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Abstract

Face tracking has become an increasingly important research topic in the com-

puter vision field, mainly due to its large amount of real-world situations where

such methods can be applied. Although the definition of the problem to be solved

is very easy to understand, it is very difficult to come up with a robust solution

due to variations in illumination, pose, appearance, etc. Initially, this project gives

a brief introduction to the current state-of-the-art of both face detection and face

tracking techniques. Moreover, the most important publications in this area, such

as the Viola-Jones method for object recognition or the Lucas-Kanade algorithm for

the optical flow, are presented. Finally, five different face tracking algorithms are

implemented, each of them giving a robust solution for a specific context.

Resumen

Las técnicas de seguimiento facial se han convertido en los últimos años en uno

de los temas de investigación más populares en el campo de la visión por computa-

dor, principalmente gracias a la gran cantidad de situaciones en el mundo real donde

pueden ser aplicadas. Aunque la definición del problema es muy fácil de entender,

encontrar una solución robusta resulta ser muy dif́ıcil, en parte por culpa de los cam-

bios de ilumunación, pose, apariencia, etc. que se suceden durante una secuencia de

v́ıdeo. Inicialmente, este proyecto hace una rápida introducción al estado del arte

tanto de las técnicas de seguimiento facial como de las de detección de caras. A

continuación, se muestran las publicaciones más relevantes de los últimos años en

este campo, como por ejemplo el método para reconocimiento de objectos de Viola y

Jones, o el algoritmo de Lucas y Kanade para calcular el flujo óptico. Finalmente,

se implementan cinco diferentes algoritmos de seguimiento facial, cada uno de los

cuales aporta una solución robusta para un determinado contexto.
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Resum

Les tècniques de seguiment facial s’han convertit durant els darrers anys en un

dels temes de recerca més populars en el camp de la visió per computador, prin-

cipalment gràcies a la gran quantitat de situacions on poden ser aplicades en el

món real. Tot i que la definició del problema és molt fàcil d’entendre, trobar una

solució robusta resulta ser molt dif́ıcil, en part per culpa de, per exemple, els canvis

d’il·luminació, posició, aparença, etc., que se succeeixen al llarg d’una sequència de

v́ıdeo. Inicialment, aquest projecte fa una ràpida introducció a l’estat del art tant de

les tècniques de seguiment facial com de les de detecció de cares. A continuació, es

mostren los publicacions més rellevants dels últims anys en aquesta àrea, com per

exemple el mètode de reconeixement d’objectes de Viola i Jones, o l’algoritme de

Lucas i Kanade per calcular el flux òptic. Finalment, s’implementen cinc diferents

algoritmes de seguiment facial, cada un dels quals ofereix una solució robusta per a

un determinat context.
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Chapter 1

Introduction

1.1 Motivation

Object tracking has become one of the most popular research fields in computer vi-

sion during the last years, mainly because of the large amount of real-world scenarios

where such techniques can be used. Face tracking is one of the most challenging

problems of the object tracking field, due to the large variability of faces and facial

expressions that exist and the number of context where they can be found.

Although many tracking methods and algorithms have been published in the last

few decades, nowadays there is still a lot of research to do related to face detection

and face tracking. Most of the state-of-the-art methods work well only in some

specific situations. Thus, an universal method for face detection and tracking has

not been found yet.

Exploring this gap of knowledge and the work in progress in this field is the

main motivation for this project. The idea of working in something that is currently

being researched and not very well solved makes this project both challenging and

attractive.

1.2 Goal

This project pretends to be a good introduction to the world of face detection and

face tracking, which is nowadays an area being researched by dozens of universities

and research institutes around the world.

The most famous tracking methods and algorithms that have been published

will be shown, discussed and compared, together with some basic mathematical

1



2 CHAPTER 1. INTRODUCTION

background needed in order to work with them. Once the current state of the art

has been understood, new approaches to face tracking will be suggested.

As Chapter 2 shows, currently the general face detection problem is pretty much

solved, though the face tracking is not. In other words: it is not possible to track a

face by detecting it in a frame-by-frame basis, due to issues related with occlusions

and pose variations that force the failure of the face detector. In order to deal with

this handicap, new tracking methods are required.

Therefore, the goal of this project can be summarized in the following points:

• Understanding what face tracking is and why it is important to research.

• Understanding the methods published so far.

• Applying state-of-the-art techniques to develop new approaches to the face

tracking problem.

1.3 Framework

This project has been developed during my 12-month stay as a Visiting Scholar

at the Carnegie Mellon University, Pittsburgh (USA), where I joined the Human

Sensing Lab, leaded by Dr. Fernando de la Torre.



Chapter 2

State of the art

This chapter gives a brief introduction to the origin of computer vision and its

current status. Moreover, it presents the two main areas where this project is

focused: face detection and face tracking.

2.1 Computer vision

Computer vision is a subarea of the artificial intelligence field which goal is to make

computers to understand a given scene or image. To achieve this goal it seeks to

apply the theories and models of computer vision to the construction of computer

vision systems. Some examples of applications of computer vision systems include

process control, event detection, object recognition and pose estimation.

2.1.1 Origins

Computer vision is an immature and diverse field. It is possible to start talking

about computer vision from late 1970s. Even though earlier research exists, it was

not until then when the technology that enables to process large data sets appeared.

Also, these earlier studies usually were originated from other computer science fields,

which delayed a few years the standardization of a formulation of “the computer

vision problem”.

Another important issue of the field of computer vision is the lack of standard

formulations for solving the basic problems. This is the reason why an abundance of

methods which solve the same well-defined computer vision task have been reported,

all with the drawback of being too specific. Furthermore, the inherent specificity

of this methods makes it very difficult to apply them in situations that differ much

3



4 CHAPTER 2. STATE OF THE ART

from those to which they were created for.

2.2 Face detection

Face detection is a computer technology that detects the locations and sizes of

human faces in digital images. The goal of face detection is to locate the facial

features of a person, although there are many applications which focus uniquely in

finding the position of the face, rather than finding its specific features.

2.2.1 Challenges in face detection

Any given natural image usually contains a lot more of background patterns than

face patterns. This huge difference in amount of patterns makes the desire of finding

a face very difficult, because the classifier that decides whether if a given pattern is

a face or is not has to be very specific. Figure 2.1 shows a painting made by Octavio

Ocampo, and in it is possible to find up to 9 different faces. In this case, even for

a human eye this is a tedious work. Of course, this is an extreme difficult context,

but it is just an example about how difficult can be to find faces in a picture.

Figure 2.1: Finding faces can be difficult.

Although it is a very hard problem, recent publications have achieved face detec-

tion with high accuracy. The most popular method was published in 2001 by Viola

and Jones [15] and it is explained in Section 3.2
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2.2.2 Methods

Since detecting a face is a very challenging problem, lots of different approaches

have been tried to solve it. Although the Viola and Jones [15] method, based in

Haar-like features and weak classifiers is currently the most robust, here it is a list

of some of the other important methods tried during the last few years.

• Color based. This method is based on the color histogram of an image.

Initially, a training step is needed in order to learn how the skin color of a face

looks like, being afterwards able to classify what is a face and what it is not,

according to the range of colors of any given area.

Although this method seems very interesting because it is face pose indepen-

dent, it has three very strong constraints: it only works for color images, it

does not work well with all kind of skin color and it is not very robust under

varying lighting conditions

• Edge based. These methods are based on an edge orientation matching fol-

lowed by a candidate verification using a classifier. [5] is one of the most famous

publications that uses this approach. The main handicap of these methods is

the difficulty to detect the edges of a face with a complex background. Fig-

ure 2.2 shows an example using a Canny edge detector to detect a face. In

this example is very clear how important is to have simple backgrounds, being

otherwise impossible to distinguish its edges from the face. A simple solution

to this problem is provided by a background substraction technique.

Figure 2.2: Example of edge based face detector using canny edge detection.

• Feature based. This includes a huge group of different approaches. Some of

them have not been very successful at all, but others are very popular. Their
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performance highly depends on the kind of feature that is used. For instance,

some early approaches use facial features (eyes, mouth, nose, etc.) and they

do not obtain good results due to the difficulty to define and compare them.

However, other approaches use more sophisticated and person independent

features, which result in a more robust and accurate system.

In 2001 Viola and Jones [15] defined the so-called Haar-like features, which

are both fast and easy to compute. This method is currently the most used,

although it only works for frontal faces with no occlusions.

• Other methods. There have been published many other methods, but most

of them are no longer used. Among these, it is worth mentioning the technique

based on template matching. This method, reported by Lanitis in 1995, was

one of the first developed and it consists in deforming an average template of

a face, which was hand-coded, using the edges of an image. Its main problem

relies on the initialization; in order to detect a face in a given frame, the face

template has to be initialized in a frame close to the current one. Moreover, it

only works for frontal faces. Figure 2.3 shows an example of its performance.

Figure 2.3: Example of face detection using a hand-coded template

Other weak face detection techniques are the so-called knowledge-base. These

methods use rules like “the center part of a face has uniform intensity values”,

“the difference between the average intensity values of the centre part and

the upper part is significant.” or “a face often appears with two eyes that

are symmetric to each other, a nose and a mouth”. These knowledge-based

methods do not work well, basically because of the difficulty to translate human
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knowledge into rules precisely: detailed rules fail to detect faces and general

rules may find many false positives. Also, it is very difficult to extend this

approach to detect faces in different poses.

2.2.3 Applications

Face detection is used in many of different scenarios, with multiple purposes. Here

are a few examples of real-world applications:

• Biometrics. Video-based face recognition systems require that the data they

work with is aligned before it can be compared, in other words, the faces in

the images should have the same properties of scale and location. A fast way

to achieve this requirement is to detect the faces of the images so that the

location and the scale of each of them is automatically found. Once this is

done, they all can be aligned and thus have the same properties.

• Video surveillance. Since faces are usually the most easily recognizable

signature of identity from a distance, face detection can be applied in video

surveillance to detect and track people. This can be especially useful in con-

texts like airports or train stations where the system must work in real-time

and it cannot be done manually.

• Video communications and multimedia systems. Face tracking can be

applied in video communications to estimate the face motion and remove the

inter-frame redundancy in video compression schemes like MPEG and H.26x.

In multimedia systems like sports video, face tracking can be applied to focus

on a region of interest in the image.

• Human computer interaction. Human computer interaction, also known

as HCI, is the study of the interaction between people and computers. As in

many cases this interaction is based on how the user’s face is moving, firstly

the HCI system needs to detect where the face is, regardless of its three-

dimensional position, orientation and lighting conditions.

2.3 Face tracking

Face tracking is a computer technique which goal is to keep the trace of similar

detected faces within a video sequence. This is not an easy task because the faces
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may vary its pose and appearance along the time, which means that what is being

track will not look the same in every frame. These changes are the reason why face

tracking can not be understood as a “continuous face detection”.

2.3.1 Challenges in face tracking

As it has been mentioned earlier, face tracking is a very challenging problem due to

the large appearance variability of a face. This section briefly describes the most

important challenges that makes tracking a face a hard problem.

• Illumination variations. Illumination variations often lead to a lost of track.

Depending on the context where the tracker is running, illumination variations

may be very likely. For example, if the camera is situated inside a car try-

ing to track the driver’s head, and suddenly he/she drives into a tunnel, the

illumination conditions would change a lot.

Section 6.4 shows one of the numerous techniques developed in order to deal

with this problem. It this case, a histogram equalization enhancement is used

in every frame and therefore the video is somehow illumination independent.

Another well-known method was presented in [6], where the authors propose

to use a parameterized function to describe the movement of the image points,

taking into account illumination variation by modifying the brightness con-

stancy constraint of optical flow.

• Pose variations. In some situations the face that is being tracked is not

frontal. These pose changes make the work more challenging; if the face

movements are just frontal, applying an affine transformation based tracker,

like the one shown in Section 5.2, can be enough to track the face. However,

this technique does not work when pose variation occurs. For example, when

the subject turns his face to the right, the whole pattern that is being tracked

changes, hence, the tracker has to deal with it and follow a new pattern.

As [14] shows, using Active Appearance Models enables to deal with pose

variation, although the results are not totally satisfactory. Another approach

to deal with it is presented in [10], where the authors use a Kernel Princi-

pal Component Analysis (KPCA) of local parts for pose independent object

recognition.
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• Facial deformations. Tracking faces through changes of expressions is an-

other challenging problem. Figure 2.4 shows an example of facial expression

changes.

Figure 2.4: Examples of different face expressions.

• Occlusion and clutter. As with most tracking problems, occlusion and

clutter affect the performance of face trackers. A simple approach to recover

from a loss of track is to compute the mean face that has been tracked so far.

With this technique, once the occlusion disappears the tracker would be able

to find again the face using the mean face. Section 5.4 shows a tracker working

with this technique and evaluates its performance.

2.3.2 Applications

Although most of the face tracking applications are the same ones that were ex-

plained in Section 2.2.3, where the face detection applications were discussed, in

face tracking there are some other ones.

In some contexts a face can not be detected due to, for example, an occlusion,

but it can be tracked because we already know where the face was in the previous

frame and how it looked like. In this particular scenarios face detection techniques

can not be applied, but it is still possible to follow the face using the face tracking

ones.

Some of this particular scenarios where face tracking can be used are:

• Face modeling. Reconstruction of the 3D model of a face from a video

sequence. In this case is clear that at some point the face will get lost if face

detection techniques are used, because the camera will go around the face and

face detection only works for frontal faces.

• Driver face tracking. When tracking a face of a person who is driving,

sudden face pose variations are very likely, for example when the driver turns
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its face to one side in a stop sign. A face tracking system based just in face

detection from a frontal camera would lose the face at this point.



Chapter 3

Technical background

This chapter gives an introduction to the whole mathematical and technical knowl-

edge that is required to understand the tracking methods detailed in Chapter 5.

It starts with a basic introduction to the affine transformations, concept required

by many of the trackers, and then it continues with more specific techniques and

publications, such as optical flow, Lucas-Kanade method, Viola-Jones object detec-

tion and template matching, all of them widely used in both face detection and face

tracking areas.

3.1 Affine transformation

Affine transformations are used to move and transform images, or parts of them,

along the two-dimensional spaces where they are represented.

3.1.1 Definition

Before giving a more technical definition of what an affine transformation is, it is

necessary to define two other concepts: vector space and linear transformation.

A vector space is defined as a system consisting of a set of generalized vectors and

a field of scalars, having the same rules for vector addition and scalar multiplication

as physical vectors and scalars. These vectors have to satisfy certain properties such

as associativity, commutativity, identity element, inverse element and distributivity,

among others.

A linear transformation is a function between two vector spaces that preserves

the operations of vector addition and scalar multiplication. When a translation,

which is moving every point a constant distance in a specified direction, is added to

11



12 CHAPTER 3. TECHNICAL BACKGROUND

a linear transformation, it causes what is known as an affine transformation.

Hence, as equation 3.1 shows, an affine transformation between two vector spaces

consists in a linear transformation followed by a translation.

x 7→ Ax+ b. (3.1)

In a finite-dimensional space, an affine transformation is given by a matrix A and

a vector b, and preserves the collinearity relation between points and the ratio of

distances along a line.

3.1.2 Representation with homogeneous coordinates

As it has been just mentioned, an affine transformation is composed by a linear trans-

formation and a translation. To represent such operations, ordinary vector algebra

says that using matrix multiplication is possible to represent linear transformations,

and for the translations vector addition is used.

To represent both operations in just one, homogeneous coordinates are used.

This representation requires that a ”1” is added at the end of all vectors, and all

matrices are augmented with an extra row of zeros at the bottom, an extra column,

which is the translation vector, to the right, and a ”1” in the lower right corner.

Being A a matrix, the result will look like[
~y

1

]
=

[
A ~b

0, . . . , 0 1

][
~x

1

]
(3.2)

which is equivalent to

~y = A~x+~b. (3.3)

As it has been shown, the use of homogeneous coordinates makes possible to

combine any number of affine transformations into one by multiplying matrices.

This fact makes affine transformation very attractive. Among other advantages, it

speeds up a lot its computational time.

Equation 3.5 shows a more specific example where a translation, tx and ty, is

added to a given point. 
x′

y′

1

 =


1 0 tx

0 1 ty

0 0 1



x

y

1

 . (3.4)
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which is equivalent to

x′ = x+ tx

y′ = y + ty (3.5)

In other words, each coordinate has been increased by its translation factor. Another

example, now showing how to rotate θ degrees is shown below.
x′

y′

1

 =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1



x

y

1

 . (3.6)

Finally, a more complex example that shows how to integrate rotation, transla-

tion and scale in one single affine transformation.
x′

y′

1

 =


sx · cos θ sy · sin θ tx

−sx · sin θ sy · cos θ ty

0 0 1



x

y

1

 . (3.7)

3.1.3 Practical examples

For a better understanding on how the affine transformations are going to be used,

this section presents a practical example where a square represented in a two-

dimensional space is transformed using affine transformations. Later on, in Chapter

5, a very similar approach will be applied in order to warp images and faces during

the tracking process.

In this particular case, shown in Figure 3.1, we want to rotate the original square

(blue) π
8

and increase its size 1.5 times. It must be taken into account that in order

to rotate the square it is first necessary to bring it to the origin.

Being B1 the original square in homogenous coordinates,

B1 =


2 2 3 3

2 3 3 2

1 1 1 1

 (3.8)

it can be brought to the origin using the affine transformation A1

A1 =


1 0 B1(1,2)+B1(1,3)

2

0 1 B1(2,1)+B1(2,2)
2

0 0 1

 (3.9)
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Figure 3.1: Rotating and scaling a square using affine transformations

which result is B2, and it appears in figure 3.1 as a green square.

B2 = A1 ·B1 =


−0.5 −0.5 0.5 0.5

−0.5 0.5 0.5 −0.5

1 1 1 1

 (3.10)

Once the center of the square is in the origin, it is possible to rotate and scale it

using the affine transformation matrix A2

A2 =


1.5 · cos(π

8
) 1.5 · sin(π

8
) 0

−1.5 · sin(π
8
) 1.5 · cos(π

8
) 0

0 0 1

 (3.11)

Finally, using another affine transformation matrix, the square is brought back

to its original location. The red square in Figure 3.1 is the final result.

3.2 Viola-Jones object detection

This section gives a technical description about another important requirement when

tracking a face: how to detect a face. As it has already been said in Section 2.2.1,

detecting faces in images is a tedious and hard job, but after the development of

many different approaches with poor performance, in 2001 Paul Viola and Michael

Jones came up with a solution [15].

With their revolutionary method, Viola and Jones were able to detect frontal

faces in images in real-time, with a very low false positive rate. The only drawback

was the previous training step before running the classifier, which is very slow but

it only have to be run once.
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To understand how their algorithm works, firstly it is necessary to review a

few other concepts, some of them also introduced by them, like Haar-like feature,

“integral image” and cascade classifier.

3.2.1 Haar-like features

Historically, the most common feature set used for digital images was the intensity,

for example, the RGB value of any given pixel, but such a set made the task compu-

tationally expensive. In 1998 a publication by Papageorgiou et al [12] introduced an

alternative feature set based on rectangular regions of the image and its addition.

The idea was, somehow, to categorize the images depending on the sum of the value

of its pixels in a particular area.

A few years later, in 2001, Viola and Jones proposed in their paper a modifi-

cation about how to compute this Haar-like features. They defined what is called

the “2 rectangle Haar-like feature”, although they also defined features with 3 and

4 rectangles. In their approach they defined Haar-like features composed by two

rectangles, and its value was the difference of the sum of pixels of each rectangle.

Using this values, it is possible to indicate certain characteristics of a particular area

of the images, such as edges or changes in texture. Figure 3.2 shows some of the

original features used in their paper.

Figure 3.2: Some of the features used in the original Viola-Jones paper.

Another new concept that Viola and Jones introduced was an ultra fast way to

compute the sum of any rectangular area in the image, at any position or scale,

called “integral image”.
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3.2.2 Integral image

In order to compute very fast the value of each rectangle feature, Viola and Jones

introduced the concept of “integral image”. The integral image at the location x,y

contains the sum of the pixels above and to the left of x,y, inclusive. Equation 3.12

shows its mathematical expression,

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′) (3.12)

where ii(x,y) is the integral image and i(x,y) is the original image.

Figure 3.3 shows a practical example about how it works, and how the value of

any given square can be computed with just four array references. The value of the

integral image at location 1 is the sum of the pixels in rectangle A. The value at

location 2 is A + B, at location 3 is A + C, and at location 4 is A + B + C + A.

Hence, the sum within D can be computed as 4 + 1 - (2 + 3) and clearly the

difference between two rectangular sums can be computed in eight references. Since

the two-rectangle features defined in Figure 3.2 involve adjacent rectangle sums

they can be computed in six array references, eight in the case of the three-rectangle

features, and nine for four-rectangle features.

Figure 3.3: The sum of the pixels within rectangle D can be computed with just

four array references.

3.2.3 Feature selection

Once Haar-like feature has been defined, and it is clear how integral images enable

to compute their value in a fast way, the following step is apply these concepts to

the learning set of the data base. The idea would be to compute the values for each
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feature in all the possible positions in every positive example, but this would be

prohibitively expensive to compute.

Because of this huge number of possible features, it is needed to perform a feature

selection process, during which only the most important ones will be selected. This

selection is made by an AdaBoost classifier, which in each round of boosting selects

one feature. After this classification, it is possible to check which features has been

selected for being more important than the other, and how they look like.

Figure 3.4 shows the first two features selected by Viola and Jones in their paper

from 2001, and it is easy to notice that the first one measures the difference in

intensity between the regions of the eye and the regions across the upper cheeks,

because the eye area is often darker than the cheeks.

Figure 3.4: First and second more important selected features selected by Viola and

Jones[15].

3.2.4 Cascade classifier architecture

One of the most relevant characteristics in this publication was that the classifier

was able to run in real time, at about 15 frames/second in a 700MHz CPU. In other

words, the system could analyze up to 15 images per second, detecting all the frontal

faces that appear in each of them.

To achieve such performance, they used what is called a cascade classifier, which

consists of a series of classifiers arranged in a cascade in order of complexity, where

each successive classifier is trained only on those examples which pass through the

preceding classifiers. When any of these classifiers rejects the image that is being

classified, this one does not goes further and the classifier starts over again with

another sample.
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With all the techniques detailed in this section, Viola and Jones were able to

detect up to 95% of the frontal faces in images, with a very low false positive rate.

3.3 Template matching

Template matching is a technique used in digital image processing for comparing

portions of images between them, sliding the patch or portion over the input image

using one of the methods described in Section 3.3.1. Once the patch has been tested

in all the possible locations in a pixel-by-pixel basis, a matrix containing a numerical

index according to how good the patch matches in each location is created.

In order to see how this matrix looks like, Figure 3.6 shows the result after

applying the template matching technique to the images shown in Figure 3.5. In

this case, the template image contains the yellow cartoon character that appears in

the upper left corner of the original image.

(a) Template (b) Image where to look for the tem-

plate

Figure 3.5: Input images for template matching.

It is easy to see that where the template best fits into the image is somewhere

in the upper left corner of the plot shown in Figure 3.6. To know the exact location

of the best match, it is just necessary to look for the coordinates of the red peek,

and by using them, locate the template in the original image.

Using this technique can be useful when the object to be tracked, for instance,

a face, is moving along the scene but always keeping the same appearance. If the

object changes its appearance, the matrix resulting after applying the template

matching will not have that important peek because there will not be a very clear

location where the object best matches, and this will lead to errors.
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Figure 3.6: Output matrix of the template matching, the highest peek is where the

patch best fits.

3.3.1 Template matching methods

The “matching error” between the patch and any given location inside the image

where this is being searched can be computed using different methods. This section

gives a brief description of each of them.

In the following mathematical expressions, I denotes the input image, T the

template, and R the result.

• Square difference matching methods. These methods match the squared

difference, which means that the perfect match would be 0 and bad matches

would lead to large values. Equation 3.13 shows its mathematical expression.

Rsq diff (x, y) =
∑
x′,y′

[T (x′, y′)− I(x+ x′, y + y′)]2 (3.13)

• Correlation matching methods. These methods multiplicatively match

the template against the image, which means that a perfect match would be

the largest. Equation 3.14 shows its mathematical expression.

Rccorr(x, y) =
∑
x′,y′

[T (x′, y′) · I(x+ x′, y + y′)]2 (3.14)

• Correlation coefficient matching methods. These methods match a tem-

plate relative to its mean against the image relative to its mean. The best
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match would be 1 and the worst one would be -1. Value 0 means that there is

no correlation. Its mathematical expressions are shown below.

Rccoeff (x, y) =
∑
x′,y′

[T ′(x′, y′) · I ′(x+ x′, y + y′)]2

I ′(x+ x′.y + y′) = I(x+ x′, y + y′)− 1

(w · h)
∑
x′′,y′′

I(x+ x′′.y + y′′)

T ′(x′, y′) = T (x′, y′)− 1

(w · h)
∑
x′′,y′′

T (x′′.y′′)
(3.15)

• Normalized methods. It is also possible to normalize each of the three

methods that have been just described. It is useful to normalize if there is

interest in reducing the effect of lighting differences between the template and

the image. In every case, the normalization coefficient is the one shown in

Equation 3.16

Z(x, y) =

√∑
x′,y′

T (x′, y′)2 ·
∑
x′,y′

I(x+ x′, y + y′)2 (3.16)

3.4 Good features to track

Besides template matching, there are plenty of other ways of tracking objects in a

video sequence. In many of them the interest will be in finding parts, or even single

pixels, from the previous frame that are recognizable in the present frame. The

key questions here are two: which parts are easier to track and how they can be

detected.

It is easy to realize that not all the points in a given frame are equally easy to

track. For example, if a point on a large white wall is picked, it will be hard to track

in the following frame because the whole wall looks the same. On the other hand,

if the picked point is unique, as for example the edge of the wall could be, it might

be not very hard to track in the following frame.

Thinking in a more technical way in how this unique points can be detected can

lead to conclude that looking for points that have a significant change, for example

a strong derivative, is a good idea. Indeed, this is a good start but not the definite

solution. Usually, a point with a strong derivative belongs to a sort of edge in the

image. However, finding the points of the edges is not enough because these points

look very similar to each other. It will be thus necessarily to find the most relevant

points among them: the corners.
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3.4.1 Harris approach

One of the most common definitions of what a corner is was defined by Harris [7]

in 1988. In his paper Harris said that a unique point in any given picture has to

be invariant to translation, rotation, scale and lighting. For this reason, he defined

three kinds of regions: flat, edge and corner. As Figure 3.7 shows, a flat region

does not present any change in any direction, an edge region does not change along

the edge direction, and finally a corner region shows significant changes in all the

directions. In the figure, arrows are green if some change happens when the window

is moved in this directions and red otherwise.

(a) Flat (b) Edge (c) Corner

Figure 3.7: The kinds of pixels defined by Harris, regarding its location in the image.

Harris’ definition relies on the matrix of the second-order derivatives (∂2x, ∂2y, ∂x∂y)

of the image intensities. It is possible to create new “second-derivative images” from

the second-order derivatives of images, taken at all the points in the image, or when

combined together, creating a new “Hessian” image. The terminology that has been

used comes from the definition of the Hessian matrix around a point, which is showed

in Equation 3.17

H(f) =


∂2I

∂x2

∂2I

∂x∂y
∂2I

∂x∂y

∂2I

∂y2

 (3.17)

Moreover, Harris defined what is called autocorrelation matrix of the second

derivative images over a small window around each point as follows

M(x, y) =


∑

−K≤i,j≥K

wi,jI
2
x

∑
−K≤i,j≥K

wi,jIxIy∑
−K≤i,j≥K

wi,jIxIy
∑

−K≤i,j≥K

wi,jI
2
y

 (3.18)
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where Ix and Iy are partial derivatives of I. According to Harris’ definition, corners

are places in the image where the autocorrelation matrix of the second derivatives

has two large eigenvalues. It basically means that there is texture, or edges, going in

at least two separate directions, just as real corners have at least two edge meetings

in a point. If λ1 and λ2 are the two eigenvalues of a given point:

• If λ1 ≈ 0 and λ2 ≈ 0 the point corresponds to a flat region, as Figure 3.7(a)

shows.

• If λ1 ≈ 0 and λ2 has some large positive value, the point corresponds to a edge

region, as Figure 3.7(b) shows.

• If λ1 and λ2 have large positive values, the point corresponds to a corner region,

as Figure 3.7(c) shows. Thus, this is going to be a good point to track.

The fact of using the eigenvalues of the autocorrelation matrix has also the ad-

vantage of working with quantities that are invariant to rotation, which is important

because the object that are going to be tracked might rotate while they move.

The final step in this Harris method consists in analyzing the eigenvalues λ1 and

λ2 that have just been found, to decide the corner strength, using Equation 3.19.

Mc = λ1λ2 − κ (λ1 + λ2)2 = det(A)− κ trace2(A) (3.19)

3.4.2 Shi and Tomasi approach

In 1994, a few years after the Harris’ publication [7], Jianbo Shi and Carlo Tomasi

[13] found out a way to improve the method. Instead of using the Equation 3.19

to compute the strength of a corner, they realized that it was enough comparing

the small of the two eigenvalues λ1 and λ2 with respect to a minimum threshold.

The results using this new approach were not only sufficient but also much more

accurate than the Harris one.

3.4.3 Examples of good features

In Chapter 5, some of the tracking methods use the good features to track technique.

This section shows a few examples to see the performance of the implementation of

the Shi and Tomasi approach that will be used later on, starting with a toy example

to check if it really works with an input image where the result is trivial, and then

moving to more complex tests.
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Figure 3.8 shows the performance after analyzing a simple chess table, where

the red dots indicate the good features to track found by the Shi and Tomasi. As

expected, in this toy example the good features to track are located at the edge of

every square, and nowhere else.

Input image My good features found

Figure 3.8: Good features to track of a chessboard. Obviously, the edges give more

information than any other point.

Once it is clear that the implementation of this algorithm works, it is time to try

it with a more complex example. It is also important to notice that in the previous

toy example both Shi and Tomasi method and Harris method gave the same output,

but this will not always happen.

A more complex example is shown in Figure 3.9, where the input image is a face.

In this particular case the Shi and Tomasi method was used with three different

quality level values, or thresholds. It is easy to notice that the lower the threshold

is, the higher it is the amount of good features selected, because the threshold

indicates the minimal acceptable lower eigenvalue for a point to be included as a

corner.

Figure 3.10 shows the same input image being analyzed by the Harris method.

In the case the κ value was 0.04 and the threshold goes from 0.001 to 0.01.

In these examples, the performance of both methods is very similar. After run-

ning a few more tests, it is possible to extract as a conclusion that tuning the

parameters will be an important issue when developing a tracker. In the examples

that have been just discussed, the best option for both methods would be the middle

one, because those detect perfectly areas such as the eyes, the glasses, the nose and

the outline of the face, that obviously are easier to track than, for example, points

in the middle of cheek.
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Quality level = 0.01 Quality level = 0.05 Quality level = 0.1

Figure 3.9: Good features found using the Shi and Tomasi method.

Quality level = 0.001 Quality level = 0.005 Quality level = 0.01

Figure 3.10: Good features found using the Harris method.

It is also very important to notice how relevant is the illumination is this algo-

rithm. For example, the upper right corner of the input image in Figures 3.9 and

3.10 has more light than the other parts and, because of that, the algorithm founds

more edges. This is something that has to be taken into account when selecting the

final good features.

Finally, let’s check if the implemented algorithm is really rotation invariant, as

theoretically suppose to be. This is a key feature for the future tracker, because the

objects to be tracked along the video, a face in this case, may rotate to one side

along the sequence.

Figure 3.11 shows the result after running the Shi and Tomasi edge detector in

the same image, but with a different rotation each time. Although the results are

not completely similar in all the cases, it is clear that the edge detector works good

with any given rotation. Also, as it has been mentioned earlier, it is very remarkable
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how important is the illumination in this algorithm.

Figure 3.11: Results after running the Shi and Tomasi edge detector in the same

image, but with different rotations.

3.5 Optical flow

Tracking consists in figuring out how the things are moving, and generally without

any prior knowledge about the content of any given frame. Hence, detecting the

motion between two frames is one of the requirements to develop a tracker.

It is possible to associate some sort of velocity with every pixel in an image or, in

other words, some displacement that represents the distance that a pixel has moved

between the previous frame and the current frame, and this is exactly what dense

optical flow means.

Although the theory looks fantastic, in practice to calculate the dense optical

flow is not easy. As it has been discussed in Section 3.4, not all the pixels in an image

are equally difficult to track. Hence, compute the dense optical flow, which means
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take into account every single pixel, is a hard task. A possible solution is to apply

an interpolation to the pixels that are hard to track, using the information from the

ones that can be well tracked. This solution leads to a higher computational cost

though.

The other solution is called sparse optical flow, and it relies in specifying the

subset of points to be tracked before running the optical flow algorithm. This subset

is composed by points that are good to track, such as the corners detected by the

Harris or Shi and Tomasi methods earlier discussed in Section 3.4.

Even though it is not possible to work in real-time with dense optical flow be-

cause of its computational cost, in some context there is more interest in getting

an excellent visual quality rather than a fast performance, for example in the movie

production. One of the most dense flow methods used nowadays was published by

Black and Anadan [1] in 1993, but it is out of the focus of this project.

3.5.1 Lucas-Kanade method

The Lucas-Kanade algorithm has become one of the most important sparse optical

flow techniques, mainly because it can be easily applied to a subset of points in the

input image.

This method relies only on the local information that comes from the surrounding

area of each point of interest. The drawback of using such small windows is that in

some situations large motions can move points outside of the local windows and they

thus become impossible to track. To fix this problem, the pyramidal Lucas-Kanade

algorithm was developed, which tracks starting from low level detailed images and

working down to higher detailed ones. Image pyramids allow that large motions can

be detected by local windows.

The main idea of the Lucas-Kanade algorithm is based on three assumptions:

• Brightness constancy. A pixel of an object from a video sequence does not

change its appearance from frame to frame. In other words, for gray-scale

images it is assumed that the brightness of a pixel does not change, which

means that it keeps its value along the time.

Being I(x, t) the intensity of the pixel x at time t, the mathematical expression

of this assumption is:

f(x, t) = I(x(t), t) = I(x(t+ dt), t+ dt) (3.20)
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which means, as Equation 3.21 shows, that the tracked pixel intensity does

not change over time.
∂f(x)

∂t
= 0 (3.21)

• Temporal persistence. Also known as “small movements”, it assumes that

the image motion of a surface patch changes slowly. It is possible to view this

change as approximating a derivative of the intensity with respect to time. To

better understand this assumption, firstly a simple one-dimensional case will

be shown.

Using the brightness constancy assumption that has been just described, sub-

stituting the definition of brightness f(x, t) while taking into account the im-

plicit dependence of x on t, x(x(t), t), and then applying the chain rule for

partial differentiation showed in Equation 3.22,

dz

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
(3.22)

where z = f(x, y), it yields to the following expression:

∂I

∂x

∣∣∣∣
t︸︷︷︸

Ix

(
∂x

∂t

)
︸ ︷︷ ︸

v

+
∂I

∂t

∣∣∣∣
x(t)︸ ︷︷ ︸

It

= 0 (3.23)

where Ix is the spatial derivative across the first image, It is the derivative

between images over time, and v is the velocity to be found. Hence, now

it is possible to define a simple equation for the optical flow velocity for the

one-dimensional case as follows:

v = − It
Ix

(3.24)

Figure 3.12 shows an example in the one-dimensional scenario that has been

just described, where an “edge” moves along the x-axis from the time t until

the time t+ 1, and the velocity v has to be found.

Figure 3.13 shows how the measurement of the velocity is done, taking into

account the first two assumptions, brightness constancy and small motion,

highlighting how the spatial derivative Ix and the temporal derivative It are

represented.
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Figure 3.12: Lucas-Kanade optical flow on one-dimensional space problem.

Figure 3.13: Ix and It representation in the Lucas-Kanade optical flow on a one-

dimensional space.

Now that the one-dimensional case has been discussed, it is time to move on to

the two-dimensional one, because it is the one needed for representing images.

Firstly another coordinate and its velocity, are added to the Equation 3.23.

The new equation looks as follows

Ixu+ Iyv + It = 0 (3.25)

where u and v are the x and y components of the velocity, respectively. The

problem of Equation 3.25 is that it has two unknowns for any given pixel.

This problem is called aperture problem and it occurs as a consequence of

the ambiguity of one-dimensional motion of a simple striped pattern viewed

through an aperture. Figures 3.5.1 and 3.5.1 show an example.

In order to solve this problem, the last optical flow assumption is used.

• Spatial coherence. It assumes that neighboring points that belong to the

same surface have similar motion and project to nearby points on the image

plane. In other words, if a local patch of pixels have the same motion, then
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Figure 3.14: Aperture problem: it is not possible to know how the lines are moving

just looking through the hole. To know the correct answer it is necessary to see the

end of the lines.

Figure 3.15: Aperture problem: here it is clear how the lines are moving. Even

though in Figure 3.5.1 seemed that the flow was going down and to the right, here

it is clear that lines are moving upwards.

it is possible to find the motion of the central pixel by using the surrounding

ones. Taking this into account, now Equation 3.25 can be solved.

The equation 3.25 can also be written as

∇IT · u = −It (3.26)

where u =

[
u

v

]
and ∇I =

[
Ix

Iy

]
, and if, for example, a 5-by-5 pixels window

is used around a given pixel to compute its motion, it is possible to set up 25

equations as follows.


Ix(p1) Iy(p1)

Ix(p2) Iy(p2)
...

...

Ix(p25) Iy(p25)


︸ ︷︷ ︸

A

[
u

v

]
︸︷︷︸
d

= −


It(p1)

It(p2)
...

It(p25)


︸ ︷︷ ︸

b

(3.27)

This is an over-determined system of equations, and it can be solved using the

least-square method, which will compute an approximated solution. Hence, to

solve the equation the following expression is used

(ATA)d = AT b (3.28)
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which in this case will look as follows:[∑
IxIx

∑
IxIy∑

IxIy
∑

IyIy

]
︸ ︷︷ ︸

ATA

[
u

v

]
= −

[∑
IxIt∑
IyIt

]
︸ ︷︷ ︸

AT b

(3.29)

and which solution is: [
u

v

]
= (ATA)−1AT b (3.30)

It is important to highlight that Equation 3.30 has solution only when (ATA)

is invertible, and this happens only when it has two large eigenvectors. Hence,

it is important that the center of the tracking window is a corner, because, as

it was discussed in Section 3.4, corners are the only regions of an image that

fulfil such requirements.

In other words, the subset of pixels that are used to compute the optical flow

are the ones found by the good features to track.



Chapter 4

Work environment

To achieve the goals of this project, it is firstly necessarily to select which tools

are going to be used. This is a key step because without the proper tools many

additional difficulties will appear while developing the methods.

After a research period, where the tools used in similar projects were tested and

evaluated, a decision was made. The two following sections explain the reasons

why such tools were selected, and how they work, splitting them in two subgroups:

hardware and software.

4.1 Software

Taking into account that this project belongs to the fields of computer vision, ma-

chine learning and image processing, it was quite clear that the implementation had

to be done using MATLAB and C++, complemented by the OpenCV library, be-

cause these are the main tools for such areas. These tools have been widely used

in the last few years, and are in a constant development. Other less trustable tools

might lead to errors.

• C++

This general-purpose programming language offers both robustness and high

execution speed, which are key characteristics for a real-time face tracker. Even

though some more specific tools for dealing with computer vision algorithms

exist, which are much faster to code, C++ offers a higher performance due to

its higher execution speed. It is important to keep in mind that to achieve

real time it is more critical the execution speed rather than the time needed

to code the algorithm.
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Another remarkable detail about the C++ is the environment that will be

used. In this case the Microsoft Visual C++ 2008 Express Edition was selected,

basically because it runs in Microsoft Windows, it offers all the characteristics

that this project requires, such as compiler, editor an debugger, and it is free

to download.

• OpenCV

OpenCV, which stands for Open Source Computer Vision Library, is a com-

puter vision library originally developed by Intel, but now it is open to ev-

eryone. It is mainly focused on real-time image processing and it is a cross-

platform library, which means that it can be used in many different operating

systems. OpenCV includes implementations of the most famous computer vi-

sion algorithms, some of them commented in Chapter 3, which will be very

useful in this project.

OpenCV is ready to be used in C++ just including its libraries in the source

code but, in this project, there is also interest in using OpenCV from MAT-

LAB, and this is going to be done by a MEX compiler. MEX-files, which

stands for MATLAB Executable files, are dynamically linked subroutines pro-

duced from C source code that, when compiled, can be run from MATLAB as

of they where normal MATLAB functions. The main reasons to use MEX-files

are speed, because they are much more efficient than normal MATLAB code,

and the advantage of not having to rewrite existing C++ code.

• MATLAB

MATLAB is a numerical computing environment that allows easy matrix ma-

nipulation, plotting of functions and data, and implementation of algorithms.

It also has a lot of toolboxes, such as image capturing, that makes very easy

to work with images. The main advantage of MATLAB is that it has a very

high-level programming language which makes it very faster to program but,

of course, it has the drawback of being much slower than C++ regarding the

execution speed. Here is where the MEX-files mentioned in the previous point

have an important role, because through them it is possible to speed up a

bit the MATLAB execution speed when running OpenCV code compiled as a

MEX.

Basically, MATLAB will be used to run early tests of the algorithms imple-

mented in C++ code through MEX-files, because its interface and high level
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language programming are perfect when the execution speed is not important,

but the result is. Once the tests have finished, the whole algorithm will be

written in C++ to get a more robust implementation.

4.2 Hardware

The hardware used in this project consists mainly in webcams employed to capture

the videos to be tracked, and personal computers to process the data and run the

algorithms.

Webcams

There are two main groups of cameras that have been used.

• IEEE-1394 based digital cameras: These cameras are the ideal so-

lution for acquiring high quality images with a regular laptop or PC.

Another reason for using such cameras is the famous CMU 1394 Digital

Camera Driver, developed by researchers from the Carnegie Mellon Uni-

versity and available to the general public for free. This driver works with

any webcam connected to a PC through the IEEE-1394 port, also know

as a firewire. The fact that this project was developed in the Carnegie

Mellon facilities and the existence of this driver was a good combination.

• USB based digital cameras: Although IEE-1394 based digital cameras

seem to be the best way to get the images that are being tracked, USB

cameras are cheapest and much more common and this is something that

has to be taken into account when developing a project.

Regarding the drivers, OpenCV library provides a set of functions to

directly capture images from a USB camera. Hence, no special libraries

are required and the software will work in any PC with any USB camera.

PC

Since there are not any special requirements regarding the PC hardware, a

normal domestic one will suffice. To give an example, most of the tests of this

project were run in a PC with a Pentium D 3.2GHz and 2GB DDR2 RAM

memory.
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Chapter 5

Practical part

This chapter explains the implementation of many different face tracking methods,

based on the knowledge given in Chapter 3. For each method, firstly the main

algorithm will be detailed, and then the pros and cons will be discussed. It is

also important to notice that each tracker method will be implemented to run in a

specific context, which means that each of them has a different goal to achieve. For

instance, some of them are focused just in frontal movements, because there might

be interest in knowing the exact rotation of a face, while some others are able to

track the face, whatever movement it makes, but without being able to compute the

exact rotation.

5.1 Template matching based face tracker

This is the first and a very simple approach to face tracking, totally based on the

template matching technique detailed in Section 3.3. The only reason why this

simple technique is included in this chapter is to compare its performance with the

more complex methods discussed later on.

5.1.1 Algorithm

Initially, a face detector based on the Viola-Jones object detection, explained in

Section 3.2, is executed in order to detect the main face of the first frame of the

sequence to track. Depending on how was the result of the face detector, this step

can lead to different paths to follow.

• One face found. If the face detector found just one face, the area where this

face is is going to be taken as the template to match in the following frame.

35



36 CHAPTER 5. PRACTICAL PART

• More than one face found. There is also the possibility that the face

detector found more than one face in the initial frame. Imagine the situation

where there is one person in front of the computer that wishes to be tracked,

but there are also other people behind him. In this case, the biggest of the

detected faces is taken as the good one.

• No face found. Some times the face detector does not find any face, either

because there is not any face in the initial frame, or there is actually a face

but with some occlusion or bad illumination. In this case, this frame is ruled

out and the following frame will be taken as an initial frame. As long as the

face detector does not find any face, a loop will be ruling out frames until a

face is found.

Once a face has been found in the initial frame, a region of interest, ROI, will be

set up around this area. This ROI will be used to define the region where to run the

template matching algorithm in the following frame, because the assumption that

a face does not move a lot from any given frame to the next one is taken. If in the

following iteration the template matching algorithm runs only inside the ROI, the

performance will speed up a lot because there is much less space where to look for

the template. The first frame in Figure 5.1 shows an example where the blue square

is the detected face found by the face detector, and the green square is its region of

interest.

The following step, as it has been already said, will be to look for the template

inside the ROI of the following frame using the template matching algorithm. Once

the best match is found, this new area is taken as a new template, and a new ROI

is set around this area. In other words, in every frame the template is updated with

the best match of the previous template inside the present ROI.

It is important to remark that the face detector only runs in the first frame and

from then on all the faces are found using match template.

Figure 5.1 shows an example of how a face is detected from the first frame to

the second one.
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Figure 5.1: Example of how to detect a face in a template based tracker. From

left to right and up to down, in the first frame the blue square is the face found

by the face detector, and the green square is the region of interest. In the next

frame the template matching algorithms look for the best match of the initial face

inside the green area. Finally, the blue area shows where the best match was found,

corresponding to the hottest point of the matching scores matrix.

5.1.2 Flowchart

Figure 5.2 show the flowchart of this algorithm.

5.1.3 Pros and cons

As it has already been said, this is a very simple tracker and this simplicity is its

main strength. Moreover, it is important to say that it is scale, pose and rotation

independent, and theoretically it will keep tracking the face even when this one is

not in a frontal position.

But not everything is perfect; it has a lot of weaknesses and drawbacks. The first

one happens when an occlusion occurs and the face is not totally visible. This situ-

ation will corrupt the template to track, because it will contain the occlusion itself,
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Figure 5.2: Flowchart of the tracker based on the template matching algorithm.

and it is possible that in the following iterations the template matching algorithm

would track the occlusion instead of a the face. This could be fixed reinitializing the

template to track periodically, using the face detector algorithm.

There is also a problem with the scale factor, because the tracker does not know

how far or close the subject is with respect to the camera. The main consequence

of this weakness is that the template size is always the same, even if the subject to

track moved far away from the camera, which means that the face looks much more

smaller.

Finally, this tracker does not give any information about the rotation, because

it does not know anything about how the face moves rather than the translation

motion.
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As it has been showed, this tracker is a very simple one and it is only useful

when a face has to be tracked in a very simple scenario, and no information other

than the translation wants to be detected.

5.2 Affine face tracker based on the eye position

This tracker is firstly initialized by the face detector based on the Viola-Jones method

discussed in Section 3.2, and then uses the template matching algorithm to find out

the translation, rotation and scale factors of a frontal face very precisely. The

only way to do so is tracking independently two or more points from the face, and

according to how one of these moves with respect to the others it is possible to

compute the affine motion of the face.

5.2.1 Algorithm

Idea

As it has just been said, two or more points are required to detect the rotation

and scale motion of any object in a video, and these points can be, for example, the

eyes. If the initial position of the eyes is known, it is possible to compute the their

initial slope, and if the eyes can be tracked, it will be always possible to compute

their slope at any moment. Thus, the rotation of the face can be detected in any

given frame.

The same idea can be applied to the scale factor. If the absolute position of each

of the eyes can be computed, then their distance is also known. Depending on if

this distance gets higher or lower, it means that the face is getting closer of farther.

Figure 5.3 shows and example where a face is initially close to the camera and

the distance between the eyes is dn−1, and in the following frame the face moved

away from the camera and the new eyes distance is dn. Using affine transformations,

discussed in Section 3.1, the scale factor needed to go from frame n− 1 to frame n

would be:

s =
dn
dn−1

(5.1)

where, being p2(x, y) the center of the left eye and p1(x, y) the one of the right one,

dn is defined as follows

dn =
√

(x2 − x1)2 + (y2 − y1)2 (5.2)
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(a) Close (b) Far

Figure 5.3: Computing the scale factor is possible using the initial and the present

eyes distance.

Once the scale, rotation and translation factors are known, it will be possible to

apply the transformations that the face has been doing to the original square where

the face was in the first frame. Hence, only detecting the first frontal face is enough

to track the face, because this square will be modified using affine transformations

along the time.

Figure 5.4 shows a real example of this tracking method. Figure 5.4(a) is the first

frame of the sequence, where the face and eyes have been automatically detected

using the Viola-Jones method. A few frames later, as shown in Figure 5.4(b), the

original red square has turned to the right and became smaller, exactly like the face

did.

(a) Initial frame, face and eyes automat-

ically detected

(b) Face automatically tracked

Figure 5.4: Real example of how the affine face tracker based on the eye position

works.
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Initialization

The initialization is one of the key steps of this tracker, because if the eyes and

face are not properly detected the tracker will not work. Four different cascades

classifiers based on the Lucas-Kanade method are used for the initialization: one for

the left eye, one for the right eye, one for the eye area and one for the whole frontal

face.

The reason for using four different cascade classifiers is because each of them have

a certain false positive rate, but combining their results it is possible to discard most

of them. For example, imagine that the left eye detector detects three left eyes in

one single face, which means that two of them are false positives. To automatically

discard them, some constraints are added: for example the left eye has to be inside

the area detected by the eye area classifier classifier, and to the left of the right eye

classifier.

An example of how a false positive looks like, and how to select which ones

discard by using multiple cascade classifiers is showed in Figure 5.5.

Figure 5.5: Red squares are false positives from the left eye detector, but they can

be automatically discarded because they are out of the eye area (in blue) found by

another cascade classifier trained to find the region around the eyes.

Hence, the false positives of the cascade classifiers are the main problem during

the automatic initialization step. Sometimes it will take a few frames until the al-

gorithm makes sure that the eyes have been correctly detected.

Main loop

The main loop of the algorithm starts when the face area and the center of both

eyes have been automatically detected. The goal of this step is to compute the
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translation, rotation and scale that the detected face has from any given frame with

respect to the previous one.

• Translation. The translation is found using the template matching method,

discussed in Section 3.3, in both eyes. Once both eyes have been detected they

are used as templates which, in the following frame, will find its best match

inside the eye area. Defining the center of the left and the right eyes in frame

n as follows

Ln(xln, yln)

Rn(xrn, yrn) (5.3)

the translation factor from any given frame (n − 1) to the following frame n

is computed as follows

tx =
(xln − xl(n−1)) + (xrn − xr(n−1))

2

ty =
(yln − yl(n−1)) + (yrn − yr(n−1))

2
(5.4)

• Rotation. The rotation factor is computed using the slope of the eyes, com-

paring the previous one with respect to the present one. Defining the center

of the eyes as Expression 5.3 shows, it is possible to compute the slope of the

eyes at frame n as follows

slopen = arctan

(
yrn − yln
xrn − xln

)
(5.5)

Hence, the rotation from any given frame n− 1 to the following frame n is

θ = slopen−1 − slopen (5.6)

• Scale. As it has been already explained, the scale factor is computed from the

distance between the eyes, comparing the one in the previous frame and the

present one. Being Equation 5.2 the distance between the two eyes in frame

n, the scale factor between frame n−1 and frame n is defined in Equation 5.1.

At this point of the main loop, the translation, rotation and scale factors that

describe the motion of the face from the previous frame to the present one, are

known. All this information can be compress in one single affine transformation

matrix An, which contains the transformation needed for going from the frame n to

frame n+ 1:
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An =


s · cos θ s · sin θ tx

−s · sin θ s · cos θ ty

0 0 1

 (5.7)

Having an affine matrix transformation for each frame, it is possible to compute

the total affine transformation needed to go from the initial frame to the present

one just by multiplying all of them.

AT = An · An−1 · . . . · A1 (5.8)

And finally, multiplying the initial square found by the face detector in the first

frame by this AT matrix, the new position of the face will be set. Figure 5.4 shows

the result, where it is easy to see how accurate is the tracker.

5.2.2 Flowchart

Figure 5.6 shows the flowchart of this algorithm.

5.2.3 Pros and cons

This tracker is, in general, much more accurate than the matching template based

one, discussed in Section 5.1, basically because this one gives information about

the scale and rotation of the tracked face, and this is a very important feature

for applications related with, for example, human computer interaction. Another

advantage of this tracker is the eye detector and the eye tracker implemented in it,

because this can lead to applications where there is interest in, for example, checking

if the subject is falling sleep, or tracking his/her gaze.

But not everything is perfect, this tracker has also some important drawbacks.

The most important one is its dependency on the good eye tracking by the template

matching algorithm. If one of the eyes is not properly tracked, one of the points

used to compute the slope and the rotation factors will not be correct, which will

make the tracker to get lost.

Another important drawback is its dependency on tracking frontal faces, be-

cause the whole algorithm is based on affine transformations, which means that the

tracked object has to have always the same information. If at some point the face

turns to one side, there is not any affine transformation to guess how the face has

moved because the face has changed its appearance. As the computation of the
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Figure 5.6: Flowchart of the affine tracker based on the position of the eyes

affine transformation is made from the movements of both eyes, the most important

constraint in this tracker is that both eyes have to be visible in every single frame.

5.3 Affine face tracker based on the optical flow

All trackers showed so far were based on the template matching algorithm and,

even though the previous tracker was able to detect the rotation and scale factors

using the movements of the eyes, there are other more robust methods to detect the

motion between two given frames.

Computing the optical flow, method that was showed in Section 3.5, is another
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way to find the motion between two frames and, although it requires a more complex

computation than the template matching algorithm, it gives a more robust and

reliable performance.

5.3.1 Algorithm

Idea

The main idea is to compute how the most important pixels from the present

frame move to the following one. If this motion can be found, then the affine

transformation that gives the relation between these two frames can be also found.

As in the affine tracker based on the eyes position, once the affine matrix between

any two given frames is known, it will be possible to bring the initial square where

to face was, to the present location.

In other words, the key idea is to run the face detector just in the initial frame,

where the face is in a straight frontal position and can be easily detected, and bring

the square around this initial location to wherever the face is in the present frame,

in which maybe the face detector could not find the face due to, for example, its

rotation.

Before giving further details about how this tracker works, there are a few con-

siderations that have to be taken into account. As there is only interest in tracking

the face, this area is the only part of the whole frame that will be used to compute

the optical flow. Otherwise, if something in the background is also moving, this

motion would be also detected and used to compute the average flow.

Initialization

As said, the face region is the only part of the whole frame that will be used

and the first step consists thus in its detection. As usual, a face detector based on

the Viola-Jones algorithm will be employed, and a bounding box and a region of

interest will be set around it.

Once the initial face has been detected, the only thing that lasts, before the

tracking starts, is to detect the good features to track inside the face. This is going

to be done either by the Harris edge detector commented in Section 3.4.1 or by the

Shi and Tomassi method shown in Section 3.4.2. Both methods give a very similar

performance, though the Shi and Tomassi one supposed to be a bit faster. An

important detail when running such methods is to set up correctly the parameters

they have, especially the one that refers to how many good features are going to be
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selected.

An important improvement with respect to the previous tracking method, based

on the eyes position and discussed in Section 5.2, is that in this case when selecting

the good features to track there are not false positives, because prior to be tracked

by the optical flow algorithm it is no possible to know which ones have been well

tracked and which ones have not.

Figure 5.7 shows a real example with the initial face detected and its good fea-

tures to track selected by the Shi and Tomassi method.

Figure 5.7: Initialization of the algorithm with the good features to track.

Main loop

The main goal in this step consists in tracking the good features from the previous

frame to the present one. As it has been already said, this is going to be done using

the optical flow algorithm proposed by Lucas-Kanade and discussed in Section 3.5.

Supposing that AT is initially defined as the identity matrix, these are the steps

the main loop follows:

• Warp the present frame using AT
−1. Initially the current frame will be

warped using the inverse of the matrix AT , which contains the affine transfor-

mation needed for going from the initial frame to the previous one. Once this

step is done, the face in the present frame would be almost in vertical position.
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• Locate the face in the warped present frame. This is an optional step.

Sometimes, to simplify the computation, the face area is the only region taken

into account when computing the optical flow, hence it is necessary to ap-

proximately detect the face. This can be done either running the template

matching method using the previous face as a template, or simply taking the

coordinates where the face was in the previous frame and enlarge its region.

Hopefully the face will be still in there.

(a) Frame 1 (b) Frame 16 (c) Frame 20

Figure 5.8: Example of a sequence that will be tracked by this method

• Recompute good features. The good features to track inside the present

frame face that has been warped are computed. They should look similar to

the original good features to track, but due to illumination changes they may

vary a bit.

• Compute optical flow. At this point of the algorithm, with the previous

face warped, its selected good features to track and with a guess of where

the face is in the present frame, the Lucas-Kanade optical flow approach is

executed. This approach has as an input parameter the coordinates of all

the good features to track from the previous frame and gives back a matrix

with the coordinates of these features tracked in the present frame. Figure

5.9 shows the result, where for each of the features a line joins its previous

location with its current one.

• Mean motion. The idea now is to compute the average motion of these

tracked features, and take it as the motion that the face have experimented

from the warped previous frame to the present one. In other words, the face

was initially warped AT
−1, which was the transformation found so far, but

there was still a missing transformation between the previous frame and the

current one; this is exactly what has been found. With this motion, a matrix
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Figure 5.9: Optical flow of the good features to track between the first and the tenth

frame of the sequence shown in Figure 5.8. In this sequence the subject is moving

his face to the left, as the optical flow vectors shows.

An that gives the relation between the previous warped frame and the present

one can be set. The way that this matrix is built was discussed in Section 3.1.

• Recompute AT . Now that the motion between the previous frame and the

current one as been computed and expressed in matrix An, it is possible to

add this transform to the AT affine transformation matrix using the expression

that follows

AT new = An · AT old (5.9)

• Transform initial square. Finally, after all the previous steps, the square

found by the face detector in the initial frame can be transformed and brought

to the current face position.

5.3.2 Pros and cons

This is a much more complicated technique, compared with the other trackers per-

viously discussed. One of the more complex steps to do, which that requires a lot

of computational effort, is warping the current frame back to almost the original

position, using the AT
−1 matrix. This is done using an interpolation which takes

too long in high resolution images. Furthermore, as this tracker works with affine

transformations, it is also only able to track frontal faces.

Regarding the good points of this tracker, the more important one is its ability

to keep tracking a face even when small occlusions occur. Such situation can be



5.4. FACE TRACKER BASED ON THE MEAN FACE 49

handled because it is possible to compute the standard deviation of the length of

all the vectors that draw the optical flow. If one of these vectors is too long with

respect to all the others, it is possible to affirm that its corresponding feature has

not been properly tracked, which can be caused for example by an occlusion. Thus,

if most of the good features can be correctly tracked, but some of them can not due

to an occlusion, it will be still possible to track the face.

5.4 Face tracker based on the mean face

The performance of this tracker exceeds the one of the template matching based

tracker reviewed in Section 5.1, where the template used was just the last face

found. That method had an important drawback: when an occlusion occurs the

template to match gets corrupted with such occlusion, thus, in the following frame,

if the occlusion is gone, the algorithm will not be able to match the object.

A simple way to sort out this handicap is to compute the mean of the object to

track, for example, in the last 100 frames. In other words, to learn how the object

looks like most of the time. Then, when a occlusion occurs, perhaps the matching

template algorithm will not find any good match using the mean face, but when

such occlusion disappears the tracker will automatically recover because the mean

of the last 100 frames will still look good.

5.4.1 Algorithm

The initialization process is very similar to the one of the tracker showed in Section

5.1, running the template matching algorithm until finding a face, and setting up a

region of interest around it.

A buffer of the last 100 faces found is created to compute a mean face in every

iteration. Of course, during the first 100 frames the mean face is computed only by

the total faces detected so far.

To check how good is the best match between the mean face and the present

frame, the difference between them is computed and compared to a certain threshold.

• If the difference is higher than the threshold. It means either that an

occlusion is happening or that the face was not properly tracked and that best

match does not thus correspond to any face. In this particular case, the region

of interest around that best match is set up bigger than the normal one.
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• If the difference is lower than the threshold. It means that the face has

been properly tracked and the best match corresponds to a face. The region

of interest is set up around the new face location.

In both cases the best match is taken as a face and added to the mean face.

Thanks to the fact that the mean face is computed using the last 100 best matches,

even when some of them are not correct, it will still look as a face. Figure 5.10

shows how the mean face evolves along a sequence: even though it gets blurry along

the time, it always looks like a face.

(a) (b) (c) (d)

Figure 5.10: Evolution of the mean face along the first 100 frames of a sequence.

The key idea of this method is taking the mean face as a template. When the

subject does dramatic movements the tracker will get perhaps get lost but:

• The tracker will know that the face is lost.

• The tracker will automatically recover the face as soon as it becomes visible

again.
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5.4.2 Flowchart

Figure 5.11 shows the flowchart of this algorithm.

First frame
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Face found?

More than 
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Figure 5.11: Flowchart of the template matching face tracker based on the mean

face.

5.4.3 Pros and cons

The main advantage of this tracker is its ability to automatically recover when it

loses the face due to dramatic movements or occlusions. This makes the tracker a

very reliable and robust system because, at some point, it will automatically find
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again the face.

About the drawbacks, the more important one is the lack of information about

the scale and rotation factors.

5.5 Non-affine eye tracker

Since most of the trackers discussed so far are based in the use of affine transforma-

tion, they are not able to deal with pose changes.

This tracker shows a very simple approach of how to deal with objects that

disappear from the image in a certain frame, as the eyes do when the subject turns

his face to one side.

5.5.1 Algorithm

This algorithm is based on the template matching method showed in Section 3.3,

with which the eyes are going to be individually tracked frame by frame. Initially,

the eyes can be either manually selected by clicking its center with the mouse pointer,

or automatically detected using cascade classifiers trained to detect eyes, method

that has been already discussed in the initialization part of the affine tracker based

on the eyes position explained in Section 5.2.1.

Once the eyes have been initialized, the algorithm creates a patch for each of

them. This patches will be used to track the eyes along the sequence, basically using

the template matching method showed in Section 3.3.

The main innovation of this tracking method relies on how the algorithm detects

that a tracked area, any of the eyes in this particular case, disappears from the view

of the camera. In every single frame, when the template matching algorithm has

found the best match for each of the patches, the new coordinates have to fulfill a

list of requirements. If they does not pass them, it means that the new position that

has been found is not correct and the corresponding eye is considered lost.

This requirements list consists of a set of situations that can never happen in a

human face. For instance, if the distance between the corners of the eye gets smaller

and smaller, until it is less than 0.5 cm, it means that the subject is turning his face

to one side and therefore, one eye is lost. Other requirements are related with the

slope between the eyes, as it has to be the same for any given pair of eyes’ corners.

When any of the eyes gets lost, the tracker keeps looking for the last correct

template found in both the last position where was detected and in its original
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position. If the eye is lost because the subject turned his face to one side, it is

assumed that he will turn back to a frontal position again. When this happens, the

tracker will detect again a good match between the last good eye patch found and

the current eye appearance and the eye will be tracked again.

Figure 5.12 shows an example of a sequence where a subject turns his face to

one side, and then turns back frontal again. In the first frame, showed in Figure

5.12(a), both corners of both eyes are correctly detected. A few frames later, in

Figure 5.12(b), the face appears turned to the left and the outer corner of left eye

is already hidden. The tracker correctly detects this and stops tracking it. The

face keeps turning until it reaches a total profile position, showed in Figure 5.12(c),

where almost non of the eyes are visible and they are all represented in one single

point. Finally, in Figure 5.12(d), the subject turns frontal again and the tracker

recovers the lost points.

(a) Initial position (b) Turning to one side

(c) Profile shape (d) Turning back to frontal position

Figure 5.12: Real example of the non-affine eye tracker. In this sequence the subject

turns his face to one side and then turns back frontal again.
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5.5.2 Flowchart

Figure 5.13 show the flowchart of this algorithm.

First frame
to track

Detect face

Detect eyes area Inside face
area?

Read next frame

Detect right
eye corners

Inside eyes
area?

Detect left
eye coners

On the left
of right eye

Set up a ROI
for each eye corner Read next frame

Template matching
algorithm  for each

eye corner

Is the best match
in a possible

location?

Best match =
new template

and new location

Plot best match

Keep the same 
location and template

Figure 5.13: Flowchart of the Non-affine eye tracker algorithm.

5.5.3 Pros and cons

This tracker is just a simple approach to show an easy way to keep tracking parts

of the face that at some point get hidden along the sequence, but then show up
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again. As it does not work using affine transformations, it does not compute neither

the scale or the rotation factors, but they can be easily implemented in future

improvements.
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Chapter 6

Results

This chapter summarizes the results obtained once all the tracker techniques ex-

plained in Chapter 5 have been implemented. Although in order to check the real

performance of each tracker it is necessary to use video format, key frames where it

is possible to see the performance in specific moments along the tracking sequence

will be shown.

Each of the following sections shows the performance of an specific feature, such

as frame per second rate, scale precision, pose robustness, etc., for each of the

implemented methods.

6.1 Translation precision

The translation precision is very similar in every implemented method, but it is a

bit better in the ones based on the template matching algorithm than in the ones

based on the optical flow.

The reason of this difference is the small error that occurs when the optical flow

from the good features to track is computed. Since some of these features cannot

be correctly tracked, the computed average movement might be a little corrupted

by such bad tracked points.

Table 6.1 shows, among other results, the translation precision performance for

each of the trackers.

6.2 Scale precision

The scale factor gives information about how close is the subject with respect to

the camera. When the subject that is being tracked is closer to the camera, his
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face looks bigger in the video and the opposite occurs when he moves away from

the camera. These changes must be reflected in the square around the face: it must

get bigger or smaller depending on the movements of the subject. Otherwise, it will

either track the face just partially or track other non-relevant objects present in the

background of the image.

Figure 6.1 shows an example of the tracker based on the mean-face template

matching, discussed in Section 5.4, where the subject comes closer to the camera.

Since such tracker does not take into account the scale factor, in Figure 6.1(b) the

face does not fit into the square.

(a) (b)

Figure 6.1: Example showing the importance of the scale factor. In this sequence

the tracked face comes closer to the camera, but the square that shows where the

face is keeps the same size. A tracker method that contemplates the scale factor,

would increase the size of the square.

Such problem is fixed in the affine tracker based on the eyes position where,

when the subject comes closer to the cam, the square gets bigger. Figure 6.2 shows

the performance of this tracker.

6.3 Rotation precision

The rotation factor is only computed in the tracker based on the optical flow, showed

in Section 5.3, and in the affine tracked based on the position of the eyes, showed in

Section 5.2. The other methods cannot compute this feature.

Because of the small error caused by the optical flow computation, explained in

Section 6.1, the rotation precision computed by the eye tracker is a bit better.

Figure 6.2 shows a few frames where the eye tracking based tracker is running,

and it is possible to see how precise the rotation factor is.
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(a) (b)

(c) (d)

Figure 6.2: Performance of the affine tracker based on the eyes tracking. Translation,

rotation and scale factors work perfectly.

On the other hand, Figure 6.3 shows the performance of the rotation factor in

the tracker based on the optical flow. As it is easy to notice, for example in Figure

6.6(b), the green square should be more rotated to the right.

Finally, Figure 6.4 shows an example where the simplest of all the trackers, based

on template matching and described in Section 5.1, is used to track a sequence where

the subject turns his face to one side. Since in this technique the scale and rotation

factors are not computed, the green square is always in an vertical position and has

always the same size.

6.4 Illumination robustness

The illumination factor has to be taken into account when tracking an object in a

video, because depending on the amount of light that a given frame receives, the

object will look darker or lighter.

An easy way to deal with this problem is applying the histogram equalization

method before processing each of the frames to track. This technique distributes

the intensities of any images in a better way, substantially increasing the contrast
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(a) (b)

(c) (d)

Figure 6.3: Performance of the optical flow based tracker. The rotation factor is

almost perfect, but not as good as the results showed in Figure 6.2.

of the images.

Figure 6.5(a) shows an example where the illumination is not good enough to

clearly distinguish a face. Before processing it, the region of interest where the face

is supposed to be, highlighted with a pink square, was enhanced by the histogram

equalization method. The enhanced found face is showed in Figure 6.5(b).

Since this can be applied to all the implemented methods, they are all illumina-

tion invariant.

6.5 Pose robustness

The methods based on affine transformations are only able to track faces that do

frontal movements, and this is a huge constraint. On the other hand, the template

matching based trackers are pose invariant, but they can compute neither the scale

nor the rotation factor.

Figure 6.6 shows an example of the template matching based tracker where the
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(a) (b)

Figure 6.4: The rotation factor cannot be detected using the template matching

algorithm. Notice how the green square is always in a vertical position.

(a) (b)

Figure 6.5: Example of the enhancement achieved using the histogram equalization

technique before tracking the face.

face can be tracked even if it is in a profile position. Although this result looks good,

this is not a very robust tracking method because it does not give any information

but the translation, and the template to track gets corrupted very easily.

6.6 Occlusion robustness

The affine tracker based on the optical flow, and the template matching based on

the mean face are the two methods that offer a higher partial occlusion robustness

performance.

In the case of the first one, based on the optical flow, this robustness is achieved

thanks to the optical flow from the good features to track, with which is possible

to distinguish the points that have been well tracked by computing the standard

deviation of all of the tracked points. If an occlusion happens, the good features
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(a) (b)

(c) (d)

Figure 6.6: Performance of the template matching based tracker, showing its pose

robustness.

to track of the occluded area will have an optical flow much different that the well

tracked ones and they can be discarded.

The second method that is invariant to partial occlusions is the one based on

the mean face template matching algorithm. With this algorithm, the template

to match is computed using the last 100 found faces. Therefore, after a period of

occlusion of the face, it can be tracked again because the mean face would look

still like the face being tracked. However, during the occlusion time the tracker will

probably get lost.

6.7 Execution speed

One of the goals of this project was to develop real-time algorithms, being the

execution speed an important feature to analyze. As a conclusion, and taking into

account that the frame size of all the tested sequences is 640x480 pixels, it is possible

to confirm that all the implemented methods are able to run in a frame per second

rate high enough to work in real-time systems, except the affine from optical flow
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showed in Section 5.3.

The reason of the slow execution in the case of the affine from optical flow tracker

is the need to warp each of the frames using the accumulated affine transformation

matrix when trying to bring each of the faces to the original location. As it was

already commented in Section 5.3, this process is very time-consuming. A few

solutions have been tested in order to make this step faster. One of the most

satisfactory consists in warping just the face area instead of the whole frame, because

the size of the image to warp is much smaller. However, the speed up that this

solution brings is not enough to achieve a real-time execution of this algorithm.

The frame per second rates achieved for each of the algorithms are summarized

in Table 6.2.

6.8 Summary tables

Translation Scale Rotation

precision precision precision

Template matching Excellent None None

Eyes position based Excellent Excellent Excellent

Affine from optical flow Very good Very good Very good

Based on mean face Excellent None None

Non-affine eye tracker Excellent None None

Table 6.1: Performance of each of the methods, regarding the translation, scale and

rotation factors.

Illumination Pose Occlusion Speed

robustness robustness robustness execution

Template matching Excellent Good Poor ∼15 fps

Eyes position based Excellent Poor None ∼12 fps

Affine from optical flow Excellent Poor Very good ∼3 fps

Based on mean face Excellent Very good Very good ∼12 fps

Non-affine eye tracker Excellent Good None ∼13 fps

Table 6.2: Performance of each of the methods, regarding the robustness to illumi-

nation, pose and occlusion.
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Chapter 7

Conclusions and future work

Taking into account the initial goals of the project and once the performance of the

implemented methods has been discussed in Chapter 6, this chapter aims to extract

some general conclusions.

Moreover, it summarizes the future work that can be done in order to improve

the performance of the algorithms, with the final goal of having a totally robust face

tracker, capable of tracking a face in any given scenario.

7.1 Conclusions

Face tracking is a hard problem to solve due to the large amount of variables that

appear when trying to teach a computer how a face looks like and how it moves.

Recent advances in machine learning and computer vision techniques have made

this work increasingly possible, but there is still a long way to go to create a totally

robust face tracker.

Face tracking would not be possible without a proper face detection algorithm

which, thanks to Viola and Jones [15], is now an easy task that can be done in real-

time when working with straight frontal faces, but does not work in any other pose

or rotation. Thus, a face cannot be tracked just detecting it in a frame-by-frame

basis, because it might be not always detectable by the Viola-Jones algorithm.

These restrictions lead to the development of face tracking techniques that, for

any given frame and having the face detected in the previous one, should be able

to find its location in the present one. In other words, the goal is now to find the

motion between any two given frames, task that can be done by template matching

or optical flow algorithms, among other techniques.

Each one of these techniques have a different performance and, depending on
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what is being tracked and how it moves, one of them will be more appropriate to

use than the others. Without entering into details about their performance, it is

important to say that none of both is good enough to build a totally robust system,

basically due to the large amount of variables to deal with.

Adding more information to the algorithms, for example, how the mean-face

looks like or where the face is supposed to be located in the present frame, is a

way to help them to achieve its goal. But again, even though it is possible to build

robust methods for specific contexts, there is not a universal robust method yet.

In this project a few methods have been developed and tested in different sce-

narios. The goal was to develop a face tracker, and it has been achieved with the

constrain that, for each scenario, a particular method has to be used.

7.2 Future work

There is still a long way to go until a robust method to track faces that works in

any given context can be built. To complete the work done in this project, some

other recent published methods can be studied and implemented, such as Active

Appearance Models [4], Adaptive PCA Face Tracking or Mean-Shift[3].

Active Appearance Model is a method published by Cootes, Edwards and Taylor

in 2001 [4] that matches a statistical model of object shape and appearance, built

in a training phase, to a new image. Applying this method and having a proper

previous training step, it could be possible to track faces not only in frontal position

but also in any other pose or expression. The only drawback of this method is its

computational cost, which is usually too high to run in a real-time system.

Adaptive PCA Face Tracking is another technique that would bring more ro-

bustness to the tracker. It consists in applying the Principal Component Analysis,

PCA, algorithm to all the faces founds so far, in order to find a simpler way to

represent them. As the video sequence goes on, a new PCA basis is computed in

every iteration, process that will lead to a very robust representation of the face,

since it takes into account the different poses and expressions observed so far.

Applying these methods and other ones that are currently being researched would

help to create a more robust face tracker. Moreover, it would be also interesting

to investigate the development of an algorithm that uses the best part of each of

the methods discussed along this project, resulting in a both pose and expression

invariant tracker.
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Resum

Les tècniques de seguiment facial s’han convertit durant els darrers anys en un

dels temes de recerca més populars en el camp de la visió per computador, prin-

cipalment gràcies a la gran quantitat de situacions on poden ser aplicades en el

món real. Tot i que la definició del problema és molt fàcil d’entendre, trobar una

solució robusta resulta ser molt dif́ıcil, en part per culpa de, per exemple, els canvis

d’il·luminació, posició, aparença, etc., que se succeeixen al llarg d’una sequència de

v́ıdeo. Inicialment, aquest projecte fa una ràpida introducció a l’estat del art tant de

les tècniques de seguiment facial com de les de detecció de cares. A continuació, es

mostren los publicacions més rellevants dels últims anys en aquesta àrea, com per

exemple el mètode de reconeixement d’objectes de Viola i Jones, o l’algoritme de

Lucas i Kanade per calcular el flux òptic. Finalment, s’implementen cinc diferents

algoritmes de seguiment facial, cada un dels quals ofereix una solució robusta per a

un determinat context.



Abstract

Face tracking has become an increasingly important research topic in the com-

puter vision field, mainly due to its large amount of real-world situations where

such methods can be applied. Although the definition of the problem to be solved

is very easy to understand, it is very difficult to come up with a robust solution

due to variations in illumination, pose, appearance, etc. Initially, this project gives

a brief introduction to the current state-of-the-art of both face detection and face

tracking techniques. Moreover, the most important publications in this area, such

as the Viola-Jones method for object recognition or the Lucas-Kanade algorithm for

the optical flow, are presented. Finally, five different face tracking algorithms are

implemented, each of them giving a robust solution for a specific context.

Resumen

Las técnicas de seguimiento facial se han convertido en los últimos años en uno

de los temas de investigación más populares en el campo de la visión por computa-

dor, principalmente gracias a la gran cantidad de situaciones en el mundo real donde

pueden ser aplicadas. Aunque la definición del problema es muy fácil de entender,

encontrar una solución robusta resulta ser muy dif́ıcil, en parte por culpa de los cam-

bios de ilumunación, pose, apariencia, etc. que se suceden durante una secuencia de

v́ıdeo. Inicialmente, este proyecto hace una rápida introducción al estado del arte

tanto de las técnicas de seguimiento facial como de las de detección de caras. A

continuación, se muestran las publicaciones más relevantes de los últimos años en

este campo, como por ejemplo el método para reconocimiento de objectos de Viola y

Jones, o el algoritmo de Lucas y Kanade para calcular el flujo óptico. Finalmente,

se implementan cinco diferentes algoritmos de seguimiento facial, cada uno de los

cuales aporta una solución robusta para un determinado contexto.


	Introduction
	Motivation
	Goal
	Framework

	State of the art
	Computer vision
	Origins

	Face detection
	Challenges in face detection
	Methods
	Applications

	Face tracking
	Challenges in face tracking
	Applications


	Technical background
	Affine transformation
	Definition
	Representation with homogeneous coordinates
	Practical examples

	Viola-Jones object detection
	Haar-like features
	Integral image
	Feature selection
	Cascade classifier architecture

	Template matching
	Template matching methods

	Good features to track
	Harris approach
	Shi and Tomasi approach
	Examples of good features

	Optical flow
	Lucas-Kanade method


	Work environment
	Software
	Hardware

	Practical part
	Template matching based face tracker
	Algorithm
	Flowchart
	Pros and cons

	Affine face tracker based on the eye position
	Algorithm
	Flowchart
	Pros and cons

	Affine face tracker based on the optical flow
	Algorithm
	Pros and cons

	Face tracker based on the mean face
	Algorithm
	Flowchart
	Pros and cons

	Non-affine eye tracker
	Algorithm
	Flowchart
	Pros and cons


	Results
	Translation precision
	Scale precision
	Rotation precision
	Illumination robustness
	Pose robustness
	Occlusion robustness
	Execution speed
	Summary tables

	Conclusions and future work
	Conclusions
	Future work


