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Figure 1: From a set of multi-camera input images (left), we reconstruct the human performance as a temporally consistent

3D mesh that accurately matches the captured motion, here visualized textured (center) and untextured (right) to better

aporeciate the results. Our novel formulation for model-based human performance capture enables reconstruction of outdoor

performances without explicit silhouette segmentation.

Abstract

We propose a new model-based method to accurately

reconstruct human performances captured outdoors in a

multi-camera setup. Starting from a template of the actor

model, we introduce a new unified implicit representation

for both, articulated skeleton tracking and nonrigid surface

shape refinement. Our method fits the template to unseg-

mented video frames in two stages – first, the coarse skele-

tal pose is estimated, and subsequently non-rigid surface

shape and body pose are jointly refined. Particularly for

surface shape refinement we propose a new combination of

3D Gaussians designed to align the projected model with

likely silhouette contours without explicit segmentation or

edge detection. We obtain reconstructions of much higher

quality in outdoor settings than existing methods, and show

that we are on par with state-of-the-art methods on indoor

scenes for which they were designed.

1. Introduction

Marker-less human performance capture methods aim to

reconstruct the motion as well as the temporally coherent

non-rigid surface geometry of people in their general, po-

tentially loosely deforming, apparel, from multi-view RGB

video [7, 15, 21, 42, 49]. Several state-of-the-art methods

reconstruct highly detailed 3D mesh sequences by fitting a

3D template to the observed performance [15, 21, 48]; more

general methods reconstruct per-frame geometry indepen-

dently and without a prior model [20, 42, 49]. Most high-

quality reconstruction methods fail on footage recorded in

general outdoor scenes, as they expect constant lighting

and crisp foreground/background subtraction which is best

achieved in front of static indoor green screens.

Aiming to overcome this limitation, recent research in

joint segmentation and reconstruction [45, 32, 33] success-

fully reconstructed deforming objects in less constrained se-

tups. However, resulting 3D mesh detail is significantly

lower than for previous in-studio silhouette-based meth-

ods. Orthogonal to performance capture, marker-less mo-

tion capture methods exist which work without silhouettes

and in less controlled scenes, but they only estimate coarse

human skeleton pose [43, 17, 1, 47].

We propose a new model-based performance capture

method that takes a leap forward, and captures detailed

human performance, including accurate motion and loose

non-rigid surface shape, in less controlled and outdoor envi-

ronments with moving background, without explicit silhou-

ette extraction. To meet the challenges of less controlled

environments, we use a new unified implicit formulation

for both, articulated skeleton tracking and non-rigid sur-
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face shape refinement. Our method fits an initial static sur-

face mesh of an actor to unsegmented video frames in two

stages – first skeletal pose is optimized, and subsequently

non-rigid surface shape is refined. In both stages, we use

a mathematical formulation as the minimization of an ob-

jective function that estimates the agreement of model and

observation.

The coarse volumetric 3D body shape and body appear-

ance used for skeletal pose estimation, as well as the fine-

scale 3D surface geometry and appearance, which is cou-

pled to the coarse body representation, are modeled using

the same building block – an implicit function [25] defined

over sets of Gaussians. Particularly for surface shape refine-

ment we introduce a new combination 3D Gaussians (which

we refer to as Border Gaussians), designed to align the pro-

jected model with likely silhouette contours without explicit

segmentation or edge detection. Also each input image is

transformed to a similar implicit representation. This scene

representation enables effective and efficient pose optimiza-

tion, and analytically differentiable smooth objective func-

tions for both coarse fitting and refinement on unsegmented

images.

Ours is the first integrated template representation and

fitting approach for both coarse and fine geometry capable

of accurately reconstructing the articulated motion and de-

forming surface geometry of actors in challenging outdoor

scenes. We obtain reconstructions of much higher quality

in outdoor settings than existing methods, and show that we

are on par with state-of-the-art methods on indoor scenes

for which they were designed.

2. Related Work

Markerless motion capture. Marker-less 3D skeletal(-

only) motion capture from multi-view video has been exten-

sively studied in the past [24]. Generative methods use ac-

tor models composed of primitives, such as ellipses, cylin-

ders and cardboards [51, 9, 27], general mesh representa-

tions [4, 21], or parametric human models [39, 31]. They

then optimize the pose that best explains the observations.

Our approach is also inspired by methods using implicit sur-

faces [35] and volumetric models [43, 37]. Discriminative

approaches do pose estimation based on trained classifiers

[40, 1, 5]; they often play out their power in combination

with generative approaches [39, 41, 17]. While early meth-

ods were constrained to controlled indoor settings, more

recent methods succeeded on outdoor scenes, even when

recorded with a low number of cameras [17, 37]

We use a variant of Stoll et al. [43] for coarse pose es-

timation. Generally motion capture methods are comple-

mented with refinement approaches as they retain no sur-

face detail and are inaccurate in situations of strong surface

deformation, such as loose clothing forming folds. Never-

theless, they reconstruct the coarse human pose reliably.

Performance capture. Existing methods for perfor-

mance capture can be split into two trends. On one hand,

model-based methods [15, 21, 48, 29, 52, 54] deform a

static template of an actor, usually acquired with a full body

scanner, to best fit it into synchronized multi-camera input.

Parametric body models [26, 2, 34, 30, 31, 6, 36] can also

be used as a geometric template, however they are not well

suited to represent surface deformations caused by cloth.

On the other hand, model-free methods [42, 49, 20, 13] re-

move the need of an initial template by reconstructing a per-

frame independent geometry — using visual hull on silhou-

ettes [20] and multi-view photometric stereo reconstruction

techniques [42]. Note that, in contrast to model-based meth-

ods, the output geometry is temporally incoherent (e.g. dif-

ferent amount of vertices and edges per frame), and needs to

be later temporally tracked and aligned [10, 11] to achieve

a compact temporally coherent 4D representation.

A key limitation of many existing performance cap-

ture methods is their dependency on explicit background

segmentation for accurate silhouette alignment, an error-

prone step which hinders their usage in uncontrolled en-

vironments. Progress has been made by multi-view seg-

mentation [50, 16], joint segmentation and reconstruction

[44, 22, 8, 32, 33, 14], and also aided by propagation of

a manual initialization [23, 52, 45]. In uncontrolled envi-

ronments the obtained segmentation is still noisy, enabling

only skeleton pose [23] and rather coarse 3D reconstruc-

tions [32, 33]. Rhodin et al. propose a volumetric contour

model and directly fit a parametric shape model to image

edges, circumventing silhouette extraction entirely. How-

ever, only coarse shape without cloth-level detail is recon-

structed [36].

Surface refinement in performance capture is particularly

relevant to our work. Some methods deform an initial mesh

fit by pulling the surface vertices towards the silhouette con-

tours [48, 15]. More sophisticated methods use inverse ren-

dering techniques that refine coarse geometry using shading

cues [53, 52]. Most related to our work, recently Robertini

et al. [38] efficiently recovered medium-frequency surface

details optimizing the model-to-image photo-consistency

using implicit representations of mesh and images. Simi-

larly, Ilic et al. [25] also leverage the attractive properties

of implicit surfaces — e.g. differentiability — for surface

reconstruction. We also use an implicit representation, but

tailored for efficient model-to-image edge similarity.

Despite all recent progress in performance capture and

surface refinement, existing model-based methods do not

cope well in uncontrolled outdoor scenes. Our goal is to

enable more accurate model-to-image fitting in challenging

scenes.



Figure 2: Overview of our method. Input to our optimization approach is an actor model and a multi-view sequence obtained

from synchronized and calibrated cameras (right). The actor model consists of a skeleton with a colored implicit Gaussian-

based volumetric representation of the actor as well as a colored static 3D mesh. We optimize model-image agreement in

two stages (depicted in the middle), where we subsequently estimate the skeleton pose and then refine the surface using a

new tracking approach that approximates the input shape with a set of Gaussians, as explained in Section 4.1. Output of our

method (left) is a sequence of refined geometry and texture, which best resembles the input performance in terms of pose and

surface details.

3. Overview

Our goal is to deform our template model such that it ac-

curately reproduces the performance filmed with calibrated

and synchronized multi-view video (Figure 2). To build our

actor model we expect as input a colored static 3D mesh

of the person obtained through a 3D laser scan, as in [15],

through parametric model fitting [3, 31, 36], or through

image-based reconstruction from manually created single-

time step silhouettes [42, 20]. Then, a kinematic skeleton is

fitted to this surface semi-automatically using linear-blend

skinning.

We optimize the model-to-image agreement in two

stages. Stage-I (Section 4.2) tracks the coarse skeleton mo-

tion of the performance, based on the approach from Stoll

et al. [43], which does not require segmentation and attains

high performance through a Gaussian representation of im-

age and actor model (see Section 4.1). Output is an inter-

mediate skeleton motion, which is used to drive the tem-

plate mesh by skinning. It fails in reproducing non-rigid

deformations caused by cloth and soft tissue deformation,

and suffers from skinning artifacts. Stage-II estimates high-

detail surface shape by maximizing the agreement between

a fine-scale implicit representation of the surface mesh and

the image. The detailed representation is obtained by plac-

ing small 3D Surface Gaussians on each vertex of the mesh

and by additionally introducing special Border Gaussians

used for contour alignment without background segmenta-

tion (see Section 4.3). While refining the surface, also the

skeleton obtained in Stage-I is jointly refined.

The output of our method is a sequence of skeletal poses

alongside with refined surface meshes that reproduce the

input videos.

4. Performance Capture

4.1. Model Representation

We use a two-layer representation to express our actor

model. Layer-I consists of a skeleton S = {θ, ĝ}, where

θ = {θj}
J
j=1

is a degree of freedom vector that parameter-

izes the skeleton pose by its joint angles, and ĝ = {ĝm}Mm=1

a collection of colored 3D Gaussians (Model Gaussians),

rigidly attached to the skeleton, that approximate the 3D

volume of the actor coarsely (see Figure 2 top-left and [43]).

The skeleton is once fitted to an actor mesh M during pre-

processing, and skinning weights are computed in a static

pose. Each Model Gaussian is assigned the average color of

the surrounding mesh vertices.

Layer-II of the model is derived from the rigged, colored

static surface mesh M = {v,W}, where v = {vn}
N
n=1

are

the vertices, and W ∈ R
J×N a matrix of rigging weights

that define how each vertex vn moves with respect to the

degree of freedom θj . We do not explicitly use the mesh for

capturing, but transform its vertices into an implicit repre-

sentation G = {g̃c, ğc} consisting of two subsets of Gaus-

sians. The first set are Surface Gaussians g̃c = {g̃s}
Sc

s=1
for

the visible vertices from camera c that do not fall onto an

occluding mesh contour at a given frame. A small 3D Gaus-

sian is placed at each vertex position vn and is assigned the

color of the static mesh vertex [38]. The second set are Bor-



der Gaussians ğc = {ğb}
Bc

b=1
for the vertices that lie on an

outer occluding mesh contour in the original camera view

c. Note that on Layer-II, we preserve the mesh connectiv-

ity information to define the surface topology of Surface

and Border Gaussians, and assume they are coupled to the

skeleton by the original mesh skinning weights. See Figure

2 top-left for a visualization of the actor model.

Additionally, our input image set F = {f c}Cc=1
, where

C is the number of cameras, is approximated with a set of

2D Gaussians (Image Gaussians) I = {ic}Cc=1
, where ic is

a vector of 2D Gaussians that approximate the image frame

f c. The naı̈ve approach is to create a single Image Gaussian

for each pixel, and assign to it the pixel color. However, this

results in an excessive amount of elements. Instead, as in

[43], we use a quad-tree decomposition to efficiently cluster

each frame with similar color areas into a single Gaussian.

4.2. StageI – Coarse Tracking

In this stage an initial skeletal pose θ is estimated using

the Layer-I model and the algorithm from [43], where we

use the commercial implementation available through The

Captury Studio [46]. This approach optimizes the skeleton

such that the attached Model Gaussian ĝ, projected on the

image, agrees in color with the nearby Image Gaussians ic,

see Figure 2 top-center. The core of the method is a pairwise

Gaussian overlap measure, which estimates the proximity

of Model and Image Gaussians,

Em,i =

[
∫

Ω

ĝm(x)̂ic(x)∂x

]2

= 2
σmσc

σ2
m + σ2

c

e
−

||µm−µc||
2

σ2
m

+σ2
c ,

(1)

where µi, σi are the Image Gaussian mean and standard de-

viation, respectively, µm is the Model Gaussian mean pro-

jected on the image plane by scaled orthographic projection,

and σm the projected Model Gaussian size.

While any other outdoor motion capture algorithm could

be used instead, the analytic and smooth form of the Gaus-

sian overlap integral is of interest for our surface refinement

method, which is explained in the next section.

4.3. StageII – Surface Refinement

Stage-I only captures the coarse articulated pose, but no

fine-scale non-rigid surface deformations are well recovered

by just rigging the template M using the joint angles θ.

We therefore compute a refined estimate using the Layer-II

model by finding (v,θ) maximizing

E(v,θ) = Esurf(v) + Econt(v) −

wskinEskin(v,θ)− wsmoothEsmooth(v),
(2)

initialized with the pose θ and the associated skinned mesh

v. In the following we explain the individual energy terms.

Esurf measures the photo consistency of the visible mesh

surface vertices with the input images. It is implemented

as a generalization of the volumetric Gaussian tracking de-

scribed in Stage-I to represent the mesh surface implicitly.

Esurf(v) =

|g̃|
∑

s

|i|
∑

i

C(δs,i)Es,i, (3)

where |g̃| is the number of Surface Gaussian, and Es,i is the

Gaussian overlap between Surface and Image Gaussians,

defined in Equation 1. The color similarity C(δs,i), which

maps the HSV color difference δs,i to the range [0, 1] with

a smooth step function, is a robust measure of Surface and

Image Gaussian. This term is similar to [38] and accounts

for fine detail refinement of the surface interior, when tex-

ture cues are available, but does not account for accurate

contour alignment.

Econt measures the model-to-image contour alignment.

Our goal is to align each border vertex in color, space and

direction with nearby image gradients, i.e. move border ver-

tices such that their projection: (1) spatially coincides with

a strong edge, (2) shows a strong gradient from vertex color

to background color, and (3) the edge orientation aligns with

the mesh contour direction. In our setting, we have an ac-

curate shape and appearance model of the actor, but face

unknown background, e.g. moving scenes, which hinders

direct foreground-background gradient computation.

We propose a formulation that neither requires pre-

computations nor knowledge of the background color and is

nevertheless efficient to optimize. For each mesh vertex vn
that is within a ∆-distance to the contour of the mesh in the

camera plane, we create an implicit representation, which

we referred to as Border Gaussian ğb, by placing two 3D

Gaussians: an Inside Gaussian, displaced σb inside along

the surface normal with C(δb,i) as before; and an Outside

Gaussian, displaced by σs to the outside and with color sim-

ilarity (1− C(δb,i)). We therefore optimize

Econt(v) =

|ğ|
∑

b

|i|
∑

i

C(δb,i)Ebin,i + (1− C(δb,i))Ebout,i

(4)

where |ğ| is the number of Border Gaussian, and Ebin,i and

Ebout,i represent the Gaussian overlap (Equation 1) between

the Inside and Outside 3D Gaussians and the Image Gaus-

sian, respectively. This optimization causes attraction of the

Inside Gaussian to the model color and the Outside Gaus-

sian to the background color, because (1−C(δs,i)) is large

when the color is dissimilar to the foreground, see Figure

3. This pair of Gaussians approximates a gradient from

foreground to background color and has maximal response

when the desired alignment of color, space and direction is

maximal.
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(a) Response of Surface

Gaussian sampled along

different positions and orien-

tations, as in [38]. Notice it

has only response to similarly

colored Gaussians, and it

is rotation insensitive. This

representation is good to

refine inner parts of the

surface, where the color

of the Surface Gaussian

matches the Image (e.g. blue

Gaussian over blue Gaussian,

in top two rows), but fails

for accurate model-to-image

contour alignment.
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(b) Response of a Border

Gaussian (here represented

by a blue and black spheres

for the Inside and Outside

Gaussian, respectively) sam-

pled along different positions

and orientations. Note that

thanks to the pair structure,

it has response to the gra-

dient of foreground to back-

ground and are rotation sen-

sitive. Maximum response

is at the edge of the Image

Gaussians, therefore pulling

the Border Gaussian at the

image edge as desired.

Figure 3: Energy landscape for a toy example using: (a)

Surface Gaussian; and (b) Border Gaussian. From top to

bottom, in each subfigure: 2D Gaussian test image, Gaus-

sian sampled along the image, and energy landscape.

Eskin couples skeleton and surface motion. Some parts

of the body are mostly rigid, such as shoes, and require less

surface deformation refinement, while other parts, such as

clothing, are more deformable. To model this we link the

set of Surface Gaussian to the rigid transformations Tj of

each skeleton joint j by minimizing the Surface Gaussian

distance to the skinned position µ̌s,

µ̌s =

J
∑

j=1

W (j, n)Tjdj,n, (5)

where W (j, n) is the skinning weight of vertex n by joint

j, and dj,n is the rigid offset between the vertex and the

joint. The distance between refined and skinned position

is estimated using the 3D overlap of the optimized Surface

Gaussian ĝs with its rigid correspondent ǧs, using Equa-

tion 1. A rigidity weight is defined for each vertex by pro-

Input Zoom in Stage-I Stage-II, no

rigidity mask

Stage-II, with

rigidity mask

Figure 4: Influence of the rigidity mask on the Eskin com-

ponent. In this challenging situation where the foot is oc-

cluded by the high grass, our refinement step in Stage-II,

strongly influenced by the data term Esurf, tends to implausi-

bly squash the geometry to maximize model-to-observation

similarity. A rigidity mask can be used to define the local

rigidness of each vertex. On the right, notice how the lower

leg is refined such that it matches the image contour, while

the foot maintains its original volume.

viding a mask, which enables to regularize different parts of

the body differently (e.g. allow loose clothing to move more

freely than hands or feet). This also allows as to deal with

difficult situations where body parts are partly occluded, as

demonstrated in Figure 4, where the shoe is hidden in high

grass and the surface refinement step erroneously squeezes

the geometry. When using a rigidity mask, we can enforce

vertices on the feet to maintain the original µ̌s. Addition-

ally, as a consequence of jointly optimizing v and θ, the

Eskin term also refines the skeleton pose. See the supple-

mentary video for a visualization.

Esmooth regularizes unnatural surface deformations with

a smoothness prior term. We use a Laplacian smoothness

term which peanalizes deviations of the optimized mesh

Laplacian from the mesh Laplacian of the template mesh,

skinned by the initial θ. Note that [38] constrained ver-

tex motion explicitly to the surface normal direction, which

suppresses tangential corrections entirely and can preclude

convergence from large displacements, while the Laplacian

regularization only ensures coherent motion of nearby ver-

tices.

The unified energy representation enables joint and ef-

ficient optimization of surface interior, contour alignment,

and skeleton pose, using traditional gradient ascent. In Sec-

tion 5, we show that the proposed model applies to more

general scenes than existing model based approaches and

that exploiting of a detailed actor model gives superior re-

sults to existing model-free methods.

5. Results and Evaluation

We qualitatively and quantitatively evaluate our method,

and compare our results with state-of-the-art human perfor-

mance capture methods, both indoor and outdoors. See the

supplementary video for further evaluation and results. The



supplementary document contains a description of each se-

quence and actor model.

All results presented in this section were computed on a

desktop computer with a NVIDIA GeForce Titan X. Using

unoptimized code, our Stage-II run time is about 5–30 min-

utes on the CPU and 1–4 minutes on the GPU, per frame.

5.1. Quantitative Evaluation

To quantitatively assess the performance of our method,

we use a silhouette overlap metric between the actor model

projected to the camera plane and the ground truth silhou-

ette obtained with manual segmentation. We label as pos-

itive and negative the foreground and background pixels,

respectively. When the label of the projected model and

the ground truth image pixel agree, it is a true pixel, and

false otherwise. The combination of true and false pixels is

expressed with the F1 score, commonly used in statistical

analysis for binary classification, which can be interpreted

as a weighted average of precision and recall. Note that

figures in this section visualize the resulting overlap labels

using Green for false negative, Red for false positive, Pur-

ple for true positive and Black for true negative.

Figure 5 presents a visualization of the qualitative eval-

uation of the skirt sequence — an indoor sequence, with

ground truth silhouettes available — showing the overlap of

the mesh and the ground truth contour (top row), and the re-

sulting silhouette overlap labels (middle row), in 4 different

settings. As expected, the mesh generated in Stage-I (first

column) is incapable of capturing the non-rigid skirt con-

tour and suffers from skinning artifacts in the shoulder area.

Stage-II (second column) significantly improve these short-

comings, resulting in a much accurate alignment. To further

evaluate our approach, we enforce Stage-II to work in ideal

conditions where the background is known (third column).

Instead of working with the input color images, we use the

silhouette images — i.e. background is black — and there-

fore we assign the Outside Gaussians of the Border Gaus-

sian also a black color, instead of the inverse of the inner

Gaussian color as we do in uncontrolled conditions. Results

under such ideal conditions are shown in the third column,

and further validate our new implicit representation: perfect

color assignment of the inner and Outside Gaussians refines

the mesh such that it perfectly matches the ground truth.

Our results are in fact comparable to Gall et al. [21] (fourth

column), a state-of-the-art method that requires explicit sil-

houette segmentation.

Figure 6 visualizes the F1 scores across 90 frames and

8 cameras of the skirt sequence, for different configura-

tions. We evaluate each of the components of our energy,

demonstrating that mesh refinement using Surface Gaus-

sians and Border Gaussians significantly improves over

Stage-I, as we well as using Surface or Border Gaussian

alone. Average F1 score values when enforcing known

Stage-I Stage-II Stage II, with
silhouettes

Gall et al. [21]
(req. silhouettes)

Figure 5: Evaluation of the proposed approach in the

skirt sequence. In orange, the ground truth contour.

Stage-II significantly improves the misalignment errors

present in Stage-I, caused by non-rigid deformations and

skinning artifacts. Additionally, we also compare the per-

formance of our method in ideal conditions with known sil-

houettes, which generate results comparable to state-of-the-

art silhouette-based methods [21]. See Section 5.1 for color

scheme description and further details.

color background (0.9676± 0.0056) are comparable to the

silhouette-based method from Gall et al. [21] (0.9683 ±
0.0045).

Extensive quantitative evaluation on outdoor footage is

difficult due to the lack of ground truth data, which can only

be generated with laborious manual segmentation. How-

ever, we manually segmented 10 frames of the publicly

available cathedral dataset [28], as well as of our new

sequences unicampus and pablo. Figure 7 shows the

silhouette overlap evaluation in these sequences, demon-

strating consistent improvement after mesh refinement. De-

spite the challenging scenes, with uncontrolled background,

our method successfully reconstructs and refines the sur-

face of the actor model, without requiring explicit manual

silhouette segmentation. Table 1 presents the F1 mean and

standard deviation of evaluated frames in these sequences,

consistently showing that our performance capture method

achieves high scores even in such challenging datasets.
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Figure 6: Quantitative evaluation of the silhouette overlap

for the skirt sequence. Mesh refinement using Surface

Gaussians and Border Gaussians (Stage-II, in light blue)

significantly improves over Stage-I, as we well as over us-

ing Surface or Border Gaussian alone. Additionally, we also

show that in ideal conditions (i.e. known silhouettes), our

method performs comparably to the indoor silhouette-based

approach of Gall et al. [21].

Figure 7: Silhouette overlap evaluation in outdoor se-

quences. From right to left: original frame; Stage-I mesh

and ground truth contour in orange; Stage-II refined mesh

and and ground truth contour in orange; Stage-I overlap sil-

houette evaluation; and Stage-II refined overlap silhouette

evaluation.

F1 score

Stage-I Stage-II

cathedral 0.9114± 0.0077 0.9362± 0.0033

pablo 0.8812± 0.0156 0.9212± 0.0096

unicampus 0.8962± 0.0149 0.9223± 0.0083

skirt 0.9271± 0.0122 0.9676± 0.0056

Table 1: Quantitative evaluation of the sequences tested in

this paper. The F1score of the Stage-II is consistently higher

than in Stage-I.

5.2. Qualitative Results

In Figures 1 and 8, as well as in the supplementary video,

we qualitative show reconstruction results on 4 different se-

quences: skirt, cathedral, unicampus and pablo.

Our results demonstrate that reconstructed meshes are tem-

porally coherent, do not suffer from temporal noise, and

maintain the level of detail of the input template without

suffering from unnatural geometric deformation artifacts.

We also show textured models by reprojecting the origi-

nal image frames onto the refined models, which implic-

itly demonstrates the accuracy of our surface reconstruc-

tion. We believe that more advanced view-dependent tex-

turing techniques [12] would alleviate some of the remain-

ing ghosting artifacts in the appearance — however, we be-

lieve that ours is one of the first methods that demonstrates

refined geometric and textured reconstructions of humans

performing outdoors.

6. Discussion and Conclusion

We have presented one of the first model-based methods

for human outdoor performance capture. Our new unified

implicit representation for both skeleton tracking and non-

rigid surface refinement allows to jointly optimize pose and

shape, even in scenes with unknown moving background.

Our method fits the template to unsegmented video frames

in two stages – first skeletal pose is optimized, and subse-

quently both the pose and the non-rigid surface shape are

refined.

While we believe our method takes a leap forward in the

area of human performance capture, there are a number of

challenges that remain open for future research. Explicit il-

lumination estimation could be incorporated into our model

to better handle changes in lighting as well as time-varying

shading effects happening on the surface within the same

sequence. Our model-based approach requires a colored

template mesh for initialization and cannot cope well with

complex shape or topology changes. Automating initializa-

tion [36] and means to handle topology changes [55] are in-

teresting directions for future work. Enabling the method to

handle moving and unsynchronized cameras [18, 19] could



Figure 8: Qualitative results of our human performance capture approach. On the left, a representative input frame of each

sequence. For each sequence, we show two pairs of untextured and textured reconstructions of various frames. From top to

bottom: cathedral, pablo, skirt and unicampus.

also be further explored, but would require a per-frame es-

timation of the calibration parameters. High-frequency ge-

ometric detail could also be recovered using inverse render-

ing techniques – this would potentially add even finer detail

to the refined meshes.
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