
EUROGRAPHICS 2021/ B. Sousa Santos and G. Domik Education Paper

Teaching 3D Computer Animation to Non-programming Experts

Dan Casas1

1Universidad Rey Juan Carlos

Abstract
This paper describes a Computer Animation course aimed at novice Computer Science and Engineering students with minimal
programming skills. We observe that students enrolled in Computer Graphics (and related) undergraduate degrees usually face
a Computer Animation subject early in their programs, sometimes even before they develop strong software development and
programming skills. This causes that assignments and tasks where students should focus on the Computer Animation concepts,
end up in frustration and massive efforts to just get over-complicated developing frameworks running. Instead, we propose a
Computer Animation course based on small MATLAB tasks that covers a large range of topics and it is adapted to students with
minimal programming skills. For each topic, we provide a brief theoretical summary and links to fundamental literature, as well
as a set of hands-on tasks with the necessary source code to get started. A user study shows that students who took this course
were able to better focus on the fundamental concepts of the subject, circumventing the need to learn advanced programming
skills. Course material is available on a public GitHub repository, and solutions are provided upon request from course tutors.

1. Introduction

Computer Animation is a fundamental topic in the area of Com-
puter Graphics with a large number of applications, including vi-
sual effects, animated films, videogames, and robotics. Bachelor
and Master students in Computer Science and related degrees usu-
ally face a Computer Animation subject early in their program, in
some cases even before having (or while still learning) solid pro-
gramming skills. Therefore, developing course content and assign-
ments that do not require advanced programming skills or compli-
cated frameworks is essential for efficient teaching. To this end, this
paper proposes a Computer Animation course with programming
assignments based on MATLAB [MAT20a], and circumvents the
need for any prerequisite programming course. Our course enables
fresh students to learn fundamental Computer Animation algo-
rithms with hands-on exercises and almost no programming-related
issues overhead. Course material, including assignments and demo
codes, are available at the GitHub repository http://github.
com/dancasas/computer-animation-in-MATLAB and
assignment solutions will be available upon request from course
tutors.

MATLAB is a numerical computing framework developed by
MathWorks [MAT20a], and its programming language offers effi-
cient matrix manipulation, off-the-shelf plotting of functions and
data, straightforward implementation of algorithms, and easy cre-
ation of user interfaces. MATLAB uses its own interpreted pro-
gramming language, and can use an interactive mathematical shell
or execute text files that contain MATLAB code. Thanks to its
straightforward use, it is nowadays very popular in education, spe-

cially for teaching linear algebra and numerical analysis, and also
very popular among researchers in image processing [MAT20b].

In this paper, we show that MATLAB can also be used to
teach 3D Computer Animation concepts. The key advantage over
traditional frameworks (e.g., OpenGL library used from C++) is
twofold: first, MATLAB removes the need for manually managing
the memory allocation required when using arrays and variables,
because it is an scripting programming language. Memory manag-
ing is a common headache for novice Computer Science students,
who usually get stuck allocating and freeing memory tasks instead
of focusing with the goal of the task; and second, MATLAB re-
moves the need to explicitly set up a 3D virtual environment to
output the results, because it naturally provides a canvas to draw.
Alternative frameworks (e.g., based on OpenGL) require setting up
a virtual camera and the associated matrices (i.e., model, view, and
projection matrices), which is also a common headache for novice
students.

Notice that nowadays there are many 3D computer graphics ap-
plications (e.g., Autodesk Maya, Blender) than already implement
most of the concepts described in this course (e.g., forward kine-
matics, human animation, curve interpolation, etc.). These tools
could also be used by non-programming experts – however, the
goal of this course is to learn the fundamental ideas of these con-
cepts, not their applicability. Therefore, here by non-programming
experts we refer to those who are in the process of learning how
to program, not those who are basic users of animation tools (e.g.,
artists).
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2. Background and Context

Engaging and meaningful assignments are fundamental to teach
Computer Science in general, and even more important in Com-
puter Graphics, as stressed by Cunningham [Cun00]. However,
providing attractive 2D and 3D Computer Animation exercises,
tasks, and assignments to novice students can be difficult due to
the necessary programming requirements to tackle the tasks. In
fact, many Computer Graphics course curricula, including the re-
design proposed by Ackermann and Bach [AB15], project-based
courses [MGJ06], and activity-led [AP09], include object-oriented
programming (e.g., C++) and 3D graphics pipeline (e.g., modern
GLSL shaders, OpenGL) parts that can hinder the engagement with
the course of students without strong programming skills.

Several attempts exist to mitigate the need for low-level API
knowledge in Computer Graphics. Schweitzer et al. [SBG10] iden-
tify this common issue and propose to use of Processing lan-
guage in an introductory course at the United States Air Force
Academy. Marchese [Mar98] propose to use standard spreadsheets
to easily visualize concepts such as affine transformations. Simi-
larly, Elyan [Ely12] proposes a practical and non mathematical ap-
proach that encourages students to become active learners. Fink
et al. [FWW13] propose a Java-based framework to teach modern
Computer Graphics (e.g., GLSL shaders) using raster-level algo-
rithms that are more practical since they employ higher-level APIs.

In this work we focus on 3D Computer Animation, an area
present in all Computer Graphics curricula according to the study
by Balreira et al. [BWF17]. Therefore, designing engaging tasks
and assignments for this area of Computer Graphics is impor-
tant. Peters and Anderson [PA14] argue that meaningful exercises
should be Independent, Iterative, Incremental, and Integrative. In
our course, we follow exactly the same principles and describe
tasks for 3D Computer Animation: the proposed tasks are self-
contained (i.e., independent, they do not depend on third-party
code) and a few tasks towards the end of the course are incremental
(i.e., they build on tasks done earlier in the course).

3. Course Description

This course described in this paper is offered to undergraduate stu-
dents in Computer Science and related degrees (e.g., Mathematics,
Engineering, etc.) in the first year, although it can be adapted to
postgraduate degrees as well. The course consists in 3 ECTS taught
in 13 sessions of 2 hours. Each session was split into 1 hour of the-
ory, where the theoretical concepts were introduced, and 1 hour of
lab, where students use the proposed Tasks to practice the concepts.

The course is structure into three main blocks: (1) Interpolation
(Sec. 4), which introduces fundamental concepts of interpolation,
mostly focused on polynomial interpolation, and proposes assign-
ments to implement and visualize different techniques, including
Hermite interpolation, Lagrange Interpolation, Spline Interpola-
tion, and Bézier curves; (2) Image Warping (Sec. 5), which focuses
on image morphing in particular, and proposes assignments to learn
to synthesize seamless transitions between images; and (3) Char-
acter Animation (Sec. 6), which focuses on animations achieved
through kinematic chains, including forward and inverse kinematic
techniques, as well as facial animation with blendshapes.

In total, we provide 17 tasks for the 3 blocks described above.
For most of tasks we provide the necessary starting code to enable
students with minimal programming skill successfully follow the
course. We also provide pseudocode to facilitate the understanding
of the algorithms to implement. Importantly, each task is a self-
contained assignment that do not depend on external code, cumber-
some setup, or any third party library. However, some tasks build
on previous tasks developed by the students earlier in the course,
following the Incremental and Integrative modality of assignments
proposed by Peters and Anderson [PA14].

4. Interpolation

4.1. Cubic Hermite Interpolation

The first interpolation technique studied in this course is cubic
Hermite interpolation. This technique consists on defining a set of
control points (i.e., starting and end points of the curve, and their
derivatives) that are used to linearly interpolate a set of polynomial
basis such that the resulting curve passes through the input pair of
points. It is largely used in computer graphics and geometric mod-
eling to define curves and trajectories.

Given a pair of argument values x1,x2, the corresponding func-
tion value f (x1) and f (x2), and the derivatives at each xk, the cubic
Hermite interpolator method finds a third-degree polynomial that
fits into the input points with the input derivatives. More specif-
ically, for input values xk = {0,1}, assuming a cubic polynomial
f (t) = at3 + bt2 + ct + d with a derivative f ′(t) = 3at2 + 2bt + c,
this yields to the following linear system in matrix form

f (0)
f (1)
f ′(0)
f ′(1)

=


0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0




a
b
c
d

 . (1)

Solving Eq.1, we find the Hermite basis matrix M
a
b
c
d

=


2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0


︸ ︷︷ ︸

M


f (0)
f (1)
f ′(0)
f ′(1)

 (2)

from which, by plugin Equation 2 it into a cubic polynomial in
matrix form, we can extract the Hermite basis functions

H0(t) = 2t3−3t2 +1 (3)

H1(t) = −3t3 +3t2 (4)

H2(t) = t3−2t2 + t (5)

H3(t) = t3− t2 (6)

In order to let students practice with polynomial Basis and the lin-
ear combinations required to program Hermite interpolation, two
tasks are proposed.

Task 1_1_plot_hermite_basis.m gives the starting code to
setup figures and plot polynomials in MATLAB with the function
plot(), and shows how to plot H0. Students are ask to plot the rest
of Hermite basis, resulting in what is shown in Figure 1a. With this
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(a) Solution for Task 1.1: plot of
Hermite basis functions.
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(b) Task 1.2 with f (0) = 1,
f ′(0) = 0, f (1) = 1, f ′(1) = 1.

Figure 1: Cubic Hermite interpolation.

tasks, students familiarize themselves with basic MATLAB plotting
functions.

Task 1_2_hermite_interpolation.m asks to write a func-
tion that receives curve values and derivatives at time t = {0,1},
and compute the corresponding Hermite cubic polynomial. Stu-
dents have to use the Hermite basis shown in Equation 2 to find
the unknowns a,b,c,d, and then plot the resulting curve. Figure
1b shows the expected result with input values f (0) = 1, f ′(0) = 0,
f (1) = 1, f ′(1) = 1. With this task, students familiarize themselves
with basic operations to manipulate matrices and vectors.

4.2. Lagrange Interpolation

Lagrange interpolation is another method for polynomial interpo-
lation. Given a set of points {x,k ,yk}, this method finds the poly-
nomial with the lowest degree that passes through the input points.
Formally, the interpolation polynomial in a Lagrange form is a lin-
ear combination

L(x) =
k

∑
j=0

y j` j(x), (7)

where ` j(x) are the Lagrange basis polynomials defined as

` j(x) = ∏
0≤m≤k

m6= j

x− xm

x j− xm
. (8)

Notice that all basis polynomials are zero at x = xi except `i(x), for
which it holds that `i(xi) = 1 because does not have the (x− xi)
term.

Task 1_3_lagrange_interpolation.m asks students to
write a MATLAB function that receives as a input vectors x and y,
which define a set of ponts {x,k ,yk}, and compute and plot the cor-
responding Lagrange polynomial basis and the resulting Lagrange
polynomial interpolation. Figure 2a shows the expected output for
input point set x = {−8,−1,2,7} and y = {−5,5,−8,9}. The La-
grange interpolator L(x) is depicted in dashed black line, each of
the polynomial basis ` j in solid color lines, and the input set in red
solid circles. Notice that all ` j(x) are 0 for all xk except one (e.i.,
when a basis passes through a red circle, the rest of basis are 0),
which is the main property of the Lagrange polynomial basis.

Task 1_4_lagrange_from_sampled_function.m asks
students to pick a function f (x), plot it, and sample 3 points to ob-
tain a set of {x,k ,yk}. Then, similar to Task 1.3, they need to find
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(a) Task 1.3. In dashed black, the Lagrange inter-
polator for point set x = {−8,−1,2,7} and y =

{−5,5,−8,9}.
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(b) Task 1.4 with f (x) = 1/x, x = {1,2,3}

Figure 2: Lagrange interpolation

a Lagrange interpolation polynomial L(x) that passes through the
sampled points, and plot it. As a result of this tasks, and as shown in
Figure 2b, students should notice that f (x) (in dashed light green)
and L(x) (in dashed black) are not exactly the same curve, but they
do overlap perfectly at the sample points (in solid red circle).

4.3. Quadratic Spline Interpolation

Spine interpolation is a form of interpolation based on piecewise
polynomials. It is a method often preferred over Lagrange inter-
polation when there is a large number of sample points, because
it keep polynomial degree low, which prevents undesired oscilla-
tions. The method consists in fitting a quadratic polynomial within
each interval of the sample points, and enforce continuous first and
second derivatives at the knots (e.i., sample points).

To find the quadratic curves, having a set of input points
{xk,yk}K

k=1, we will define a piecewise spline S(x) consisting on
K−1 quadratic polynomials, one per each segment. Assuming the
quadratic polynomial form fi(x) = aix2 +bix+ci and its derivative
f ′i (x) = 2aix+ bi, we can set up a linear system of equations with
3(K−1) unknowns and 3(K−1)−1 equations. To solve such un-
determined system, we can enforce one more constraint, for exam-
ple f ′0(x0) = 0, which enforces the derivative of the starting point
of the curve to be 0, or a0 = 0, which enforces the first curve to be
straight line.

Task 1_5_quadratic_spline.m asks to write a MATLAB
function that receives a set of data points {xk,yk}K

k=1, and finds
the K − 1 quadratic polynomials that form a spline S(x) that
passes through the input points. Students are asked to automat-
ically formulate the required linear system in a matrix form,
and solve it using the linsolve function or the operator \,
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Figure 3: Task 1.5, quadratic spline interpolation.

which are used to solve a linear system of linear equations
Ax = B. Figure 3 shows the expected results for input point
set {(−3,15),(−1,5),(1,8),(3,9)}, depicting the three quadratic
polynomials f0(x), f1(x), f2(x) in solid color lines. Notice how the
link points between segments have a smooth curvature, thanks to
the constraint on the derivatives on this points set in the system.

4.4. Bézier Curves

A Bézier curve is a parametric curve that leverages the Bernstein
polynomials as a basis, and it is defined by

B(t) =
n

∑
i=0

bi,n(t)Pi, 0≤ t ≤ 1 (9)

where n is the number of basis (and the degree of the curve), Pi the
ith control point, and bi,n(t) the function basis. In contrast to the
previous interpolation methods seen in this paper, a Bézier curve
does not pass through all the control points (or data points). The
first and last control points are always the end points of the curve,
and the intermediate control points (if any) generally do not lie on
the curve but control the shape of the curve.

Most common Bézier curves used in Computer Animation are
quadratic and cubic (e.i., degree 2 and 3 in Equation 9), which result
in the expressions

B(t) = (1− t)2P0 +2(1− t)tP1 + t2P2 , (10)

B(t) = (1− t)3P0 +3(1− t)2tP1 +3(1− t)t2P2 + t3P3 , (11)

respectively. In order to practice with Bézier curve, four tasks are
proposed below.

Task 1_6_compute_bezier_basis.m asks students to write
a MATLAB function that receives a parameter n and computes the
Bézier basis required for a curve with this degree (e.i., n+1 control
points). To this end, students must write a generic function that
implements the Bernstein basis polynomials. Figure 4a shows the
plotted results for n = 3.

Task 1_7_plot_cubic_bezier.m asks students to write a
MATLAB function to compute and plot a cubic Bézier curve,
following the expression in Equation 11. In order to get them
started, a basic code on how to plot a linear and quadratic Bézier
is given. Figure 4b shows the results of computing a curve with
control points P0 = (5,−10), P1 = (9,38), P2 = (38,−5), and
P3 = (45,15).
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(a) Solution for Task 1.6: plot of
Bézier basis functions.
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(b) Task 1.7, a cubic Bézier curve.

Figure 4: Bézier.
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Figure 5: Task 1.8, joint Bézier segments.

Task 1_8_plot_bezier_segments.m asks to write a func-
tion that computes and plots smooth joint segments of Bézier
curves. In order to ensure that the curves are smoothly connected,
students need to figure out how to enforce that the derivative of the
end point of a curve is the same as the derivative of the starting
point of the next curve. Figure 5 shows an example of this, where
4 curves are smoothly joined to create a closed shape. Addition-
ally, this task also asks to apply rigid transformations to the control
points Pi and plot the resulting curve. This is also shown in Figure
5, where the inner curve is the result of translating and scaling the
control points of the outer curve.

Task 1_9_plot_bezier_equidistant_points.m is
about finding equidistant points along a Bézier curve. This cannot
be naively done using a fix time interval ∆t, which results in non-
equidistant points over the curve as shown in Figure 6a. Instead,
students must fist compute the length of the curve, something
that cannot be done analytically. Therefore, an auxiliary function
compute_arc_length() must be written to approximate the
length of a Bézier curve using a forward differences approach
(e.i., compute ∑ ||B(t)−B(t + ∆t)||). Once the length is known,
equidistance points can be plotted along the curve, as shown in
Figure 6b.

5. Image Warping

Image warping [GM98] is the process of manipulating digital im-
ages to distort the original content. Straightforward warping opera-
tions include translation, rotation, and scale of images but, specially
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(b) Task 1.9, equidistant points over
a cubic Bézier curve.

Figure 6: Plot equidistant points over Bézier arc.

in the area of Computer Animation, other effects such as image
morphing are studied.

Morphing is a special effect or animation that distorts one image
or shape into another through a seamless transition. To compute
a morphing effect between to images, first, we need to specify a
set of correspondences between the images. Such set is then used
to triangulate the image, i.e., to build a 2D mesh using a Delau-
nay triangulation approach. See Figure 9 left and right columns
for examples of 2D mesh in source (green triangle) and target (or-
ange triangle) images, respectively. Then, we need to find the affine
transformations Ai that convert each triangle tsrc

i of the 2D mesh in
the source image into the corresponding triangle tdst

i in the target
image. Ai can be easily find since we know the triangle vertices
both in source and target, Tsrc

i Ai = Tdst
i , where Ti is a 3× 3 ma-

trix of vertices of the ith triangle. Once all the Ai are computed,
we are ready to perform a per-pixel operation to warp the image.
To this end, two alternative techniques exists: forward warping and
backward warping.

Forward warping computes for each pixel (u,v) in the source im-
age its corresponding pixel (x,y) in the destination image. This is
done by applying to the source pixel the affine transformation Ai of
the triangle where the pixel belongs. As summarized in the pseu-
docode show in Figure 7, this populates the destination image with
pixels from the source image. The main limitation of this strategy
occurs when the destination triangle is larger than the source, and
therefore not all pixels (x,y) have a corresponding (u,v).

forward_warping(src, dst, A)
{

for (u=0; y<src.height; y++) {
for (v=0; x<src.width; x++) {

(x,y)=A(u,v);
dst[x,y]=src[u,v];

}
}

}

Figure 7: Pseudocode for forward warping.

Backward warping circumvents the limitation of forward warp-
ing by computing for each pixel of the destination image its cor-

responding pixel in the source image. This inverse operation, sum-
marized in pseudocode in Figure 8, guarantees that all pixels of
destination image are populated. In general backward warping is
always preferred over forward warping.

backward_warping(src, dst, A)
{
for (x=0; x<dst.height; y’++) {
for (y=0; y<dst.width; x’++) {
(u,v)=inv(A)(x,y);
dst[x,y]=src[u,v];

}
}

}

Figure 8: Pseudocode for backward warping.

To create smooth and seamless transitions between to images, we
need to warp both images to in-between locations, and then linearly
interpolate the pixel values of the warped images. Figure 9 shows
a toy example where we create a morphing animation between a
green triangle (source) and orange triangle (destination).

In order to practice image warping, and image morphing in par-
ticular, 3 tasks are proposed.

Task 2_1_warp_forward.m asks students to implement the
forward warping technique discussed above and in Figure 7. To
quickly get started, we provide all the necessary code to load and
write images in MATLAB, an interactive interface to click and se-
lect keypoints with ginput() function, as well as an example
of the usage of the delaunay() function to triangulate points.
Toy images from 9 are provided, and students need to warp the the
source image into the destination, and vice versa. Students need to
report what are the artifacts that they observe due to employment
a forward warping technique (hint: not all pixels in the destination
image will be populated).

Task 2_2_warp_backward.m asks to implement the backward
warping approach summarized in 8. Analogous to Task 2_1, they
are given the functionality to read and write images, and select and
triangulate keypoints. Students need to comment on the quality of
the results, and why warped images overcome the artifacts from the
previous task (hint: all pixels in the warped image are populated).

Task 2_3_incremental_warp_backward.m asks to create
seamless transitions between two images. To this end, students
need to combine a backward warping approach to independently
warp the source and target image to an in-between point, and then
linearly interpolate the warped pixel values according. As a result,
students will be able to create seamless animations beteeen two im-
ages, as shown in Figure 10. To ease the programming burden, we
provide with the MATLAB functionality to create animated GIFs
images with the resulting frames.

6. Character Animation

6.1. Kinematics

Kinematics is the study of the motion of points, objects, and groups
of objects without considering the causes of its motion. Kinemat-
ics are used in Computer Animation to pose articulated characters
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Figure 9: Image morphing for a toy example, as proposed in Task 2.3. Left and right figures show the source and destination images and, in
solid red circles, the selected keypoints. In-between figures show the 2D mesh computed from the keypoints, and how it is used to drive the
per-pixel image warping, producing a smooth transition from source to target image.

Figure 10: Morphing images of faces in Task 2.3. Left and
and right columns are source and target images, extracted from
the CelebAMask-HQ dataset [LLWL20]. In between columns are
warped (computed using the backward warping technique summa-
rized in Figure 8) and blended images, producing a smooth inter-
polation from source to target.

described by a set of rigid bodies connected by joints. See [SM09]
Chapter 17.4 for a overview of this topic.

6.1.1. Forward Kinematics

Forward kinematics aims at finding the position of the end efec-
tor of a kinematic chain, given the configuration (e.i., parameter
values) of their joints. In other words, it addressed the problem
p = f (θ), where θ are the joint angles, and p the position of the
end effector.

For an articulated character with a serial chain of N links, with
join parameters θi, the kinematics equation, expressed in Denavit-
Hartenberg notation, is defined as

0TN =
N

∏
i=1

i−1Ti(θi), (12)

where i−1Ti(θi) is the affine transformation matrix from link i−1
to i. In 2D, such transformation matrices Ti are build up from rota-
tion Ri and translation Zi affine transformation matrices i−1Ti(θi)
= RiZi. See [Kay05] for an in-depth introduction to forward kine-
matics, and further details about this expressions.

Task 3_1_plot_skeleton.m asks to implement a MATLAB
function to compute and plot the position of a 2D kinematic chain,
defined by N rigid body parts of length ln, linked with 1 degree of
freedom (DOF) rotational joint parameterized by an angle θn. As
a starting point, we are providing with the necessary code to plot
a 1 DOF chain, including a structure to store a kinematic chain,
basic matrix multiplication code to apply affine transformations Ti
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Figure 11: Forward kinematics expected results from Task 3.1. Rest
pose (left), θ= [−70,0,35] (center), and θ= [160,−40,95] (right).

following Equation 12, and plotting commands to visualized the re-
sulting articulated chain. Figure 11 shows example results for this
task, for a kinematic chain with 3DOFs, rigidly attached to the cen-
ter of the grid.

6.1.2. Inverse Kinematics

Inverse kinematics aims at finding the angle parameterization for
a kinematic chain such that the end effector position p reaches a
desired goal position g. In other words, we seek to find the inverse
of the function f used in forward kinematics, θ = f−1(p). In the
area of Computer Animation, inverse kinematics is an important
problem heavily used in videogames and visual effects, for exam-
ple, to naturally pose human characters to reach a certain position
with their hand or feet.

While forward kinematics is a well defined problem with an an-
alytic solution, inverse kinematics is a lot harder, and it is gener-
ally tackled with an iterative method to find an approximated so-
lution. In this course, we propose to solve it with the Jacobian
inverse method, which is shown in pseudocode in Figure 12. In
the rest of this section we provide a summarized description of the
method, but students should check the extensive survey by Aristi-
dou et al. [ALCS18] for detailed explanation of this and alternative
methods.

Given a kinematic chain parameterized by joint angles θ, the Ja-
cobian J is the matrix of partial derivatives of chain end effector p
with respect to θ. The Jacobian iterative method find the θ values
that bring p close to the target point g by repeatedly updating the
values of θ with some increment ∆θ. Such increment is found by
computing

∆θ = α J+e, (13)

where e = p−g is the vector that points towards the goal from the
current chain end effector, and J+ the pseudoinverse of the Jaco-
bian. Note that all entries of J can be approximated numerically by
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modifying slighly the current values of each θi and observing how
the position p changes. See Section 5 of Aristidou et al. [ALCS18]
survey or the techical report [Bus04] for details.

Task 3_2_inverse_kinematics_2D.m asks to implement
an inverse kinematic solution based on the Jacobian method. The
iterative loop is summarized in the pseudocode from Figure 12. To
define the skeleton structure and compute the position of the end
effector p students can leverage all the code that was used for Task
3.1. Additionally, we also provide the necessary code to automati-
cally update the plot in a MATLAB figure, given a new configura-
tion of the angles θ, as well as the code to randomized the position
of the goal g within a specific range. Figure 13 shows an example
of the expected result from this task, where the kinematic chain an-
chored at location (0,0) smoothly reaches the goal position (shown
in cross orange).

Task 3_3_inverse_kinematics_3D.m is about extending
Task 3.2 to a three dimensional scenario. The overall algorithm
should follow the same structure depicted in the pseudocode from
Figure 12. Figure 14 shows an example animation produced with
this task, where a 3D kinematic chain with 3 rotational joints with 3
DOFs each, anchored at location (0,0,0), reaches the goal location
shown in orange.

while(dist(skel.pos(), target) > threshold)
{

J = compte_jacobian(skel)
delta_rots = inv(J) * (target - skel.pos())
skel.rots += delta_rots

}

Figure 12: Pseudocode for Inverse Kinematics.

6.2. Facial Animation

Facial animation is generally tackled in Computer Animation with
a blendshape model [LAR∗14]. Blendshape models are able to gen-
erate facial expressions as a linear combination of a set of basic ex-
pressions represented with 3D meshes. By changing the weights of
the linear combination, a large variety of facial expressions and an-
imations can be generate with little effort. This approach to model
facial expressions has two main advantages: it implicitly provides
a semantic parameterization (e.i., the weights have intuitive mean-
ings to animators); and it forces animators to stay within a plausible
deformation stay (e.i., no unrealistic expressions are produced).

More formally, a facial expression f can be computed as

f =
K

∑
k=0

bkwk, (14)

where bk is a basic expression (e.g., open mouth, smile, raise left
eyebrow, etc.), and wk the associated weight. However, Equation 14
is severely limited because each expression affects whole face. In
other words, it is a global operation, and cannot operate just on local
areas. This causes issues when, for example, ∑wk>1 which pro-
duces an undesired scaling factor. This is mitigated with the delta
blendshape formulation, the approach largely used in the industry
and in most of professional animation tools.
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Figure 13: Expected results from Task 3.2. A kinematic chain an-
chored at the center of the grid (red circle is the root) smoothly
reaches the goal (in orange) using inverse kinematics.
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Figure 14: Expected results from Task 3.3. A 3D kinematic chain
anchored at the center of the 3D grid (red circle is the root)
smoothly reaches the goal (in orange) using inverse kinematics.

Delta blendshape defines a face model b0 as a neutral expression,
and the rest of expressions bk are updated with the difference w.r.t
the neutral expression bk−b0. Therefore, Equation 14 is updated
as

f = b0 +
K

∑
k=0

wk(bk−b0). (15)

Task 3_4_compute_global_blendshape.m provides the
basic functionality to load meshes stored in obj files, as well as
a set of example expressions (also attached as a supplementary ma-
terial). To goal of this task is to implement the global blendshape
method defined in Equation 14. Students need to comment and re-
port on what happens when ∑wk>1.

Task 3_5_compute_delta_blendshape.m propose to start
from the same initial code as in Task 3.4, but implement the
delta blendshape approach defined in Equation 15 instead. Students
should demonstrate that with this approach exaggerated expres-
sions are possible without suffering from undesired global scaling
effects.

7. Evaluation

To evaluate the proposed methodology, we asked 18 students to
rate the course, on scale 1 to 5, according to different aspects. For
each question, we compare the average score for this course with
the average score for other animation courses of the same degree
that use different programming languages (e.g., C++). Figure 15
presents the results of this user study.

We first asked how much the proposed methodology helps to suc-
cessfully understand and focus on the fundamental concepts of the
course (i.e., using MATLAB instead of less intuitive programming
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successfully understand and focus on
the fundamental concepts of the
course.

The activities and content match what
the expectations from the course
description.
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The proposed methodology helps to
successfully understand and focus on
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Figure 15: User study of our methodology. Participants are asked
their preference for the described methodology (top), and how
much the content fits their expectation (bottom). For each ques-
tion we provide histogram of scores 1 to 5 (left, in blue), and com-
pare the average score of our methodology (in black) to the av-
erage score of other courses (in red) that use other programming
languages (right).

language), which resulted in an average score of 4.4. Notice that
the same question about the methodology, asked to the same group
of students in other courses of the same degree, resulted in an aver-
age score of 3.9. This hints that using programming languages that
require deeper coding skills hinder the learning of the course fun-
damentals. In contrast, in the paper we propose on clear and self-
contained programming tasks that allow students focus on what is
being taught other than programming low-level details.

We then asked students to rate the content of the course, and how
much did it fit to their initial expectations, given the information
that was available when they sign up for the degree. Specifically,
we ask how much the activities and content match what they expect
from the course description, which resulted in an average score of
4.4. When the same question was asked for other courses of the
same degree, the average score was 4.1. This indicates that the pro-
posed methodology does not cause any distraction or divergence
from the actual course content.

8. Conclusions

We have described a methodology to teach Computer Animation to
non-programming experts. The need for such course arises from the
fact that undergraduate students in Computer Science (CS) degrees
typically face a Computer Animation (or related) course before
developing strong programming skills. Thanks to the MATLAB-
based self-contained assignments and tasks described in this pa-
per, the students are capable of learning the basic principles of the
field without getting stuck into programming-specific problems.
Our user study with a group of students that passed this course
demonstrate that they were able to better learn the key concepts of
the subject, comparing to other courses where more complex pro-
gramming languages are used.
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