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Abstract

We propose SMPLitex, a method for estimating and manipulating the complete 3D
appearance of humans captured from a single image. SMPLitex builds upon the recently
proposed generative models for 2D images, and extends their use to the 3D domain
through pixel-to-surface correspondences computed on the input image. To this end, we
first train a generative model for complete 3D human appearance, and then fit it into the
input image by conditioning the generative model to the visible parts of subject. Fur-
thermore, we propose a new dataset of high-quality human textures built by sampling
SMPLitex conditioned on subject descriptions and images. We quantitatively and qual-
itatively evaluate our method in 3 publicly available datasets, demonstrating that SM-
PLitex significantly outperforms existing methods for human texture estimation while
allowing for a wider variety of tasks such as editing, synthesis, and manipulation.

dancasas.github.io/projects/SMPLitex

1 Introduction

Figure 1: From a single image where a human is partly visible (left), SMPLitex automatically
estimates a complete 3D texture map that can be applied to SMPL [34] body mesh sequences.

Creating photorealistic 3D virtual humans is a long-standing goal in Computer Graphics
and Computer Vision, with important applications in many areas including telecommuni-
cations, entertainment, online shopping, and medicine. Among the many tasks required to
produce digital humans, appearance synthesis is the fundamental step to achieving photo-
realism. To model virtual humans at scale, methods to create realistic-looking 3D human
textures are needed.
© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Ideally, a method to model human appearance should be generative (to create new com-
plete textures), easy to fit into partial observations (to recover textures from images), and
compatible with traditional animation pipelines (to use the textures in popular commercial
tools). Unfortunately, despite the impressive advances for digital humans, existing mod-
els for human synthesis typically focus on solving one of these challenges in isolation.
For example, recent methods have shown impressive results in posed image synthesis tasks
[9, 12, 30, 36, 45, 52, 53] using generative strategies such as GANs [10, 26] or VAEs, guided
with 2D pose representations or text [24]. However, these methods directly output camera-
space 2D images of humans but do not generate a complete texture map. This precludes their
use in standard 3D animation pipelines, where UV texture maps for texturing 3D meshes are
used. Additionally, they are usually not ready to be used to recover textures from in-the-wild
images. Similarly, other works leverage neural rendering pipelines [23, 41, 42, 44, 58] to
generate view-dependent posed avatars but do not output 3D texture maps either.

Alternatively, and closer to ours, other works focus on complete texture estimation from
single image [22, 25, 29, 40, 59, 63] and are able to recover 3D texture maps from ca-
sual images. Most of these methods used CNN architectures [22, 29] to infer the com-
plete 3D texture map from a single image, sometimes using multi-view supervision [63] or
transformer-based architectures [59]. However, they are limited to generating textures from
images, which precludes their use in applications that require the synthesis of unseen virtual
humans (e.g., via text prompts). Most importantly, they typically output low-detail textures
due to the limited expressivity of the latent space of the network. Additionally, we argue that
these undesired properties prevent the use of existing methods to build large and high-quality
public datasets of 3D human textures which, we believe, is a major shortfall in the field.

In this paper, we address these limitations and propose SMPLitex, a generative method
for complete 3D human texture synthesis. SMPLitex enables the estimation of 3D human
textures from single images that can be directly applied to SMPL meshes as shown in Figure
1. Additionally, since it is a generative method, it also allows for the synthesis of new
textures via text prompts or image editing, as shown in Figures 2 and 3. Under the hood,
SMPLitex leverages the recently proposed diffusion models for 2D image synthesis [47, 49]
built from a hierarchy of denoising processes. Despite the impressive results of such models
in 2D tasks [8, 17, 18, 35, 56], extending diffusion models to 3D humans requires addressing
two important challenges: spatial regularization, to enforce multi-view consistency; and 3D
awareness, to enable 2D-to-3D tasks. Our key observation is that, for human-related tasks, a
proxy of the 3D geometry visible in any image is coarsely modeled with human body models
such as SMPL [34], which opens the door to 2D diffusion models for 3D humans. To this
end, we first learn a domain-specific diffusion model that is trained to generate unwrapped
3D textures of humans, which implicitly learns multi-view consistency. Then, to provide
the 3D awareness required for 2D-to-3D tasks such as 3D texture from monocular input,
we estimate pixel-to-surface correspondences [13] to project image pixels to an incomplete
3D texture map. Leveraging the 2D structure implicitly enforced in our domain-specific
diffusion model, we are able to inpaint the incomplete 3D texture map.

We demonstrate that the proposed model, SMPLitex, outperforms state-of-the-art meth-
ods [29, 59] for 3D human texture estimation in 3 publicly available datasets [24, 33, 64],
generating high-resolution texture maps. Additionally, we exploit the generative capabili-
ties of the proposed model to create a new dataset of high-quality 3D textures. Our new
dataset overcomes the quality, diversity, and number of samples of existing datasets such as
SURREAL [55]. This paves the way for new data-driven models that require photorealistic
human data such as 3D pose estimation, 3D human reconstruction, and neural rendering.
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In summary, our main contributions are:

• SMPLitex, a new generative model for 3D human textures that can be used as a drop-in
replacement for textures in any SMPL-based pipeline.

• A novel diffusion-based method to infer 3D human textures from single RGB input.

• A new dataset of high-quality 3D human textures that significantly surpasses the detail,
diversity, and size of existing datasets.

2 Related Work
Texture recovery from single image. This group of methods attempts to recover the com-
plete appearance of humans [3, 5, 22, 29, 40, 59, 63], faces [51] or category-specific objects
[25, 38] from a single image. To tackle the challenges arising from such ill-posed prob-
lem, a variety of learning-based solutions relying on neural networks have been proposed,
including the use of multi-view supervision [40, 63], transformer-based architectures [59],
and differentiable rendering [22, 25].

Similar to ours, some works frame the texture recovery problem as image inpainting
problem [29, 40]. For example, Lazova et al. [29] computes pixel-to-surface correspon-
dences from the input image and project the pixel information into a partial texture map. The
incomplete texture is then inpainted using a GAN-based network, generating a complete 3D
texture of the input image. Neverova et al. [40] also train a partial texture inpainting network
to infer the occluded parts of the body, which is supervised by multi-view ground truth data.
Instead of inpainting a texture map, other methods directly predict the full texture given the
input image [22, 59, 60, 63]. For example, Xu et al. [59] map 3D coordinates of a human
body mesh to a UV texture map which, in combination with a 2D part segmentation image,
is converted to a texture map using a transformer-based network. Wang et al. [22] utilize
a distance metric based on a re-identification loss to learn to generate texture maps given
a dataset of images of humans taken from different viewpoints and their corresponding 3D
pose. Similarly, Zhao et al. [63] add part-based segmentation and enforce cross-view con-
sistency to learn to generate complete texture maps. Despite the impressive results, these
methods typically output low-detail textures due to the limited expressivity of the latent
space of the networks used. Furthermore, they are also limited to generating textures from
images, which precludes their use in applications that require the synthesis of new textures
or their manipulation, for example, via text prompts.

Closely related to the texture estimation task are the method that aim to reconstruct 3D
humans and appearance from single image [3, 15, 31, 39, 65]. These methods produce high-
fidelity 3D reconstructions, including fine geometric details, but the estimated appearance
is usually not explicitly baked into a consistent UV texturemap. Furthermore, they do not
enable the synthesis of unseen appearances.

Posed image synthesis. Instead of predicting the complete 3D texture map, this group of
methods aim at generating images of posed humans [9, 11, 12, 24, 30, 36, 45, 52, 53], hence
only requiring to synthesize the visible parts of the subject. Under the hood, these methods
use generative strategies, such as GANs [10, 26] or VAEs, guided with 2D pose representa-
tions [45], dense surface correspondences [1, 11], or text prompts [24] to describe the target
pose. For example, Sarkar et al. [52] encode the partial (i.e., visible) UV-space appearance
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to a global latent vector to modulate a StyleGAN2 [26] image generator. Similarly, AlBahar
et al. [1] inpaint a correspondence field and transfer local surface details to the target pose.

Despite the high-quality results of these methods, most of them do not output an explicit
texture map that can be used in 3D animation pipelines. This limits their use to purely 2D
image synthesis use cases. [14, 32] are notable exceptions and predict explicit dynamic
texture maps of the subject for pose synthesis, but require per-subject retraining.

Avatars from text. Also related to ours are the methods that aim at synthesizing humans
from text descriptions [7, 19, 24, 28, 62]. These methods combine recent image generative
models [9] based on GANs, VAEs, or diffusion models, with large vision-language pre-
trained models such as CLIP [46] to condition the output. For example, AvatarCLIP [19] is
able to generate and animate 3D textured humans directly from text, and Text2Human [24]
synthesizes high-quality 2D posed humans given detailed outfit descriptions. Other works
focus on more general objects [21, 27, 37]. However, they do not generate consistent texture
maps, and cannot easily be fitted into partial observations to estimate textures from images.

3 3D Human Texture Estimation

Given an input RGB image x, where a person is visible or partially visible, our goal is to
estimate a 3D texture map u that encodes the complete appearance of the subject. This is a
challenging ill-posed problem because (1) the 3D geometry of the scene (i.e., the 3D surface
of the person) is unknown; and (2) many parts of the image suffer from natural occlusions
and self-occlusions (i.e., not all surface points are visible).

To address this problem, a common approach [29, 59] is, first, to use a coarse geome-
try proxy [34] and infer pixel-to-surface correspondences [13] to build an incomplete texture
map; and later use an image-to-image translation framework to inpaint or estimate the incom-
plete texture. However, the limited expressivity of existing methods leads to low-resolution
inpainted textures that lack detail. Furthermore, the resulting models cannot be manipulated
with text prompts, which limits their applicability to image-to-image tasks.

In contrast, we propose a pipeline based on image diffusion models [49] that is capa-
ble of recovering high-quality textures, and additionally, it naturally allows for text-based
manipulations. Figure 2 presents a visualization of our pipeline. In the rest of this section,
we first describe how we formulate and train our generative model (Section 3.1), and then
describe how we leverage it to estimate complete 3D textures from in-the-wild monocular
RGB images (Section 3.2).

3.1 Generative 3D Human Textures

3.1.1 Background

SMPLitex uses a diffusion model as a generative backbone. Diffusion models are a type of
generative model that gradually remove noise from an image to learn the distribution space
pθ [16]. To accomplish this, the model starts with a sampled Gaussian noise and performs a
step-by-step denoising process over T time steps until it produces a final, noise-free image.
During each step of the denoising process, the diffusion model generates noise εt that is used
to create an intermediate denoised image xt . The initial noise xT corresponds to the final
image, while the fully denoised image x0 corresponds to the starting image. This denoising
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Figure 2: Overview of the proposed approach for texture estimation from a single image.

process is typically modeled as a Markov transition probability as follows

pθ (xT :0) = p(xT )
1

∏
t=T

pθ (xt−1|xt) (1)

To improve the efficiency of such diffusion models, latent diffusion models (LDM) [49]
operate on a lower dimensional latent space z pre-trained using a variational autoencoder.
During training, for an image x, noise is added to the encoded image z = E(x), where E
is the pre-trained encoder, leading to zt where the noise level increases with t. Analogous
to the original diffusion model, the LDM process can be seen as a sequence of denoising
models with shared parameters θ that learn to predict a noisy image εθ (zt ,c, t), where t is
the timestep and c a text condition. LDMs are trained by minimizing the loss term

Ezt∈E(x), t, c, ε∼N (0,1)[|ε − εθ (zt ,c, t)|22] (2)

Once trained, the LDM model can generate new samples following the diffusion process
in reverse mode, iteratively predicting the noise to be removed from a randomly sampled
Gaussian noise (potentially conditioned on text and time step).

3.1.2 Diffusion Model for 3D Humans

Many extensions of the original LDM [49] model have been recently proposed for a wide
variety of tasks and data modalities, including image inpainting [8, 35, 54] and video gener-
ation [17, 18, 56]. In this work, we look into how LDM can be adapted to the specific case
of 3D human appearance. However, naively extending LDMs to 3D domains is challenging
since multi-view consistency cannot be guaranteed. A few recent works demonstrate promis-
ing results in text-to-3D [43] or novel view synthesis [4, 57] tasks, but articulated objects and
high-resolution images remain a challenge.

Our key observation is that, for the specific case of 3D humans, these limitations can
be circumvented by using a 3D-to-2D parametrization of the surface (i.e., a UV map of the
mesh surface). By working directly on the UV map, we are able to encode the 3D appearance
of the human directly on a 2D image, opening the door to the potential of LDMs models for
appearance synthesis, inpainting, and manipulation.
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Therefore, we propose to leverage the highly expressive LDM proposed by Rombach et
al. [49], and fine-tune it to encode UV textures of humans. The main underlying challenge
of this task is how to ensure that the expressivity of the original model is preserved (i.e.,
the fine-tuned model is able to generate detailed and rich images that are not in the fine-
tuning training set) while satisfying the spatial constraints inherent in the UV textures (i.e.,
the 2D-to-3D parameterization). Crucially, recent text-to-image models [20, 50] address an
analogous problem for model personalization, where the goal is to learn to generate images
with a specific style or for a particular subject. Under the hood, these models use a class-
specific prior preservation loss that enables the synthesis of the target subject or style in
arbitrary scenarios, just using an extremely reduced set of training samples. Inspired by
this, SMPLitex leverages the work of Ruiz et al. [50] to fine-tune the model of Rombach et
al. [49] such that it is constrained to synthesize SMPL UV texture maps. In practice, we use
10 UV texture maps for SMPL from [2, 29] to fine-tune the model [49] available at [48] for
1,500 iterations. At inference time, our results use 50 denoising steps and a classifier free
guidance (CGF) of 2.0.

3.2 Human Texture Estimation from Single Image
The diffusion model described in Section 3.1 enables the synthesis of high-quality UV tex-
ture maps of humans. As discussed above, the diffusion model is sampled conditioned to
the time step, such that it removes the noise at time t, but it also allows for additional condi-
tioning signals (e.g., condition text c in Equation 2). Our key intuition is that to enable the
estimation of 3D human appearance from a single image, we can condition the synthesis of
an LDM model for human appearance to the visible parts of the subject in the input image.
In other words, we are interested in fitting SMPLitex into natural images.

To this end, similar to [29], we leverage the fact that we are under the assumption of
modeling 3D humans and use state-of-the-art pixel-to-surface correspondence models to
compute a partial texture map upart. More specifically, given an input image x, we estimate
pixel-to-surface correspondences d [40] and project the pixels of x with assigned surface
correspondences to a partial UV map upart, which will be used as a conditional signal.

However, a naive use of the pixel-to-surface correspondence d can potentially lead to un-
desired partial UV maps since d typically coarsely estimates the foreground silhouette. This
can lead to background pixels projected into the UV map, which significantly degenerates
the condition image. We mitigate this issue by computing an accurate human silhouette s [6],
that we use to mask the pixel-to-surface image d. More formally, we compute our partial
UV map as

upart = Π(x,d⊙ s) (3)

where ⊙ is the Hadamard product, Π is the operator that projects all pixels p ∈ x to their
corresponding surface coordinate according to the map d⊙ s.

With the partial texture map upart computed, we can infer the complete texture map ufull
of the input image x by just sampling the diffused model described in Section 3.1 using upart
as an additional conditioning signal.

4 SMPLitex Dataset
Taking advantage of the generative capabilities of the appearance model described in Section
3.1, we build a dataset of high-quality textures by simply sampling the latent space. More
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"Casual outfit" "Military soldier costume" "Race car driver"

"Pirate costume" "Superhero costume" "Futuristic astronaut"

"Hippie outfit" "Business outfit" "Angela Merkel, shirt"

Figure 3: SMPLitex texture samples, side-by-side to their corresponding front and back
SMPL render. Notice that these textures are not used for training SMPLitex, instead, they
are part of the dataset that we built by arbitrarily sampling our model. We believe such
high-quality textures will open the door to new possibilities in the area of virtual humans.

specifically, we use text conditioning prompts describing arbitrary outfit combinations, cos-
tumes, sports apparel, job titles, and facial characteristics. Figure 3 depicts 9 samples of the
dataset, showcasing a large variety of garment types, outfits, identities, and facial details. In
total, the SMPLitex dataset consists of 100 curated textures, see the supplementary material
for more details. To clarify, on top of the dataset we will also release the trained SMPLitex
model to generate new arbitrary samples, and it is the core component of our method to re-
cover textures from single images. However, we believe that releasing a fixed set of curated
textures will benefit future research.

5 Results and Evaluation

We qualitatively and quantitatively evaluate our method on 3 publicly available datasets [24,
59, 61] and demonstrate that our results compare favorably with state-of-the-art methods for
texture estimation. In contrast to existing methods, SMPLitex can deal with both low and
high-resolution imagery, and it is robust to multi-view consistency metrics.

Evaluation on DeepFashion-MultiModal [24]. This dataset consists of a large collection
of high-resolution fashion images (750× 1101 pixels), where subjects wear a wide variety
of clothing styles. In Figure 4 we present our qualitative results on this dataset, and compare
them to the results of the state-of-the-art closest methods [29, 59]. SMPLitex qualitatively
outperforms the method of Lazova et al. [29], which is based on a GAN inpainting network
that is unable to output high-quality garment details that are visible in the input image. In
contrast, SMPLitex textures exhibit fine details such as wrinkles and facial attributes, while
also extrapolating well to the occluded parts of the body.

Evaluation on Market-1501 [64]. This dataset consists of a large collection of low-resolution
images (64× 128 pixels) of 1501 different subjects, captured in an urban scenario. It was
originally proposed to evaluate person re-identification tasks, but Xu et al. [59] extended
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Input SMPLitex (ours) Lazova et al. [29] Xu et al. [59]

Figure 4: Qualitative comparison with state-of-the-art methods [29, 59] in the DeepFashion-
MultiModal dataset [24]. SMPLitex clearly outperforms the texture quality of previous
methods, recovering fine details such as garment wrinkles and facial attributes.

their use to evaluate human texture estimation. The idea is to estimate the texture of a sub-
ject on an image and test the fidelity of the recovered texture by rendering and comparing it
to another image of the same subject captured from another viewpoint. We use the same test
set and evaluation protocol defined by Xu et al. [59].

SSIM ↑ LPIPS ↓

CMR [25] 0.7142 0.1275

HPBTT [63] 0.7420 0.1168

RSTG [22] 0.6735 0.1778

TexGlo [60] 0.6658 0.1776

TexFormer [59] 0.7422 0.1154

SMPLitex (ours) 0.8648 0.0695

Table 1: Quantitative evaluation on Market-
1501 [64], following the protocol and evalu-
ation code defined by Xu et al. [59].

In Table 1 we show that our approach SM-
PLitex quantitatively outperforms the state-
of-the-art method by Xu et al. [59]. Fur-
thermore, in Figure 5 we present a qualita-
tive comparison that demonstrates that SM-
PLitex can infer faithful textures despite the
extremely low-resolution image input. Im-
portantly, notice that Xu et al. is a method
trained specifically on Market-1501 (i.e., it
does not generalize well to other datasets, as
we show above in the evaluation with Deep-
Fashion). SMPLitex does not suffer from
such an image-specific domain, while still be-
ing competitive in the Market-1501 dataset.
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Input [59] Ours Input [59] Ours Input [59] Ours Input [59] Ours

Figure 5: Qualitative comparison on Market-1501 dataset [64]. Despite not being trained
for this challenging dataset of 64× 128 pixel images, SMPLitex is able to infer convincing
textures that are at least on par with the dataset-specific method of Xu et al. [59].

Input
image Ours [59]

Ground
truth Ours [59]

Ground
truth Ours [59]

Figure 6: Multi-view consistency evaluation on THUman2.0 dataset. Using the input image
on the left, we show output textures by SMPLitex (ours) and [59]. Next, we show 2 validation
ground truth viewpoints and demonstrate that our renders closely match the ground truth.

SSIM ↑ LPIPS ↓

TexFormer [59] 0.8761 0.1223

SMPLitex (ours) 0.8829 0.1067

Table 2: Quantitative evaluation on THU-
man2.0 [61].

Evaluation on THUman2.0 [61]. To fur-
ther evaluate our approach, we contribute
with a new evaluation protocol for 3D texture
inference from a single image. To this end,
we leverage the THUmans2.0 [61] dataset,
a high-quality collection of 3D scans with
SMPL pose labels, and generate a test set
consisting of a render of each scan from a spe-
cific viewpoint. We then compare the estimated texture rendered from a different viewpoint
with ground truth renders of the scan and compute the pixel similarity. Figure 6 presents
qualitative results of this evaluation, demonstrating that our estimated textures closely match
the ground truth images from different viewpoints. Since we have 3D ground truth scans, we
are able to compute camera-space pixel-based errors of the rendered textures. Table 2 shows
that SMPLitex outperforms the state-of-the-art method of Xu et al [59] in both SSIM and
LPIPS metrics in this multi-view evaluation protocol on high-resolution images.
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6 Conclusions and Limitations
We have presented SMPLitex, a generative model for 3D human appearance that enables the
estimation of 3D human textures from single images. SMPLitex leverages recent image dif-
fusion models for 2D image synthesis and uses pixel-to-surface correspondence estimation
to bridge the gap between 2D images and 3D surfaces. By conditioning the diffusion model
to the visible pixels of a human in a single view, SMPLitex is able to synthesize a complete
texture map of the subject, outperforming current methods based on GANs or VAEs.

Despite the convincing quality of the results, SMPLitex suffers from limitations as well.
If the subject on the input image is significantly occluded or if surface-to-pixel correspon-
dence fails, SMPLitex sampling is weakly conditioned hence it can potentially generate tex-
tures that do not match well the subject. Similarly, when sampling the model with text,
if prompts are too general or not related to humans, output textures can exhibit unrealistic
facial or body features such as deformed faces or missing limbs.
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