, the isotropic motion variance of
the deformed mesh approximataly matched that of the input cap-
tures but still the resulting trajectories differed significantly. This
anomaly motivated the creation of a custom anisotropic material as
well as exposed the need for a different motion variance metric that
takes into account anisotropy.

For notation simplicity, in the following we will drop the sub-
scripts corresponding to subjects and sequences. The trajectory of
the i-th vertex of a mesh within a sequence Z follows a discrete
path πZ,i = {z1

i , . . . ,z
K
i }, where the subscript and superscript in-

dicate respectively the index of the vertex and the frame. This tra-
jectory includes large displacements due to the large differences in
input poses. This might result in a very high dispersion that would
not correctly represent the local behavior of the skin. For this rea-
son, we first transform vertex positions to unposed reference space
by applying the inverse skinning operation P−1(θ) as described in
Section 4.2. Therefore, we define the anisotropic motion variance
of a vertex as

MN(πZ,i) =
1
K

K

∑
j=1
|Ni(P−1

i (θ j) · z j
i − z̄i)|2,

MT (πZ,i) =
1
K

K

∑
j=1
|(I−Ni)(P−1

i (θ j) · z j
i − z̄i)|2,

z̄i =
1
K

K

∑
j=1

P−1
i (θ j) · z j

i ,

(6)

where Ni is the projection matrix to the subspace defined by the
normal of the surface at the i-th vertex, P−1

i (θ j) is the inverse
skinning transformation corresponding to the i-th vertex at the j-
th frame, and z̄i is the average vertex posistion across all frames.
This allows us to define an anisotropic variance residual between
the simulated and captured sequences:

D(X ,Z) = M(X )−M(Z), (7)

where M(X ) = {MN(πX ,i),MT (πX ,i)}, i = 1, . . . ,N, is a vector
containing the normal and tangential motion variances correspond-
ing to all the vertex trajectories of a sequence. Note that here we
only consider those vertices in the outer surface of the soft-tissue
layer. In the following sections, we will pose an optimization prob-

lem to minimize an error based on this residual and show that our
anisotropic distance metric leads to a more precise description of
skin behavior and ultimately better results.

5.3. Optimization Procedure

For a given subject with V sequences, we pose the optimization a
nonlinear least squares problem based on the residual defined in
Equation 7

min
d

V

∑
i=1

D(Xi(d),Zi)
T D(Xi(d),Zi), (8)

where d ∈ R3C is the vector that concatenates all free parameters
described in Section 4.4. For notation simplicity and without loss
of generality we will assume we are optimizing just one sequence.
We aim to solve this problem using a gradient-based method to take
advantage of all the available machinery in standard optimization
packages. This requires the computation of the gradient as∇dD ·D
which is highly nontrivial. Each evaluation of the residual D re-
quieres the simulation of the complete animated sequence, which
means solving a large number of nonlinear systems of equations
defined in Section 4.1. Moreover, the solution of each dynamic
problem depends on all the previous frames of the sequence which
complicates the computation of the analytic Jacobian ∇dD. Con-
sequently, we opt to estimate the gradiend using finite differences,
which requires one full evaluation of the simulation per optimized
parameter.

To alleviate this large computational cost, we take advantage of
the fact that the Jacobian ∇dD is sparse in practice. The trajectory
of each of the deformed vertices depends only on the thickness and
material distribution in a close neighborhood. For instance, it is
very unlikely that the material of the leg and the mechanical behav-
ior of the chest are related in any way. We solve the optimization
problem using the off-the-shelf trust-region nonlinear least squares
solution offered in SciPy optimization package that takes advan-
tage of a sparsity pattern to estimate the Jacobian using finite-
differences. The sparsity is defined through a matrix S ∈ RN×C

such that Si j 6= 0 if and only if the mechanical behavior of the i-th
vertex is affected by the parameters of the j-th control point. We
build such matrix heuristically:

1. We first compute the biharmonic interpolation matrix from con-
trol points to surface vertices H ∈ RN×C . Then, we build the
p-Influence matrix Hp by taking the p higher coeffiencients of
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(a) Running on spot (Training) (b) One leg jump (Test)

Figure 8: This figure shows a comparison of the tangential (top) and normal (bottom) variance errors for subject SB, between SMPL and our
soft-tissue avatar model. It can be seen that our method approximates the overall dynamic behavior better for both training and test sequences.

each row and rounding them up to 1, leaving the rest of them
to 0. This relates each surface vertex to its p most influential
control points.

2. The adjacency matrix Ap = HT
p ·Hp defines neighborhoods of

control points sharing surface vertices for which such control
points are among the p most influential. This adjacency criterion
can be finally used to build k-ring expansions of the influence
matrix S(p,k) = Hp ·Ak

p.

In our experiments, the val-
ues p = 2 and k = 2 result in a
sufficiently sparse pattern and
a good trade-off between the
quality of the estimation and
computation time. The inset
figure shows the dependency
area corresponding to one of
the points in the chest and its
corresponding symmetric point. To further alleviate the cost of
the optimization and avoid redundant effects of material stiffness
and layer thickess we separate both sets of parameters and follow
and alternating optimization scheme. First, we optimize material
parameters to convergence using a simple distribution of C = 12

points. Then we alternate optimization steps of the thickness and
material parameters until no further improvement is possible. Fi-
nally, we take this initial result and refine it using the total number
of control points C = 42, directly on an alternating scheme. In the
following section, we will show the results of fitting material and
thickness parameters from data for 3 different subjects with various
input sequences and discuss the performance of the optimization
procedure.

Figure 9: The three test subjects: SA, SB and SC.
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(a) Jumping jacks (Training) (b) Shake shoulders (Test)

Figure 10: This figure shows a comparison of the tangential (top) and normal (bottom) variance errors for subject SA, using the three different
configurations of the optimization. It can be seen that for CC the error w.r.t. the captured data is lower for both training and test sequences.

6. Experiments and Results

The optimization procedure described in the previous section is ca-
pable of characterizing the parameters of our mechanical model.
As it can be seen in Fig. 1 and the supplementary video, this pro-
duces soft-tissue characters that realistically deform under highly
dynamic animations and external interactions. In this section, we

Figure 11: This graph shows a comparison of the anisotropic vari-
ance error for each of the five sequences, averaged across the
three different subjects, between SMPL (pink) and our hybrid data-
driven and physics based method (purple). It can be seen that our
soft-tissue avatar clearly outperforms the SMPL solution.

describe in more detail our parameter estimations experiments and
discuss our optimization scheme.

We estimated the parameters of our soft-tissue avatar model for
three different subjects that we denote SA, SB and SC (Fig. 9). For
each subject, we use two animation sequences of 1.5s as the train-
ing set and three animation sequences of [3,4]s as the test set. We
focus our main analysis in this section on subjects SA and SB, as
those show stronger dynamic behavior. Fig. 8 shows the distribu-
tion of the normal and tangential variance error defined in Equa-
tion 8, for subject SB in two different animation sequences. It can
be seen that our method significantly reduces the error of the SMPL
model and approximates the dynamic behavior of the captures from
just two training sequences. Thanks to the formulation of the error
metric in terms of the anisotropic motion variance, we notice that
most of it is concentrated in the normal part of the residual. We
believe that this is caused by an existing trade-off in our material
definition between compliance in the normal direction and volume
presservation (which is a desired property when modeling skin me-
chanics). This is expected as the skin has inherently limited stretch
in the tangential direction, thus constraining the deformation in the
normal direction if volume must be presserved. We found that using
a Poisson’s Ratio of µ= 0.2 was a reasonable compromise solution.
For future work, we would like to explore more complex soft-tissue
models (e.g., multi-layer) that might alleviate this limitation. Over-
all, our method reduces the error of the statistical model by 56.8%
in the case of training sequences and 31.4% in the case of test se-
quences (Fig. 11). For some particular tests that notably differ from
the training set, the optimization is not fully capable of generaliz-
ing the behavior of the soft-tissue. In such cases, we have observed
that the solution provided by SMPL produces smaller variance er-
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Figure 12: This graph shows the convergence of the optimization
considering the anisotropic material and error metric for each of the
three subjects tested. The dots indicate the iteration separating the
three stages of the optimization: i) 12 points, material parameters;
ii) 12 points, alternating material and thickness; and iii) 42 points,
alternating material and thickness.

rors. We found that this happens because the anisotropic metric is
particularly sensitive to the misalignment between the captured and
simulated vertex trajectories. However, as it can be seen in the sup-
plementary video, perceptually, our method provides qualitatively
better results.

We repeated the optimization of subject SA several times to com-
pare the performance of our custom constitutive material when con-
sidering isotropic and anisotropic elastic moduli. Additionally, we
explore the effect that our anisotropic error metric has on the results
of the optimization . Overall, this result in three configurations:

• CA: isotropic material with isotropic error metric.
• CB: isotropic material with anisotropic error metric.
• CC: anisotropic material with anisotropic error metric.

Fig. 7 shows a comparison between the trajectories obtained for
one of the training sequences, for each of the mentioned configura-
tions. It can be seen that the CC produce vertex trajectories that fit
much better with the captured one than CA. While the anisotropic
error metric used in CB helps to improve the overall quality of the
fit, the isotropic constitutive material cannot capture skin behavior
accurately. Fig. 10 shows in detail the spatial distribution of the
anisotropic variance for each of the considered configurations. It
can be seen that the configuration CC clearly outperforms the other
two in approximating the captured data.

Overall, the complexity of the problem complicates convergence
and suffers risk of getting stuck in local minima. Our optimiza-
tion scheme notably alleviates the burden and makes solving the
problem feasible. As shown in Fig. 12, it is effective to provide an
initialization for the full optimization using the solution obtained
with the reduced parameter space of 12 control points. However,
the big computational cost remains the main limitation and pre-
vents us from further exploring other options that might lead to
better results. All our simulations and optimizations were run in a

desktop machine Intel Core i7-8700 @ 3.2GHz, with 32GiB RAM.
We use a time step of 1/120s. Each time step converges in 1 or
2 Newton iterations, and the cost per iteration is around 0.7s. We
estimate the parameters of each subject using 2 sequences of 1.5s
each. Alltogether, simulating the two sequences takes about 6min.
In each optimization step, we estimate the Jacobian of error terms
using finite differences. With 42 control points, this implies run-
ning 43 simulations per thickness iteration and 85 simulations per
material iteration. Our sparsity acceleration approximately divides
the number of simulations by 2. Overall, this leads to a total opti-
mization time of around 30-40 hours, depending on the subject and
the chosen training set. In future work, we would like to focus on
improving the efficiency of the optimization.

7. Limitations and Future Work

We have pressented a hybrid model of soft-tissue animated avatar
that computes deformation as a combination of a data-driven sta-
tistical model an FEM simulation. In addition, we have presented
an optimization procedure to estimate the parameters of the model
from 4D human captures. Unlike previous work, we ensure that two
important properties are achieved. We reformulate strain computa-
tions such that, in absence of external interactions and dynamics
effects, the deformation generated by our method matches exactly
that of the data-driven statistical model. Plus, we model soft-tissue
mechanics using a custom constitutive material that captures the
nonlinearity and anisotropy of the skin, which are essential for rep-
resenting complex interactions. To best explore the parameter space
of our material model, we have formulated the estimation problem
in terms of a novel anisotropic motion variance metric.

We have shown that our method is capable of realistically mod-
eling soft-tissue avatars under highly dynamic effects and extreme
external interactions. However, our work is not free from limita-
tions. During our experiments we detected that there is a trade-off
between the volume preservation and the anisotropic capabilities
of the material, which limits the quality of the fitting to captured
data. This might be solved using a more complex model of the soft-
tissue that would consider several layers with different mechanical
properties. In addition, characterizing material parameters requires
solving a complex optimization problem with large computational
cost. Even though our sparsity accelerated gradient alleviates part
of the burden, using finite-differences for the computation of the
Jacobian quickly becomes hardly feasible for a large number of
control points. It would be interesting to find an appropriate re-
formulation of the dynamics problem such that the gradient can
be analytically approximated. Solving both these problems would
constitute interesting lines of future work.
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space of human body shapes: Reconstruction and parameterization from
range scans. ACM Transactions on Graphics (Proc. SIGGRAPH) 22, 3
(July 2003), 587–594. 3

[ACP02] ALLEN B., CURLESS B., POPOVIĆ Z.: Articulated Body De-
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