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Learning Nonlinear Soft-Tissue Dynamics
for Interactive Avatars
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Fig. 1. Using as input just a skeletal motion (1st column), we propose an observation-driven neural-network-
based solution to add soft-tissue nonlinear dynamics to skinned mesh sequences. Standard linear blend
skinning techniques (2nd column) cannot reproduce non-rigid surface dynamics, as shown in the breast area
of this jump motion. Our neural network regresses dynamic blendshapes (columns 4,5) that add nonlinear
soft-tissue dynamic effects to skinned meshes (3rd column).

We present a novel method to enrich existing vertex-based human body models by adding soft-tissue dynamics.
Our model learns to predict per-vertex 3D offsets, referred to as dynamic blendshapes, that reproduce nonlinear
mesh deformation effects as a function of pose information. This enables the synthesis of realistic 3D mesh
animations, including soft-tissue effects, using just skeletal motion. At the core of our method there is a
neural network regressor trained on high-quality 4D scans from which we extract pose, shape and soft-tissue
information. Our regressor uses a novel nonlinear subspace, which we build using an autoencoder, to efficiently
compact soft-tissue dynamics information. Once trained, our method can be plugged to existing vertex-based
skinning methods with little computational overhead (<10ms), enabling real-time nonlinear dynamics. We
qualitatively and quantitatively evaluate our method, and show compelling animations with soft-tissue effects,
created using publicly available motion capture datasets.
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1 INTRODUCTION
Human body modeling is a long standing goal in computer graphics, and a key component for
realistic character animation in video games and films. We wish to build a model that generates
highly realistic 3D meshes that look and behave as the human body does. Therefore, such a model
must be able to represent different body shapes, deform naturally with pose changes, and incorporate
nonlinear surface dynamics that mimic the behavior of soft skin. In interactive applications, there
is often an additional goal: for simplicity and efficiency, we wish to control the body model using
only its skeletal pose, with the surface animation a function of this skeletal pose.

Many computer animation methods define the body surface as a kinematic function of skeletal
pose. The early linear blend skinning (LBS) method simply blends rigid transformations of skeletal
bones, and its limitations have been addressed by defining more complex transformations and/or
blending functions [Jacobson and Sorkine 2011; Kavan et al. 2008; Le and Deng 2014; Vaillant et al.
2013; Wang and Phillips 2002]. More sophisticated approaches incorporate actual body surface data
into the models [Anguelov et al. 2005; Chen et al. 2013; Loper et al. 2015; Pishchulin et al. 2017;
Pons-Moll et al. 2015]. Pose-dependent displacements can be considered the precursor of these
approaches [Lewis et al. 2000].

In data-driven body models, a common strategy is to split the model parameters into shape and
pose, enabling explicit parametric control of each space. However, these models ignore the nonlinear
dynamics of the body’s surface, caused by the oscillation of soft-tissue under fast skeletal motion.
Dyna [Pons-Moll et al. 2015] is a notable exception. It learns a function that relates the deformation
gradient of each surface triangle to skeletal dynamics, composes the deformation gradients due
to various sources of motion, and then reconstructs the resulting animated body surface. While
effective, this approach does not match the efficient vertex-based animation pipelines suited for
interactive applications.
Data-driven dynamics models have been successfully used in other contexts, such as facial

muscle models [Sifakis et al. 2005], coarse cloth dynamics [De Aguiar et al. 2010], or particle-based
fluids [Ladický et al. 2015]. As opposed to these works, we target a problem with a combination of
high-resolution, accuracy and performance requirements.

We propose a novel solution to enrich existing vertex-based human body models, such as LBS or
SMPL [Loper et al. 2015]. Our method regresses dynamic blendshapes to add nonlinear soft-tissue
dynamics to the traditional piece-wise rigid meshes. To this end, we train a neural network that
predicts 3D offsets from joint angles, their velocities and accelerations, together with a recent
history of offset values. For higher efficiency, the latter are compressed using a novel autoencoder
that reduces the dimensionality of the per-vertex 3D offsets by two orders of magnitude. We
demonstrate that our subspace for soft-tissue dynamics overcomes existing methods, based on
PCA [Loper et al. 2015; Pons-Moll et al. 2015], and better captures the nonlinear nature of such
data.

Overall, our method shows for the first time data-driven nonlinear soft-tissue real-time dynamics
in 3D mesh sequences animated just with publicly available skeletal motion data [CMU 2003;
Trumble et al. 2017]. Our main contributions are:
• A neural-network-based solution for real-time nonlinear soft-tissue regression to enrich
skinned 3D animated sequences.
• A loss function tailored to learn soft-tissue deformations. We compute and leverage per-vertex
rigidity to obtain a better behaved minimization problem.
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• A novel autoencoder for dimensionality reduction of the 3D vertex displacements that
represent nonlinear soft-tissue dynamics in 3D mesh sequences.

2 RELATEDWORK
2.1 Skinning
The most basic form of body surface modeling is Linear Blend Skinning (LBS). This technique,
limited to a single body shape, attaches an underlying kinematic skeleton to a 3D mesh, and assigns
a set of weights to each vertex, which define how the vertex moves with respect to the skeleton.
Despite being largely used in video games and films, LBS has two significant limitations: first,
articulated areas often suffer from unrealistic deformations such as bulging or the candy-wrap
effect; second, the resulting animations are piece-wise rigid and therefore lack surface dynamics.
LBS deformation artifacts have been extensively addressed by different solutions, including dual
quaternions [Kavan et al. 2008], implicit skinning [Vaillant et al. 2013], optimized centers of
rotation [Le and Hodgins 2016], and example-based methods [Kry et al. 2002; Le and Deng 2012,
2014; Lewis et al. 2000; Wang and Phillips 2002], but these solutions ignore the shortcomings of
LBS that result from the lack of motion dynamics.

2.2 Data-Driven Body Models
With 3D capturing, scanning and registration methods becoming accessible and accurate [Bogo et al.
2014, 2017; Budd et al. 2013; Huang et al. 2017], many data-driven body models that leverage real
data have been proposed. Pioneering data-driven methods proposed to interpolate artist-generated
shapes to create new ones [Sloan et al. 2001], or to deform an articulated model to a set of scans
in different poses as a means to predict new poses [Allen et al. 2002]. Inspired by these methods,
others proposed statistical body models such as SCAPE [Anguelov et al. 2005] and follow-up
works [Chen et al. 2013; Hasler et al. 2009; Hirshberg et al. 2012]. These models are learned from
static scans and are capable of representing changes due to pose and shape. However, they cannot
cope with deformations due to non-rigid surface dynamics. Moreover, they are based on triangle
transformations; therefore, they are more expensive to compute than vertex-based models. Recently,
Loper et al. [2015] proposed SMPL, a vertex-based method that significantly improves over previous
methods. The strength of SMPL is the computation of pose and shape blendshapes that generate
very compelling articulated 3D meshes by simply adding vertex displacements to a template mesh.

More recently, we have witnessed data-driven models that can cope with human body dynamics.
Dyna [Pons-Moll et al. 2015] is arguably one of the best solutions so far. Dyna accurately models
shape, pose and soft-tissue dynamics learned from thousands of 4D scans. However, as SCAPE, it
is based on triangle deformations, which hinders the implementation of the method in existing
vertex-based pipelines such as LBS. DMLP, an extension of SMPL [Loper et al. 2015], also models
dynamics. However, the solution relies on a PCA subspace that hinders the learning of nonlinear
deformations. In contrast, we show animations with soft-tissue dynamics using skeletal data from
publicly available MoCap datasets [CMU 2003; Trumble et al. 2017], we evaluate quantitatively
our approach, and we propose a novel autoencoder to build a richer nonlinear subspace that
significantly reduces the dimensionality of dynamic blendshapes.

2.3 Physics-Based Body Models
A strong limitation of purely data-driven models is the inherent difficulty to represent deformations
far from the training set. Physics-based models overcome this limitation, but are significantly
more complex and usually require a volumetric representation of the model. Kadleček et al. [2016]
compute a fully physics-based subject-specific anatomical model, including bones, muscle and
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soft-tissue. Kim et al. [2017] combine data-driven and physics-based models to create a layered
representation that can reproduce soft-tissue effects. Remarkably, they fit the model to captured 4D
scans to find subject-specific physical parameters.
Early works also proposed the use of layered representations consisting of a skeleton that

drives physics-based soft-tissue deformations [Capell et al. 2002]. Liu et al. [2013] propose a
pose-based plasticity model to obtain skinned deformation around joints. Hahn et al. [2012; 2013]
enrich standard LBS animations by simulating the deformation of fat and muscles in the nonlinear
subspace induced by the model’s rig. Other subspaces for deformations have also been explored for
characters [Kim and James 2012; Kry et al. 2002], cloth [De Aguiar et al. 2010; Hahn et al. 2014],
and for arbitrary geometries based on incremental deformations [Mukherjee et al. 2016]. Xu and
Barbič [2016] use secondary Finite Element Method (FEM) dynamics to efficiently add soft-tissue
effects to a rigged character.

We also enrich a skinned model with motion-depending deformations, however we do not use a
physics-based model. Instead, our soft-tissue deformation is automatically learned with a neural
network trained purely from observations.

2.4 Autoencoders for subspaces
Autoencoders are unsupervised neural networks that approximate an identity mapping by coupling
an encoding and decoding block to learn a latent subspace representation. Hinton and Salakhutdi-
nov [2006] introduced them and showed their applicability for nonlinear dimensionality reduction
in greyscale images. Subsequent research showed their applicability in many fields, including
image denoising [Vincent et al. 2008] and face reconstruction [Tewari et al. 2017]. In this work, we
exploit their nonlinear latent space to efficiently encode soft-tissue dynamics. Variational autoen-
coders [Kingma and Welling 2013] go one step further and enforce a known probability distribution
in the latent space, which enables the generation of new data directly from the latent space. This
allows, for example, the synthesis of human motion from high-level controls [Habibie et al. 2017],
or the generation of images directly from words [Yan et al. 2016] or from silhouettes [Lassner et al.
2017].

3 SOFT-TISSUE REGRESSION
In this section, we describe our learning-based method to augment a skinning-based character
animation with realistic nonlinear soft-tissue dynamics. At runtime, our method takes as input a
skeletal animation obtained, for example, using motion capture or by editing a rigged character.
For each frame of the skeletal animation, our method produces the animation of the character’s
surface mesh, including nonlinear soft-tissue dynamics effects, following three major steps: surface
skinning, compact soft-tissue encoding, and soft-tissue regression. Figure 2 outlines the preprocess-
ing and runtime pipelines of our method. Our choice of skinning model combines a (static) shape
representation β , the skeletal pose θt for the current frame t , and dynamic soft-tissue displacements
∆t to produce the deformed surface mesh Mt . This skinning model is described in Sec. 3.1. As we
discuss later, a key insight of our method is to represent dynamic soft-tissue displacements in the
undeformed pose space.

A naïve design of dynamic soft-tissue regression would suffer from the curse of dimensionality,
due to the large size of the soft-tissue displacement vector. To address this challenge, we propose a
compact subspace representation of dynamic soft-tissue displacements, obtained using a nonlinear
autoencoder, described in Sec. 3.3. For each frame, the autoencoder encodes dynamic soft-tissue
displacements ∆t into a compact subspace representation ∆t .
Finally, our proposed learning method solves nonlinear soft-tissue dynamics as a nonlinear

regression problem. Modeling soft-tissue dynamics boils down to capturing the nonlinear interplay
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Fig. 2. Overview of the preprocessing and runtime pipelines.

of surface displacements, velocities, and accelerations, with skeletal pose, velocity and acceleration.
We model this complex nonlinear function using a neural network, described in Sec. 3.4. The neural
network outputs the current dynamic soft-tissue displacement ∆t , and it takes as input the skeletal
pose of the current frame θt and the two previous frames θt−1 and θt−2 (to capture skeletal velocity
and acceleration), together with the compact soft-tissue displacements of the two previous frames
∆t−1 and ∆t−2 (to capture soft-tissue velocity and acceleration).

Our method builds on a preprocessing stage, which takes as input a sequence of surface meshes
of the character, {S}, which span its dynamic behavior. The preprocessing stage involves fitting
the surface skinning model and extracting the dynamic soft-tissue deformation, as we describe in
Sec. 3.2, together with training the autoencoder and the neural network.

3.1 Skinned Body Model
As a base model we use SMPL [Loper et al. 2015], a data-driven vertex-based linear skinning
model that has shown to overcome earlier works such as SCAPE [Anguelov et al. 2005] or Blend-
SCAPE [Hirshberg et al. 2012] thanks to its simplicity and realism. The key insight in SMPL is the
use of corrective blendshapes, learned from thousands of 3D body scans, to fix well-known skinning
artifacts such as bulging. Formally, SMPL defines a body model surface M = M (β,θ ) as

M (β,θ ) = W (M̄ (β,θ ), J (β ),θ ,W) (1)
M̄ (β,θ ) = T̄ +Ms (β ) +Mp (θ ), (2)

whereW (T̄, J,θ ,W) is a linear blend skinning function [Magnenat-Thalmann et al. 1988] that
computes the posed surface vertices of the template T̄ according to the joint locations J, joint angles
θ and blend weightsW. The learned functionsMs (β ) andMp (θ ) output vectors of vertex offsets
(the corrective blendshapes) that, applied to the template T̄, fix classic linear blend skinning artifacts.
See Loper et al. [2015] for details.
Our goal is to further deform the vertices of T̄ such that the resulting pose reproduces realistic

soft-tissue dynamics. Following SMPL’s additive blendshape formulation, we want to find a set of
per-vertex 3D offsets ∆ = {δi }V−1

i=0 (which we refer to as dynamic blendshape) that added to the
template model T̄ will produce the desired deformation to the posed 3D mesh. We therefore extend
the body model with an extra blendshape.

M̄ (β ,θ ,γ ) = T̄ +Ms (β ) +Mp (θ ) +Md (γ ), (3)

whereMd (γ ) = ∆ is a function that regresses the per-vertex offsets ∆, given a history of skeletal
motion and surface dynamics in previous frames γ ; see Sec. 3.4 for details. Note that the use of cor-
rective blendshapes for dynamics was also briefly accounted in DMPL (i.e., Dynamic-SMPL) [Loper
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Fig. 3. Fitting parametric model to 4D scan (blue). If minimizing error at the pose state (a, red), unposed
scans might suffer from unrealistic deformations (b, red). In contrast, minimizing error at the unposed state
(a, green [here visualized at pose state]), produces realistic unposes (b, green).

et al. 2015]. However, the DMPL approach relies on a linear PCA subspace, and it was never evalu-
ated nor shown to generalize to arbitrary skeletal motions. In contrast, our solution introduces
a novel nonlinear subspace, is easier to train, allows real-time interactions, and it is successfully
applied to existing motion-capture datasets.

3.2 Soft-Tissue Ground Truth
As described later in Sec. 3.5, we learn Md (γ ) from Eq. 3 using a supervised learning method,
in particular a neural network. Such machine learning mechanisms, which have recently shown
impressive results in many fields including character animation [Fragkiadaki et al. 2015; Holden
et al. 2017], are known for their need of large amounts of training data. Ground truth annotated
data is usually obtained from observations, manual annotation or physical simulations.
In our case, we leverage recent methods in 4D capture [Bogo et al. 2017; Huang et al. 2017;

Pons-Moll et al. 2015; Robertini et al. 2016], which accurately fit and deform a 3D mesh template to
reconstruct human performances. Particularly, we use the publicly available dataset of Dyna [Pons-
Moll et al. 2015], which captures highly detailed surface deformations at 60fps. Note that here we
refer to the aligned 4D scans used in the original paper, not the actual Dyna model (which is not
public).
Assuming that such 4D scans reproduce the captured surface with negligible error, soft-tissue

dynamic deformations can be extracted by fitting the shape-and-pose parametric model defined in
Eq. 1 to the scans, and subsequently evaluating the differences between the fitted models and the
4D scans [Kim et al. 2017]. To this end, the parameters β ,θ can be found by minimizing

V∑
i=1

wi 

unpose(Mi (β ,θ )) − unpose(Mi (S,θ ))

2
2 , (4)

where unpose(·) is the inverse of the SMPL skinning function (i.e., a function that transforms the
mesh to rest pose and removes pose- and shape-corrective blendshapes),Mi (·) is the ith vertex of the
mesh,wi is a weight that is set to high values in rigid parts, and S ∈ RV×3 is a matrix of vertices of
the captured scan. Notice that in contrast to Kim et al. [2017], we perform the minimization on the
unposed state. By doing this, we ensure that the ground-truth dynamic blendshapes can be computed
directly in the unposed state from optimally matched surfaces. If the minimization is formulated on
the posed state, unrealistic deformations are likely to appear when the scan S is unposed if the joint
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Fig. 4. Autoencoder to compress a dynamic blendshape ∆ ∈ R6890·3 to a compact representation ∆ ∈ R100.
Orange and green represent linear and nonlinear activation units, respectively.

positions are not correctly estimated, even if the posed state is accurately matched. The difference
is visualized in Fig. 3, where we show the fitted result to a scan S (blue) minimizing the differences
on the posed state (red) and on the unposed state (green). Both results look plausible on the posed
state (Fig. 3a), but the unposed scan S suffers from unrealistic deformations when the minimization
is formulated on the posed state (Fig. 3b, red).
We solve Eq. 4 and unpose all frames St of the dataset with per-frame optimized pose θt . This

step essentially transforms the 4D scans to rest pose, and additionally removes the effect of the
SMPL corrective blendshapes due to pose and shape. The residual deformations in the unposed
meshes, ∆t ∈ R

V×3, are the result of soft-tissue dynamic deformation, and constitute our dynamic
blendshapes. They are formally computed as:

∆t = unpose(M (β,θt )) − unpose(M (St ,θt )), (5)

Such blendshapes, together with the extracted θt ,β , are our ground-truth data, which we use for
training the regressorMd (γ ) from Eq. 3.

3.3 Soft-tissue Autoencoder
Data-driven body models often use an initial dimensionality reduction step to reduce the complexity
of data representation. State-of-the-art methods use Principal Component Analysis (PCA) [Anguelov
et al. 2005; Feng et al. 2015; Loper et al. 2015; Pons-Moll et al. 2015], a linear method that despite
its simplicity successfully reproduces changes due to shape in a significantly lower-dimensional
space. Similar linear models have also been used for cloth simulation [De Aguiar et al. 2010],
skinning [James and Twigg 2005; Kavan et al. 2010] and physics [Barbič and James 2005].

However, given the highly non-linear nature of the dynamic soft tissue data stored in ∆, a linear
model cannot easily represent the deformations in detail. Therefore, in contrast to the earlier works
mentioned above, we propose to use an autoencoder [Hinton and Salakhutdinov 2006], a nonlinear
method that has shown to overcome PCA-based methods in dimensionality reduction capabilities
in different fields. Autoencoders approximate an identity mapping by coupling an encoding block
with a decoding block to learn a compact intermediate representation, the latent space. Particularly,
each block consist of a neural network, with different hidden layers and non-linear operators. After
training, a forward pass of the encoder converts the input into a compact representation.
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Fig. 4 depicts the autoencoder we designed for this work. As input to the encoder, we feed a
vectorized version of the dynamic blendshape ∆ ∈ R6890·3. Our encoder consists of three layers
with linear, nonlinear, and linear activation functions, respectively, and outputs a vector ∆ ∈ R100.
As we demonstrate in Sec 4.1, thanks to the nonlinear activations, we obtain a latent space capable
of better reproducing the complexity of soft-tissue dynamics.

3.4 Soft-Tissue Regression
At the core of our method there is a neural network that automatically learns from observations
(i.e. 4D scans) the function Md (γ ) = ∆ in Eq. 3. In particular, Md (γ ) is parameterized by γ =
{∆t−1,∆t−2,θt ,θt−1,θt−2}, where ∆t−1,∆t−2 are the predicted dynamic blendshapes of previous
frames. Notice that ∆t ∈ R

6890·3 is a prohibitively expensive size for an efficient neural network
input, and therefore we reduce the dimensionality using the autoencoder described in Sec. 3.3. This
efficiently finds a latent space to encode the nonlinear information. We therefore redefine the input
vector to the neural network as γ = {∆t−1,∆t−2,θt ,θt−1,θt−2}.

Notice that another potential choice of regression method could have been a Support Vector
Machine (SVM) with a nonlinear kernel. However, this requires carefully picking the kernel function.
Additionally, while the size of the neural network is fixed (i.e. number of neurons), the size of SVMs
usually scales linearly with the number of samples.

3.4.1 Training. Having a set of 4D scans S = {St }Tt=1, we first extract the dynamic blendshapes
∆t and the pose and shape parameters (β ,θt ) as described in Sec. 3.2. We then train a single-layer
neural network that learns to regress ∆t from γ . Each neuron uses a Rectified Linear Unit (ReLU)
activation function, a non-linear operator commonly proposed in the machine learning literature
due to its simplicity and fast convergence. Note that in order to learn a regressor that understands
second-order dynamics, we feed a history of the previous dynamic blendshapes to predict the
current dynamic blendshape. This makes our predictions much more stable and produces an overall
realistic nonlinear behavior, as demonstrated in the supplementary video.

3.4.2 Loss Function. A key part for neural-network training is the choice of an appropriate loss
function. In our particular case, we want to minimize the Euclidean distance between vertices of a
ground-truth dynamic blendshape ∆GT = {δGT

i }
V
i=1 and the predicted dynamic blendshape ∆. We

therefore minimize the following ℓ2-norm

Loss =
V∑
i=1




w
rig
i · (δ

GT
i − δi )




2
, (6)

where wrig
i is the rigidity weight of the ith vertex, inversely proportional to the vertex stiffness.

By adding such weights, we enforce the optimizer to prioritize learning in non-rigid areas, such
as breasts and belly, over almost rigid areas, such as the head. We precomputewrig

i automatically
from data, also using the input 4D scans, as

w
rig
i =

∑T
t=1



v̇i,t − v̇i,t−1

2
T

, (7)

where v̇i,t is the velocity of the ith vertex of the ground-truth blendshape ∆GT
t , and T the number

of frames.

3.5 Networks and Training Details
For each test subject (all obtained from the Dyna dataset), we train both the autoencoder and the
soft-tissue regressor on sequences jumping_jacks, light_hopping_loose, jiggle_on_toes,
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Fig. 5. Quantitative evaluation of the autoencoder on the 50002_running_on_spot sequence. Our autoen-
coder for dynamic blendshapes consistently outperforms PCA, allowing the use of smaller subspaces with
richer nonlinear reconstruction capabilities.

one_leg_jump, and running_on_spot, totalling ≈ 1800 frames per subject. As common in machine
learning literature, we normalize the input data of each network (i.e., both the autoencoder and the
soft-tissue regressor) by subtracting the mean and dividing by the standard deviation.
To train our autoencoder, we use a learning rate of 10−5 during 400 epochs. Our soft-tissue

regression network, assuming a pose model parameterized by |θ | =75 DOFs and an autoencoder
latent space of 100, consists of a fully-connected single-layer neural network with an input vector
γ ∈ R350 (100 + 100 + 75 + 75 = 350) and an output vector ∆ ∈ R11 670 (3890 · 3 = 11 670). We use√
|γ | · |∆| = 2689 neurons in the hidden layer, as suggested by Masters [1993].

4 RESULTS AND EVALUATION
We qualitatively and quantitatively evaluate the different stages of our method, including both
the autoencoder and the soft-tissue regressor. Additionally, in the supplementary video, we show
compelling enriched animations with realistic soft-tissue effects that validate our method.

For training and testing both the autoencoder and the soft-tissue regressor we use the 4D dataset
provided in the original Dyna paper [Pons-Moll et al. 2015]. As explained in detail below, all
evaluations are carried out using sequences that are not present in the training set.

4.1 Evaluation of the Autoencoder
We evaluate the performance of our autoencoder for dynamic blendshapes by leaving ground-truth
sequences 50002_running_on_spot and 50004_one_leg_jump out of the training set.

4.1.1 Quantitative Evaluation of the Autoencoder. Fig. 5 plots the per-vertex mean error of the
dynamic blendshapes of the sequence 50002_running_on_spot (not used for training), recon-
structed with PCA and our autoencoder. Intuitively, higher error in this plot means that the latent
space of a particular method fails at reproducing the input mesh. We show results for latent spaces
of dimensions 50 and 100 for both PCA and autoencoder. Our autoencoder consistently outper-
forms PCA when using latent spaces of the same size. Furthermore, notice that our autoencoder
with dimension 50 (in orange), performs similarly to PCA with dimension 100 (in green), which
demonstrates the richer nonlinear subspace obtained with the proposed autoencoder.

4.1.2 Qualitative Evaluation of the Autoencoder. Fig. 6 shows a reconstructed dynamic blend-
shape from sequence 50004_one_leg_jump using PCA and autoencoder, for a range of subspace
dimensions. For visualization purposes, we additionally show the reconstruction error using a
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Fig. 6. A dynamic blendshape of a ground-truth scan (pink), and the reconstructions (grey) and colormap
errors obtained using different PCA (top) and autoencoder (bottom) subspaces. The frame shown here is
part of a jumping motion where the subject just hit the ground, causing a bouncing effect in the belly area.
PCA needs a high number of principal components to reproduce such highly dynamic effect; in contrast, our
autoencoder successfully reproduces the motion using a significantly smaller latent space. Please see the
supplementary video for much clearer visualization.

colormap. Our autoencoder consistently outperforms PCA in terms of reconstruction fidelity. Please
check the supplementary video for a clearer visualization.

4.2 Evaluation of Soft-Tissue Regression
Our overall goal is to enrich rigged 3Dmesh animations created using MoCap data and any skinning
technique (LBS, SMPL, etc.). However, results created with such input lack ground-truth data;
therefore they do not serve for quantitative evaluation. As an alternaive, we perform quantitative
evaluation using a leave-one-out cross-validation strategy on the input 4D scan dataset. We train
both the autoencoder and the regressor on all except one sequence of the Dyna dataset [Pons-Moll
et al. 2015], and we evaluate the method on the discarded sequence. Notice that 4D scan datasets are
rather small with hardly any pose redundancy across sequences (i.e. each sequence is a significantly
different motion). Therefore, leaving one sequence out of the training set potentially affects the
generalization capabilities of the learned model. Despite this observation, we demonstrate robust
predictions of soft-tissue dynamics on unseen motions.
In the following, we also provide comparisons to SMPL, the most competitive vertex-based

skinning method. Triangle-based skinning methods, such as Dyna, are not directly comparable to
ours, as they rely on costly computational methods.

4.2.1 Quantitative Evaluation of Regression. Fig. 7 depicts the mean per-vertex error of our
proposed model and SMPL with respect to the ground-truth 4D scans of the Dyna dataset. Note
that, for fairness and following our leave-one-out cross-validation strategy, the evaluated sequence
in each plot is not part of the training set. In particular, in Fig. 7a we show the mean error over
all vertices per frame in the 50004_one_leg_jump sequence, which results in a mean error of
0.40 ± 0.06 cm, in contrast to the 0.51 ± 0.12 cm error with SMPL. To highlight the improvement in
particularly non-rigid areas, such as belly and breasts, in Figs. 7b and 7c we evaluate the mean error
only in those areas. Results demonstrate that we improve existing methods by a significant margin.
In sequence 50004_running_on_spot, our method (0.77±0.24cm) significantly outperforms SMPL
(1.13± 0.52cm); also in sequence 50004_jumping_jacks (ours 0.71± 0.26cm, SMPL 1.22± 0.68cm).
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Fig. 7. Quantitative evaluation of our model, compared to SMPL. Our results consistently improve over
SMPL, reducing the per-vertex mean error with respect to ground-truth scans, specially in frames with highly
nonlinear surface motion.

Fig. 8. Qualitative evaluation of our model on the 50004_one_leg_jump sequence. SMPL fails at reproducing
nonlinear dynamic motion in the belly and breast area. Our regressed nonlinear dynamics (right) enrich
linear models and obtain results closer to ground truth.

4.2.2 Qualitative Evaluation of Regression. We qualitatively evaluate our soft-tissue regression
results by visually comparing to ground-truth scans, as well as creating new animations from just
skeletal MoCap sequences.
In Fig. 8, as well as in the supplementary video, we provide visual comparisons of our method

and SMPL with respect to ground-truth sequences. In particular, Fig. 8 shows one frame of the
50004_one_leg_jump sequence in both plain-geometry and colormap visualization. While SMPL
fails at reproducing dynamic details in the belly and breast areas (with errors of up to 5cm), our
method successfully reproduces such nonlinear soft-tissue effects. Please see the supplementary
video for much clear and in-deep visualizations.

In Figs. 1 and 9, as well as in the supplementary video, we show dynamic sequences created
from skeletal MoCap data from publicly available datasets such as CMU [CMU 2003] and Total
Capture [Trumble et al. 2017]. Note that we show results for different skeletal hierarchies, which
are first converted to the SMPL joint-angle representation. We do this by rigging the Dyna subject
template with the input skeletal motion, and then fitting the SMPL model to the rigged animation.
Fig. 1 shows how highly non-rigid areas, such as the breasts, are affected by the ongoing motion and
are deformed realistically. In the video, we also provide visualizations of the dynamic blendshapes
alone, which highlight the degree of soft-tissue deformation. To the best of our knowledge, these are
the first examples that augment previously captured skeletal motions with data-driven nonlinear
soft-tissue dynamics.
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Fig. 9. Mesh sequence created just from MoCap data. SMPL cannot reproduce nonlinear surface dynamics
resulting from skeletal motion, such as the belly bounce produced while jumping.

4.3 Run-Time Performance
We have implemented our method in TensorFlow [Abadi et al. 2016] with Adam optimizer [Kingma
and Ba 2014], and we have used a regular desktop PC with NVidia GeForce Titan X GPU.

Training of the autoencoder (Sec. 3.3) takes approximately 20min, and training of the soft-tissue
regressor (Sec. 3.4) about 40min. Once trained, a forward pass on the encoder takes about 8ms and
the soft-tissue regressor about 1ms. Overall, our system performs at real-time rates, including the
time budget for standard skinning techniques to produce the input to our method.

5 CONCLUSION
We have presented a novel neural-network-based learning method to enrich rigged characters
with nonlinear soft-tissue dynamics. Our body model extends existing vertex-based methods (LBS,
SMPL, etc.) by regressing dynamic blendshapes that, added to the model template, enable realistic
soft-tissue dynamics. Such dynamic blendshapes are encoded using a new nonlinear subspace that
overcomes state-of-the-art (linear) PCA-based subspaces. Both the autoencoder and the soft-tissue
regressor are trained solely on captured data. Our model, once trained, is ready to be plugged to
any vertex-based skinning method, with little (<10ms) computational overhead, enhancing the
realism of the final animation.

As common in learning-basedmethods, ourmodel struggles when predicting soft-tissue dynamics
for poses significantly far from the training set. Future work should study the use of physics-
based methods to either extend the training set via simulation, or use physics to further enrich
predictions [Kim et al. 2017]. Similarly, our model alone cannot realistically respond to external
forces and therefore cannot correctly interact with, for example, physically simulated garments.
Future research could study our dynamic body models with soft-tissue from a physical point of view,
and subsequently enable physically correct simulation of dressed characters with accurate skin-
cloth interaction. This would extend existing solutions in data-driven realistic character animation,
which are currently unable to explicitly deal with cloth [Casas et al. 2014].
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