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Summary

Recent advances in surface performance capture have demonstrated highly realistic
reconstruction of human motion sequences acquired in a multi-camera studio. Free-
viewpoint rendering techniques allow video-realistic replay of captured motions with
interactive viewpoint control. However, current approaches do not provide methods for
real-time motion and appearance manipulation, hindering the reuse of captured data.
Non-sequential temporal alignment techniques enable the conversion of an unstructured
set of 3D videos into temporally consistent mesh sequences with shared topology and
vertex correspondence, known as 4D videos. The work presented in this thesis aims
to develop methods to exploit 4D video datasets of human motion. In particular,
a framework for real-time interactive control of a 4D video character created by the
combination of multiple captured sequences is investigated. Our goal is to provide
methods for video-realistic character animation and rendering with the flexibility and
real-time interactive control associated with conventional skeleton driven animation.

An approach for parametric motion control of mesh sequences is introduced by blending
multiple semantically related 4D video motions. This enables real-time interactive
control using high-level parameters such as speed and direction for a walk motion. A
hybrid non-linear mesh blending method is introduced. Our approach provides both
realistic deformations and real-time performance, allowing parametric mesh spaces to
be built at run time. A novel graph representation, referred to as 4D Parametric
Motion Graph (4DPMG), is presented to encapsulate multiple independent parametric
motion spaces and transition between them whilst maintaining natural non-rigid surface
motions. 4DPMGs provide online path optimisation for transitions between parametric
spaces of 4D video motions with low-latency, enabling responsive interactive character
control with a large range of motions.

The final piece in the puzzle to enable video-realistic animations is provided by 4D
Video Textures (4DVT), a new approach for free-viewpoint appearance manipulation
that maintains the visual realism of the source video data. 4DVT enables video-realistic
rendering of novel motions by combining multiple 4D video textures to synthesise plau-
sible dynamic surface appearance. View-dependant optical flow is used for online align-
ment of parametric appearance from multiple views.

The research presented in this thesis demonstrated for the first time video-realistic
interactive character animation from 4D actor performance capture. This represents a
new approach to animated character production which achieves video-quality rendering
and does not require highly skilled manual authoring.

Key words: Character Animation, 4D Video, 4D Performance Capture, Motion
Graphs, Video-Realistic Animation, Free-Viewpoint Video

Email: d.casasguix@surrey.ac.uk — dan.casas@gmail.com

WWW: http://personal.ee.surrey.ac.uk/Personal/D.Casasguix/

http://personal.ee.surrey.ac.uk/Personal/D.Casasguix/


Acknowledgements



Contents

1 Introduction 1

1.1 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 4D Performance Capture 9

2.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Motion Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Towards Markerless Motion Capture . . . . . . . . . . . . . . . . 11

2.1.3 Free-Viewpoint Rendering . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Mesh Sequence Temporal Alignment for 4D Video Data . . . . . 17

2.2 A 4D Performance Capture Studio System . . . . . . . . . . . . . . . . . 20

2.2.1 Shape reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Shape similarity tree . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Mesh sequence alignment . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Captured characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Mesh Sequence Parametrisation 35

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Parametrisation of Skeletal Motion Capture Data . . . . . . . . . 36

3.1.2 Parametrisation of 4D Captured Data . . . . . . . . . . . . . . . 39

3.2 Parametric Motion Control of Mesh Sequences . . . . . . . . . . . . . . 41

3.2.1 Time-warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Real-time Mesh Blending . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3 High-level Parametric Control . . . . . . . . . . . . . . . . . . . . 44

v



vi Contents

3.3 3D Mesh Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Linear Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Non-Linear Blending . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Hybrid Piecewise Linear Blending . . . . . . . . . . . . . . . . . 50

3.4 Evaluation of Hybrid Non-Linear Blending . . . . . . . . . . . . . . . . . 52

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.2 Parametric Animations . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 4D Parametric Motion Graphs 69

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1 Reuse of Skeletal Motion Capture . . . . . . . . . . . . . . . . . 70

4.1.2 2D Video-Based Animation . . . . . . . . . . . . . . . . . . . . . 73

4.1.3 Reuse of 4D Performance Capture . . . . . . . . . . . . . . . . . 73

4.2 Introducing 4D Parametric Motion Graphs . . . . . . . . . . . . . . . . 74

4.3 4DPMG Nodes: Parametric Motion Spaces . . . . . . . . . . . . . . . . 75

4.4 4DPMG Edges: Parametric Motion Transitions . . . . . . . . . . . . . . 75

4.4.1 Finding Transition Candidates . . . . . . . . . . . . . . . . . . . 77

4.4.2 Transition Similarity Cost . . . . . . . . . . . . . . . . . . . . . . 78

4.4.3 Optimal Transition Path Evaluation . . . . . . . . . . . . . . . . 82

4.4.4 Mesh Similarity Evaluation . . . . . . . . . . . . . . . . . . . . . 85

4.4.5 Transition Performance Evaluation . . . . . . . . . . . . . . . . . 87

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5.1 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 4D Video Textures 97

5.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1.1 2D video-based animation . . . . . . . . . . . . . . . . . . . . . . 99

5.1.2 3D video-realistic animation . . . . . . . . . . . . . . . . . . . . . 101

5.2 4D Video Textures Animation Pipeline . . . . . . . . . . . . . . . . . . . 102



Contents vii

5.3 4DVT: 4D Video Textures . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.2 Interactive Control of the 4D Shape Dynamics . . . . . . . . . . 108

5.3.3 View-dependant 4DVT Rendering . . . . . . . . . . . . . . . . . 108

5.3.4 4DVT Motion Graphs . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4.1 User study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.2 Discussion and Limitation . . . . . . . . . . . . . . . . . . . . . . 128

6 Conclusions and Future Work 131

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A Proof Equation 4.5 137

B 4DPMG OpenGL Environment 141

B.1 XML file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

B.2 C++ OpenGL GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

C 4DVT User Study 145

Bibliography 147



viii Contents



Notation

Abbreviations

4DPMG 4D Parametric Motion Graphs

4DVT 4D Video Textures

fps Frames per second

HD High Definition

IK Inverse Kinematics

MoCap Skeletal Motion Capture

PCA Principal Component Analysis

RMS Root Mean Square

slerp Spherical linear interpolation

Nomenclature

Chapter 3: Mesh Sequence Parametrisation

N Number of meshes

Nx Number of vertices

Nk Number of triangles

xi ith vertex

ki ith triangle

Mi = {xi, ki} Mesh

M = {M0, ...,MN} Vector of N meshes

x = {x0, ..., xNx} Vector of Nx vertices

qkij Rotation of triangle k between meshes Mi and Mj

ix



x Contents

Sk
ij Scale/shear transformation of triangle k between meshes Mi and Mj

T k
ij Affine transformation of kth triangle between meshes Mi and Mj

T = {k0, ..., kNk
} Vector of Nk triangle transformations

si(t) = xi(t)− xi(t− 1) Vertex velocity

wi Blending weight

w = {w0, ..., wN} Vector of weights

r = {r0, ..., rR} Vector of precomputed weights used to generate DNL

ML(w) Linear interpolated mesh

MNL(w) Non-linear interpolated mesh

DNL(r) Vertex displacement field

R Number of precomputed DNL

b(M,w) Mesh blending function

g() Time warping function

p Vector of high-level motion parameters

f(w) Function mapping between weights w and parameters p

ε Surface error correction threshold

Chapter 4: 4D Parametric Motion Graphs

P Path inside trellis

ES Similarity cost

EL Latency cost

lmax Trellis depth

Ω Set of candidate paths

d(Mi,Mj) Distance between meshes Mi and Mj

s(Mi,Mj) Similarity between meshes Mi and Mj

S Similarity matrix

Chapter 5: 4D Video Textures

C Number of cameras

vi ith viewpoint

Ic(t) Video sequence from camera c over time t

I(t, v) Free-viewpoint video sequence for view v



Contents xi

I(t,w, v)
Novel parametrised free-viewpoint video sequence for view
v and motion parameters w

V (t) = {Ic(t)Cc=1} Captured multiple-view video sequence

M(t) Mesh at time t

F (t) = {V (t),M(t)} 4D video sequence

h(F1(t), ..., FN (t),w, v), Function that combines N 4D video sequences

aij(t,w, v) Optical flow between images Ii(t,w, v) and Ij(t,w, v)

o(Ii(t,w, v), Ij(t,w, v)) Function to find optical flow aij(t,w, v)

R Motion class

EA(P, v) Appearance cost

z(aij , Ii, Ij ,w)
Function to warp and blend images Ii and Ij according to
flow aij and motion parameters w



xii Contents



Chapter 1

Introduction

The impressive technological advances occurring in today’s world have enabled the

investigation of systems for real-world scene capture and reconstruction. Media pro-

duction industries, including television, film and video-gaming, have experienced a

growing demand for producing photo-realistic 3D content. In particular, there is an

increasing interest in 3D reconstruction of humans, which would allow the creation

of digital doubles, enabling the seamless combination of video footage and computer

generated humans. A number of applications could benefit from video-realistic digital

characters: from interactive virtual avatars for video-games to actor replacement in

dangerous film scenes.

Computer Vision and Computer Graphics research play a key role in the investigation

of systems for 3D content creation. Three steps are required for highly realistic 3D

human motion synthesis: accurate data capture; robust representation and performance

reconstruction; and motion editing and control.

Initial approaches for skeletal human motion capture, referred to as MoCap, used op-

tical or mechanical sensors to track a set of points on the surface which are related

to body joints. Skeletal MoCap enabled the acquisition of real human motion with a

level of detail difficult to replicate via manual animation [MG01]. Subsequent research

focused on the reutilisation of captured MoCap data, allowing interactive control of a

skeletal character. Real-time animation of 3D mesh characters has been achieved by the

1



2 Chapter 1. Introduction

combination of linear skinning methods and MoCap data. However, this approach suf-

fers from two main limitations: first, synthesised animations do not reproduce non-rigid

surface dynamics due to the simple rigging scheme; and second, the lack of appearance

detail, requiring highly skilled artists and hours of manual work in order to incorporate

texture information into the animated meshes.

In the last decade, approaches for 3D surface performance capture have been intro-

duced, allowing the reconstruction of video-realistic 3D models that reproduce the

motion captured in the source video. A synchronised multi-camera studio that simul-

taneously captures a scene from different viewpoints is generally used for performance

capture [SMN∗09]. Free-viewpoint rendering techniques enable video-realistic replay

of the motion with interactive control of the rendered view. Model-based 3D recon-

struction algorithms [CTMS03, dST∗08, VBMP08, GSdA∗09] derive a temporally con-

sistent mesh structure that deforms in every frame in order to match the captured

shape. However, their deformations are restricted by the model topology, hindering the

reconstruction of complex surface dynamics. On the other hand, model-free methods

[SH07b] use a combination of visual hull techniques, feature tracking and stereo match-

ing, to generate a mesh sequence with a per-frame varying topology that reproduces

the captured motion. However, a temporally coherent representation is required for

integration into the standard animation pipeline.

Recent research on mesh sequence alignment [BHKH13] has enabled the representation

of multiple 3D mesh sequences using a coherent mesh structure that deforms over time

to match the captured shape, referred to as 4D video. Aligned sequences preserve the

captured surface details and allow complex surface deformation. This has opened up

the applications of 3D mesh sequences reconstructed from multi-camera performance

capture, enabling the integration of video-realistic captured motions into the traditional

character animation pipeline.

This new context for character animation has motivated the work presented in this

thesis, which explores new methods for human motion synthesis exploiting datasets of

captured 4D video sequences. In order to create believable video-realistic interactive

characters from 4D video performance capture this research introduce a number of
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techniques for real-time control, representation and rendering.

Previous research on skeletal MoCap data successfully synthesised novel motions by

exploiting datasets of captured sequences [RCB98, HG07], however, these methods are

not valid for 4D video data. While skeletal data consists of a reduced set of joint angles

per frame which can be easily manipulated, 4D video data consists of thousands of 3D

vertex positions that describe the surface shape at each frame. Therefore, novel ap-

proaches for both surface and appearance manipulation are required. Captured surface

geometry as well as appearance detail need to be preserved in the synthesised motions

in order to maintain the captured visual realism.

Our goal is to introduce methods to enable interactive video-realistic character anima-

tion by the combination of multiple captured 4D video sequences. In order to achieve

this, a number of open problems related to 4D video are addressed in this thesis: devel-

opment of methods for mesh sequence blending; study of shape and motion similarity

for mesh sequence concatenation; development of methods for video-realistic dynamic

appearance control for parametrised 4D models; and efficient implementation of mesh

and appearance manipulation algorithms for interactive motion synthesis.

1.1 Thesis outline

The content of this thesis is structured as follows:

• Chapter 2 - 4D Performance Capture. This chapter presents an overview of

the existing literature related to human motion capture. Starting from the early

approaches consisting of manual drawings based on observations, to state-of-the-

art methods for 3D performance capture in a multi-camera studio. Finally, the

state-of-the-art framework for 4D video capture used in this thesis is described

together with details of the reconstructed datasets used throughout this thesis.

• Chapter 3 - Mesh Sequence Parametrisation. This chapter investigates

methods for high-level interactive animation of 4D video sequences by blend-

ing multiple captured clips. Previous research on both skeletal motion capture
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(MoCap) and 3D mesh interpolation is initially reviewed. Three problems are ad-

dressed: time-warping to temporally align key events across sequences; high-level

parametric control to provide the user with intuitive parameters of the motion to

synthesis novel mesh sequences according to user controlled motion parameters;

and finally, real-time mesh sequence blending. The latter is investigated in detail,

evaluating linear and non-linear solutions. A novel hybrid non-linear approach is

proposed, achieving both real-time performance and realistic deformations. Mesh

sequence parametrisation is evaluated for multiple characters performing a variety

of motions. The proposed approach enables parametric motion spaces to be con-

structed from a set of mesh sequences of example motions, allowing the synthesis

of parametric 4D video motions.

• Chapter 4 - 4D Parametric Motion Graphs. This chapter introduces a novel

representation technique for 4D video sequence concatenation, with the goal of

seamlessly linking a set of parametric motions built using the approach proposed

in Chapter 3. Related work on MoCap and 3D mesh sequence concatenation is

reviewed. A novel data structure, referred to as a 4D Paramatric Motion Graph

(4DPMG), is introduced to encapsulate sets of 4D video parametric motions and

transition between them. Transitions between different parametric motion spaces

are evaluated in real-time based on surface shape and motion similarity. The

4DPMG representation allows real-time interactive character animation while

preserving the natural dynamics of the captured performance.

• Chapter 5 - 4D Video Textures. Previous approaches for free-viewpoint

video rendering are limited to replay of the captured textures [ZKU∗04, SH07b].

Therefore they cannot synthesise novel appearance to match the parametric poses

generated using the 4DPMG introduced in Chapter 4. This chapter presents a

novel approach to control the dynamic appearance of a parametrically controlled

4D video character to produce plausible video textures according to the motion,

referred to as 4D Video Textures (4DVT). 4DVT enable real-time video-based

character animation with interactive control of the motion and viewpoint whilst

maintaining the video-realism. A user study is performed which confirms that
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4DVT visual-quality is comparable to captured video.

• Chapter 6 - Conclusions and Future Work. This chapter presents an overall

discussion of the results achieved in this thesis. Main conclusions and challenges

that arise from our work are discussed. Research directions are proposed to

further extend 4D video animation.

• Supplementary Video. A video of the results presented in this thesis can be

downloaded from the following link:

http://thesis:th3s1s@personal.ee.surrey.ac.uk/Personal/D.Casasguix/thesis

1.2 Contributions

The main contributions of the work presented in this thesis are:

• Parametrisation of 4D models for interactive control. High-level motion parametri-

sation is introduced by real-time blending of multiple captured mesh sequences.

This leads to parametric control of mesh sequences analogous to approaches for

skeletal motion parametrisation [RCB98].

• Hybrid non-linear 3D mesh blending. A novel approach is introduced which com-

bines the realistic deformations achieved computationally expensive with non-

linear 3D-blending schemes [Sor06, KG08, TH11] with the real-time performance

of linear blending. This allows real-time interactive parametric controlled anima-

tion from multiple mesh sequences with the realistic deformation of non-linear

methods.

• Parametric motion graph representation of a database of 4D videos for interac-

tive animation. A database of mesh sequences is represented in a graph-structure,

referred to as 4D Parametric Motion Graphs (4DPMG) with nodes representing

parametrised motions, and edges transitions between motions which preserve sur-

face shape and non-rigid motion. This representation allows real-time interactive

control analogous to skeletal move-trees or parametric motion graphs [HG07].

http://thesis:th3s1s@personal.ee.surrey.ac.uk/Personal/D.Casasguix/thesis
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• Online path optimisation for transition between parametric motion spaces with

low-latency. This allows responsive interactive character control without delays

in transitioning between motions.

• Real-time combination of multiple 4D videos to render novel motions and view-

points with video-realistic quality with dynamic surface appearance. The pro-

posed approach, referred to as 4D Video Textures (4DVT), enables the parametri-

sation of a set of 4D video examples of related motions, allowing to synthesise

free-viewpoint video for novel motions with video-realistic quality. As the motion

of the character changes, so does the dynamic appearance of the rendered video.

• View-dependant alignment of appearance between multiple 4D video sequences

using optical flow estimation to allow interpolation of appearance whilst main-

taining the dynamic detail.

1.3 List of publications

• D. Casas, M. Volino, J. Collomosse, A. Hilton. 4D Video Textures for Interactive

Character Appearance. 2014. (Under submission).

• M. Tejera, D. Casas and A. Hilton. Animation Control of Surface Motion Cap-

ture. IEEE Transactions on Cybernetics, (In press), 2013.

• D. Casas, M. Tejera, J-Y. Guillemaut and A. Hilton. Interactive Animation of

4D performance capture. IEEE Transactions on Visualization and Computer

Graphics, 19 (5), 2013.

• D. Casas, M. Tejera, J-Y. Guillemaut and A. Hilton. 4D Parametric Motion

Graphs for Interactive Animation. Proceedings of the ACM SIGGRAPH Sym-

posium on Interactive 3D Graphics and Games (I3D), 2012, Costa Mesa (CA),

USA.

• D. Casas, M. Tejera, J-Y. Guillemaut and A. Hilton. Parametric Animation

of Performance Captured Mesh Sequences. Computer Animation and Virtual

Worlds, 23 (2), 2012.
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• D. Casas, M. Tejera J-Y. Guillemaut and A. Hilton. Interactive 3D Video Anima-
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• D. Casas, M. Tejera, J-Y. Guillemaut and A. Hilton. Parametric Control of
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• D. Casas, J-Y. Guillemaut, A. Hilton. Interactive Parametric Control of Mesh Se-
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Chapter 2

4D Performance Capture

Highly skilled artists have been drawing human-like motion for 2D cartoon characters

for decades. While this approach has proved to be successful to animate characters in

comics and 2D animation, it is not only very tedious but also does not achieve results as

realistic as real human behaviour. Therefore, due to the high complexity of the motions

that humans can perform, computer character animation has traditionally been based

on captured data, allowing the reproduction of actual human motion.

This chapter reviews the literature around motion performance capture in the Com-

puter Vision and Graphics research community. Initial approaches, based on rotoscop-

ing to copy motion fron image sequences, quickly evolved into automatic marker-based

skeletal capture when the first computer animation system were investigated, back in

the 1980s. Since then, researchers have focused on both improving the quality and

relaxing the requirements of the capturing schemes, leading to sophisticated markerless

systems that allow detailed capture and reconstruction of fast motions, including sur-

face and appearance information, using temporally coherent 3D mesh representation,

known as a 4D video.

We then describe both the studio setup and state-of-the-art techniques used in this

work to capture human performance in a synchronised multi-camera environment and

generate a 4D dataset of motions. Data captured through this approach is used in

the following chapters of this thesis as a input data to synthesise novel 4D character

animation.

9



10 Chapter 2. 4D Performance Capture

2.1 Literature review

2.1.1 Motion Capture

Artists have been interested in animating characters ever since the first form of ani-

mated cartoon was created in the 1850s. However, they soon realised that, due to the

high complexity of the human body, drawing believable human motions was not an

easy task.

In the late 1800s Muybridge and Marey pioneered in the use of photography to study

human and animal locomotion. The later introduced the chronophotographic gun, and

instrument capable of capturing 12 consecutive frame a second and recording them in

the same frame, allowing detailed study of the motion of a variety of animals. Inspired

by this work, a first attempt to mitigate the difficulties of drawing human-like motion

consisted in creating animations observing real world motions for inspiration. Soon,

in the 1910s, the idea of drawing motion from observation led to the first mechanism

created to help artist draw realistic motions: the Rotoscope, a device that projects

recorded film images onto a frosted glass, providing the animator with indications from

real footage for their drawings.

A few decades later, in the 1950s, the first forms of computer animation appeared,

enabling the generation of animated images by using computer graphics, however,

motions were still handcrafted by animators. In order to provide realistic and less

time-consuming motions, methods for automating the process of creating motion from

observations were required.

Motion Capture, MoCap, techniques, initially introduced in the 1980s for biomechanics,

and later in the 1990s adopted in film production, use optical, mechanical or magnetic

sensors to capture the movements of the human body that can then be transferred

to animated characters [Gle99, Men99, HFP∗00]. MoCap overcomes traditional hand-

crafted animation pipeline by automatically inferring joint position/angles from the

observation of markers located on surface of the character, providing a simplified hu-

man skeletal motion to the animator. This results in an animation pipeline that is less

laborious and more realistic than any previous approach for human motion generation.
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Extensive surveys published by Moeslund et al. stated that, after studying over 500

publications, the general structure of a MoCap system comprises the following steps:

initialisation, tracking, pose estimation, and recognition [MG01, MHK06]. The initial-

isation stage ensures that the system has a correct interpretation of the current scene,

including camera calibration, usually done offline, and model initialisation, which can

be done manually or automatically, requiring a fixed set of sequence movements to

identify joints of the skeleton and estimate limb lengths. The tracking stage aims to

establish relations of the subject limbs between consecutive frames. This is achieve by

initially segmenting foreground and background, then converting the segmented image

into a simpler representation and finally defining how the subject is tracked from frame

to frame. The next stage is pose estimation, which identifies how the human body limbs

are configured in a given scene. Both model-free, with no prior model to fit into the

pose, and template-model methods have been investigated in the literature. Finally,

the recognition state, is usually part of the post-processing part and aims to identify

and classify the captured motion.

2.1.2 Towards Markerless Motion Capture

Traditional marker-based MoCap captures a number of joint positions of the human

body, enabling the replay of the skeletal captured motion. However, while these systems

are precise, they are invasive and expensive. To overcome these limitations, markerless

MoCap systems have also been investigated in the literature in the last decades [MG01,

MHK06, Pop07]. Many applications, such as video surveillance and Human-Computer

Interaction, would potentially benefit from markerless MoCap systems, which would

allow unconstrained motion tracking from video footage.

One of the first approaches was published in the early 1980s by Hogg [Hog83], who

used a model-based analysis-by-synthesis methodology to extract human motion from

multiple views . A bounding box of the human shape was found by image subtrac-

tion, and the edges of the box were compared with the edges of a projected human

model. Similarity, Rohr [Roh93] used the same approach improved by a Kalman filter

and a motion model to obtain more robust results. Researches soon realised that the
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problem with using articulated models is the high dimensionality of the configuration

space, which exponentially increases computational costs. In fact, initial research was

restricted to walking motions [Hog83, Roh93] to reduce the dimensionality. Gavrila

and Davis [GD96] tried to solve the same problem but without assuming a known mo-

tion model, instead, they utilised four camera views to capture motions of characters

wearing tight colour-specific clothes to obtain good results. Once a specific part of the

body was identified, a hierarchical search was employed to constraint the rest of the

model . Bregler and Malik [BM98] assumed fixed viewpoint of the character to simplify

the problem and represent skeletal joint angles using products of exponential maps and

twist motions that only required a simple linear system to be solved. They were able

to fit a kinematic chain into the captured character and update it over time. Less

restricted approaches, using stochastic tracking techniques [DBR00, MH03], have also

been investigated. Deutshcer et al. introduced the annealed particle filter for searching

high dimensional configuration spaces that did not rely on any of the assumptions for

dimension simplification mentioned before.

At the same time, in the 1990s, methods for rendering volumetric representations of a

scene from multiple camera views were also proposed [Lau94, KR97, SD99]. Inspired by

earlier research for constructing discrete grids of voxels from a set of silhouettes, known

as voxel carving [Pot87], Laurentini introduced a technique for shape reconstruction

from silhouettes referred to as the Visual Hull –also know as shape-from-silhouette,

SFS– that results in an upper bound volume representation of the real object’s shape

[Lau94]. Seitz and Dyer [SD99] extended the volume intersection problem, introducing

a voxel colouring framework that enable the identification of colour-invariant points

in a set of basis images referred to as the photo-hull. This allows a better volume

reconstruction of the scene. More recently, approaches for real-time image-based visual

hull reconstruction have been proposed [MBR∗00], exploiting graphic-specific hardware

and investigating not only 3D reconstruction of a captured volume but also slices of

the visual hull, allowing the construction of interactive virtual environments [Lok01].

Taking advantage of these volume-from-silhouettes methods investigated in the 1990s

[Lau94, SD99, MBR∗00], further research in multi-camera markerless motion capture

systems improved previous results, using reconstructed volume models as a input data
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for motion estimation. Cheung et al. [CKBH00] used a 5-camera system that computed

a real-time volumetric voxel-based reconstruction and fitted a 3D ellipsoid model into

it. Unlike previous approaches, the tracking and fitting of the model was done in

the 3D domain instead of projecting the predicted model into 2D . Theobalt et al.

[TMSS02] introduced an approach for markerless full-body motion capture, combining

colour-based optical tracking with the visual hull reconstruction from multiple camera

views [Lau94]. Their system allowed real-time fitting of a skeleton to the video footage.

Carranza et al. [CTMS03] proposed a model-based approach in which a humanoid 3D

mesh was deformed to fit the captured character by maximising the overlap between

projected model silhouettes and input camera silhouettes. De Aguiar et al. [dATM∗04]

use visual hulls built from a shape-from-silhouette method to identify the kinematic

chain of motion. This approach, which identifies rigid body parts by subdividing the

input volume to fit ellipsoidal shells in every time frame, does not require any previous

knowledge of the skeletal model. Cheung et al. [CBK05] improved previous results on

markerless motion capture by initially building a personalised kinematic skeleton for

each character. Further approaches ([SH07b, dST∗08, VBMP08, GSdA∗09]) that aim

to not only capture but also realistic rendering of the 3D character, are discussed in

greater detail in the next section.

Recently, methods for markerless motion capture have moved away from synchronised

camera setups, allowing the recovery of 3D human motion data from unsynchronised

and uncontrolled capture environments [HRT∗09, ESH∗12] However, despite the efforts

in developing motion capture systems and volumetric reconstruction from silhouettes,

the reconstructed shape resulted only in a coarse approximation of the actual body,

which didn’t allow realistic re-rendering of the captured characters.

2.1.3 Free-Viewpoint Rendering

In the last three decades, Computer Vision and Computer Graphics researches have

been interested not only in capturing both static scenes and dynamic motions –see Sec-

tion 2.1.2– but also in reproducing captured video appearance from novel viewpoints.

In order to provide full flexibility to the final replay, there has been a strong interest in
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investigating methods for novel viewpoint rendering, enabling the generation of photo-

realistic 3D digital video sequences that maintain the captured image quality. Methods

to achieve this goal can be classified into two main groups: image-based methods, which

only rely on the 2D image domain to generate 3D renders; and model-based methods,

which use a 3D geometric proxy of the scene to compute the final render.

Chen and Williams [CW93] pioneered in image-based synthesis of novel viewpoints

for 3D scenes from multiple captured images, introducing a real-time approach for

image interpolation. Pixel-by-pixel correspondence between adjacent input images is

automatically precomputed, based on the camera’s position and orientation. An im-

age morphing method was used to interpolate each image towards the other, blending

pixel values. Neighbouring pixel similarity is exploited to group blocks of pixels that

move in a similar manner, allowing efficient computation. To improve on previous

approaches for 3D reconstruction from multiple images, Debevec et al. presented a

photograph-based approach for modelling and rendering static architectural scenes,

combining geometry-based and image-based methods [DTM96]. With minimal user

interaction, consisting in labelling edge-correspondences across images, the computer

determined the parameters of a hierarchical model of parametric polyhedral primitives

to reconstruct the architectural scene. A novel view-dependent texture mapping ap-

proach was introduced to render the reconstructed 3D geometry. Pixel colours are

assigned combining the original images, weighted according to the angular distance

between the rendered virtual view and the original viewpoint. Texture holes present

in the final render due to areas that are occluded in all input images were filled using

texture interpolation [CW93].

Further research extended model-based methods for 3D reconstruction to dynamic

scenes [MTG97, KR97]. Moezzi et al. presented an approach based on a shape-

from-silhouette voxel-carving method using a 17 cameras setup that successfully re-

constructed fast human motions such as a karate kick. Real-time view-dependant tex-

ture mapping was achieved by precomputing and assigning to each face its original

captured color in each camera and retrieving it at run time. Similarly, Kanade et al.

presented the Virtualized RealityTM , a system with a 5m2 area dome and 51 cameras

for free-viewpoint video replay of human performance [KR97]. Depth information was
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derived from input images and converted to textured 3D mesh models. Although it

improved previous research, their system still suffered from artefacts such as ghost-

ing effect caused by differences in brightness between cameras, texture holes, motion

parallax and low resolution details.

At the same time, in the late 1990s and early 2000s, model-based methods for 3D recon-

struction and free-viewpoint rendering of dynamic scenes were investigated. A number

of novel solutions for improved viewpoint interpolation were proposed. Buehler et al.

[BBM∗01] described an image-based approach that generalised previously proposed

algorithms, including view-dependent texture mapping [DTM96] and light field/lumi-

graph approaches [GGSC96]. Buehler’s approach, referred to as Unstructured Lumi-

graph Rendering, requires a set of source images, their camera locations and a geometry

proxy of the scene. A Camera Blending Field, defined by the field-of-view and angular

differences between the desired ray and the source images, was used to synthesise pixel

values using a weighted sum of the input pixel data.

Zitnick et al. [ZKU∗04] improved previous results by automatically inferring per-pixel

image depth maps from synchronised multi-camera capture. A novel offline-computed

two-layer depth map representation was introduced to overcome artefacts caused by

unclear foreground / background edges, enabling high-resolution online free-viewpoint

rendering. Vedula et al. [VBK05] proposed another image-based method for dynamic

scene modelling from synchronised multi-camera capture based on the explicit recov-

ery of scene properties using the so-called scene flow [VBR∗05], a first order measure

(velocity) of the instantaneous non-rigid motion of all objects in the scene. Recon-

structed models overcome limitations of previous per-frame shape reconstruction since

they allow computation of geometric information. For any requested position and time

of the novel view, scene flow is used to interpolate the shape, which is textured by

projecting it into the original images, taking advantage of the known geometrical cor-

respondence. Recently, more general solutions for video-based rendering that allow

seamless non-photorealistic interactive camera selection control from unsynchronised

hand held cameras have been proposed [BBPP10].

In conclusion, although image-based and video-based methods generally achieve plau-
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sible video-realistic results, they do not provide temporally coherent mesh geometry

or 360 degree shape models, both properties required for the 4D-video manipulation

techniques investigated in this thesis. Furthermore, image-based methods usually fail

due to the inherent visual ambiguity in geometrically complex scene such as complex

human motions.

Model-based approaches for free-viewpoint video replay of human performance have

been proposed in order overcome these limitations. Carranza et al. proposed a frame-

work [CTMS03] in which markerless MoCap is used to rig a generic humanoid mesh

model and a free-viewpoint texturing approach was used to provide the final animated

mesh with photorealistic appearance. Body pose parameters were found by maximising

the overlap between projected model silhouettes and input camera silhouettes in every

frame. This approach successfully captured human shape and reproduced temporally

consistent mesh sequences with free-viewpoint appearance of human motion. However,

no surface non-rigid motions –such as cloth movement, wrinkles or hair– are present in

the final geometry proxy.

This limitation has been addressed by model-based approaches for 3D human capture

from multi-camera studio capable of deforming the source 3D mesh model to enable the

reproduction of both rigid and non-rigid motions [dST∗08, VBMP08]. De Aguiar et al.

[dST∗08] used a static laser scan to obtained a high resolution 3D mesh template of the

character to be captured. SIFT image features were used as a deformation constraints

in a Laplacian deformation framework to deform a coarser tetrahedral mesh used as a

first pose estimation to recover the global position. The high resolution mesh model is

then mapped into the deformed tetrahedra, providing a deformed mesh with non-rigid

surface details. Similarly, Vlasic et al. [VBMP08] also use a high resolution scanned

mesh as a source model. For every captured frame, skeletal pose was obtained from

the reconstructed visual hull and used to rig the template using a conventional linear

blend skinning approach. A Laplacian deformation framework was used to deform the

rigged template to fit the source silhouettes. This results in a temporally aligned mesh

sequence that reproduces both rigid and non-rigid captured motions. More recently,

Gall et al. proposed a similar approach [GSdA∗09] that improved on the results ob-

tained by Vlasic et al., introducing a method for better skeletal fitting based on both
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appearance information and the surface model rather than visual hull, which is more

sensitive to silhouette errors.

On the other hand, Starck and Hilton [SH07b] introduce an approach for 3D mesh

reconstruction from multi-camera capture that does not require any geometry prior.

Their approach, which combines stereo and shape-from-silhouette reconstruction, en-

abled the the acquisition of shape, appearance and motion of fast human perfor-

mances such as break-dancing moves, using 8 synchronised conventional HD cameras.

Visual-hulls is initially derived from automatically extracted silhouettes. Wide-baseline

feature matching between cameras allows refinement of the true surface inside the

visual-hull. Finally, the volume is extracted by computing the surface within the vi-

sual hull that passes through the detected features, matches silhouettes images and

maximises consistency in appearance across all views. Reconstructed 3D models, al-

though less detailed than other approaches that used high resolution laser scans model

[dST∗08, VBMP08, GSdA∗09], reproduce non-rigid surface dynamic details present in

the original footage. Extracted surfaces provided a time-varying geometry along the

sequence, consisting in a triangulated surface mesh that changed its geometry, topology

and mesh connectivity in every frame.

2.1.4 Mesh Sequence Temporal Alignment for 4D Video Data

A critical step for editing and reuse reconstructed 3D data from multi-camera cap-

ture, known as 3D video data, is the temporal alignment of captured mesh sequences

to obtain a consistent mesh structure with surface correspondence over time. Such

temporally coherent mesh representation, referred to as 4D video data, would enable

the reutilisation of the captured data using a conventional computer graphics pipeline.

This assumes that deformable surfaces are represented with a consistent mesh structure

with only the surface shape varying over time.

Due to the utilisation of a source geometric template that is iteratively deformed to

match the captured silhouettes, model-based approaches for 3D reconstruction of hu-

man performance capture inherently provide a 4D mesh representation of the motion

[CTMS03, dST∗08, VBMP08, GSdA∗09]. However, the use of a geometric template
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also limits the range of surface deformation which can be represented. Model-free ap-

proaches [SH07a] output a 3D mesh per-frame with varying topology that needs to be

post-processed to be converted into a 4D model representation. This allows the repre-

sentation of more general shape deformation, but need to be post-processed. Therefore,

in order to deform temporally unstructured mesh sequences into coherent 4D models,

methods for mesh tracking and deforming are required.

An initial approach [SH05, SH07b] for converting a geometrically inconsistent mesh

sequence into a temporally coherent representation of mesh sequences employed a bi-

jective mapping for surfaces of genus-0 spherical topology to track the non-rigid defor-

mations in a 2D domain, enforcing a one-to-one correspondence. However, this requires

temporally consistent cuts to be applied to the arbitrary genus reconstructed surface

to enforce a mapping to spherical topology for all frames.

Consequently, more general surface tracking methods have been investigated in order

to provide 3D correspondences along free-form mesh sequences with changing topology.

Vedula et al. introduce the 3D scene-flow [VBR∗05], a dense three-dimensional vector

field defined for every point in the scene that describes how each voxel moves across

time. However, stable long term tracking is needed for wide-timeframe matches, and

surface matching across different sequences was not guaranteed. Starck and Hilton

[SH07a] present a framework to match arbitrary frames from captured sequences con-

taining not only large-scale articulated motions but also large non-rigid surface de-

formations. Their approach, which introduce a set of feature descriptors invariant to

isometric deformations, does not require any prior model and allowed wide-timeframe

surface matching. Ahmed et al. [ATR∗08] propose a robust system for surface corre-

spondence across sequences. Their approach is intended to solve local and not global

correspondences, hence matches are easier and faster to solve. Their approach looks ini-

tially for SIFT [Low04] features between consecutive frames, then harmonic functions

are used to produce dense correspondences by propagating the sparse SIFT correspon-

dence information. In the ideal case where the dense correspondence field was found

through the whole mesh, trivial vertex displacement, supported by a basic Laplacian

deformation scheme for smoothness, is used to deform one mesh into the consecutive

one, generating a 4D representation of the sequence. Ahmed et al. assume isometric
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deformations in consecutive frames of the captured data, and this is not always true,

especially in the case of large cloth and hair movements.

More recently, Tung and Matsuyama overcame this and other limitations, proposing

a method for surface matching that did not relay on appearance information. This

approach allows matching between different actors [TM10]. Their approach is based on

sparse geometric features and geodesic mapping, which ensures a one-to-one matching

across surfaces, and allows matching under large non-rigid deformations.

Further research in surface tracking and mesh alignment resulted in methods that do

not require any prior knowledge of the surface data. Instead, they focus on deforming

a single frame through subsequent frames of the sequence. Cagniart et al. introduce

an approach for full body tracking and alignment based on geometry matches [CBI09].

Correspondences between consecutive frames are found using an Iterative Closest Point,

ICP, algorithm on randomly generated geodesic surface patches. A Laplacian [Sor06]

mesh deformation framework is used to deform consecutive meshes using the near-

est point correspondences as a constraints. More recent research on the patch based

paradigm [CBI10a] found correspondences using overlapping patches to provide multi-

ple targets for vertices. Accurate tracking was achieved by enforcing rigidity constraints

between neighbouring surface patches. This approach was not limited to reconstructed

geometry from multiple camera systems, it was also demonstrated to allow reconstruc-

tion of deforming surfaces from monocular camera sequences. Further advances in

surface tracking of arbitrary shapes focused on the fact that 3D mesh models can

sometimes carry reconstruction errors due to occlusion, noise and imperfect silhouette

extraction from the input data. Cagniart et al. [CBI10b] propose a probabilistic model

that can cope with such issues, deforming a reference model using a Bayesian framework

which takes into account uncertainties in the acquisition process.

All approaches for surface tracking and alignment mentioned above suffer from the

same source of error: their reliance on frame to frame correspondence or deformation.

Hence, sequential approaches have three inherent limitations: accumulation of errors

in frame-to-frame alignment resulting in drift in correspondence over time; gross-errors

for large non-rigid deformations which occur with rapid movements requiring manual
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correction; and sequential approaches are limited to alignment across single sequences.

Recently, non-sequential alignment approaches [HBH11, BHKH13] have been intro-

duced to overcome these limitations, allowing the construction of temporally coherent

3D video sequences from multiple view performance capture database, as used in this

work.

Huang et al. [HBH11] faced the problem of aligning multiple non-rigid mesh, 3D

video, sequences into a single temporally consistent representation They propose a

non-sequential approach based on a global alignment graph structure which used shape

similarity [HHS10a] to identify frames for potential inter-sequence mesh deformation.

Graph optimisation is performed to minimise the total non-rigid deformation required

to deform the set of sequences into a coherent geometric structure. Results demon-

strate that sequences deformed into a temporally aligned mesh representation accu-

rately maintain the original captured shape and non-rigid motions. Further research in

non-sequential approaches introduced shape similarity trees [BHH11], which propose a

hierarchical scheme for non-sequential matching of frames across a sequence, generat-

ing a tree structure which represents the optimal path for alignment of all frames of

a sequence, minimising the change in shape. Recently, Huang et al. [HHS10b] intro-

duced a general formulation of the non-rigid alignment problem, not considering the

inter-sequence alignment problem but the alignment across all frames of the database

instead. The optimal shape similarity tree is defined as the minimum spanning tree

containing all meshes in the input databases, edges costs are assigned according to

the shape similarity [HHS10a]. Global alignment is achieved by pairwise non-rigid

alignment based on the edges in the optimal shape similarity tree using any existing

sequential non-rigid alignment techniques [dST∗08, CBI10a, CBI10b].

2.2 A 4D Performance Capture Studio System

Actor performance is captured in a controlled studio environment using a multiple cam-

era system for synchronised video acquisition described by Hilton and Starck [SH07b].

Nevertheless, the approach for 4D performance capture detailed in this chapter could

be applied to any multicamera capturing setup. Likewise, any 4D motion dataset gener-
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(a) Studio #2 setup (b) Actor performance (c) Live camera feed

(d) Actor T-pose calibration (e) Extrinsic calibration (f) Intrinsic calibration

Figure 2.1: Shots taken during a camera setup and capture session.

ated through other approaches available in the literature [CTMS03, dST∗08, VBMP08,

GSdA∗09] could be also used as a input for the methods presented in the rest of the

chapters of this thesis.

Throughout this work two different studio setups are used, referred as Studio #1 and

Studio #2 in this thesis, consisting of 8 and 10 conventional HD cameras respectively.

Following the evaluation and recommendations on multi-camera production studios

published by Starck et al. [SMN∗09], cameras were located equally spaced around a

circle of 8 meters diameter about 2 meters above the studio floor. Cameras capture

frames at 25 fps frequency rate, 1920 × 1080 pixel resolution, and use a shutter speed of

1/250 in Studio #1 and 1/100 in Studio #2. In order to facilitate the postprocessing

step that requires background and foreground segmentation [SH07b], Studio #1 is

surrounded by conventional blue curtains. Similarly, Studio #2 uses grey light-reflective

curtains that reflect the light emitted by blue LED rings located around each of the

camera lenses, producing a blue background in the captured frames and reducing the

undesirable blue projection over the captured surface cause by traditional blue curtains.

Figure 2.1a show the grey light-reflective curtains and the blue LED rings. Figure 2.1b

shows how a captured frame in Studio #2 looks, notice the blue background appearance
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from the reflected led illumination.

Extrinsic camera calibration is computed using the method also described by Starck

and Hilton. A moving wand with two spherical markers at a known distance apart is

captured from all cameras and a set of point correspondences between views is com-

puted, see Figure 2.1e. Intrinsic calibration is performed using standard chessboard

approach [opea], see Figure 2.1f. Actor performance, depicted in Figure 2.1b, starts by

capturing a T-pose of the actor that will be used as a neutral-pose reference model,

see Figure 2.1d. This pose is not strictly required in the reconstruction stage, but it is

useful for future applications.

Figures 2.2a and 2.2c show frames recorded from the different view points captured

in each of the studio setups. Foreground and background are then extracted from the

input frames using standard chroma-key segmentation, generating silhouettes shown in

2.2b and 2.2d.

2.2.1 Shape reconstruction

Shape reconstruction is performed on a frame-by-frame basis using a multiple view sil-

houette and stereo approach building on state-of-the-art graph-cut optimisation tech-

niques [SCD∗06, SH07b]. This results in a reconstructed geometry that preserves non-

rigid dynamic surface details such as cloth wrinkles and hair present in the original

sequence, up to a 1.0 cm resolution detail. The resulting geometry consists of an un-

structured mesh sequence with both the vertex connectivity and geometry changing

from frame-to-frame. However, the character animation pipeline presented in this work

requires a set of temporally aligned mesh sequences for multiple motions with the same

mesh structure at each frame across all sequences.

As discussed in Section 2.1.4, different sequential mesh alignment algorithms have

been recently introduced, both model-based [dST∗08] and model-free [BBK07, CBI10b,

TM10]. Non sequential alignment approaches have also been recently investigated

[HBH11, BHH11], providing robust techniques that are able to handle larger non-rigid

deformations in consecutive meshes of the reconstructed captured sequences. In this
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(a) Studio setup #1, using 8 cameras, capturing a walk sequence.

(b) Silhouettes extracted from the input frames in Figure 2.2a.

(c) Studio setup #2, using 10 cameras, capturing a jump sequence.

(d) Silhouettes extracted from the input frames in Figure 2.2c.

Figure 2.2: Example of data acquired in each of the studios used throughout this work.
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Figure 2.3: Mesh sequence alignment pipline used throughout this work.

work we use a non-sequential alignment approach to recover the non-rigid surface mo-

tion and represent all frames with a consistent structure based on a state-of-the-art

approach presented by Budd et al [BHKH13]. Our pipeline follows the steps depicted

in Figure 2.3. Although this approach is not a contribution of this thesis, it is highly

relevant for this work and has been widely tested and used to generate the 4D models

used in the following chapters. Sections 2.2.2 and 2.2.3 give a brief summary of the

methods for completeness.

2.2.2 Shape similarity tree

Alignment across multiple unstructured mesh sequences is performed by constructing

an intermediate shape similarity tree. This represents the shortest non-rigid surface

motion path required to align each frame. The shape similarity tree allows frames from

different mesh sequences to be aligned based on a measure of surface shape and motion

similarity. The representation also ensures robust alignment of mesh sequences in the

presence of large non-rigid deformations due to fast motion where sequential frame-to-

frame surface tracking approaches may fail. The shape similarity tree is used to recover

the non-rigid surface motion and obtain a consistent mesh structure for all sequences.

Given a set of input mesh sequences Mi = {Mi(tu)}Ni
u=1, where Ni is the number of
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meshes of the ith sequence and i = [1, N ], where N is the number of sequences, to

construct the shape similarity tree we require a measure of similarity s(Mi(tu),Mj(tv))

between a pairs of meshes which can be evaluated without prior knowledge of the

mesh correspondence. A number of similarity measures for mesh sequences taking into

account both shape and motion have been investigated [TM10, HHS10a]. In this work

we utilise the temporally filtered volumetric shape histogram [HHS10a] as a measure of

shape and non-rigid motion similarity which has been shown to give good performance

on reconstructed mesh sequences of people. Evaluation of shape similarity between

mesh reconstructions for all frames across all sequences results in a similarity matrix as

illustrated in Figure 2.3(c), where blue indicates high similarity and red low similarity

between the two input sequences.

Shape similarity is used to construct a tree representing the shortest non-rigid surface

motion path required to align all meshes {Mi(tu)}Ni
u=1 from multiple captured mesh

sequences. Initially a complete graph Ω is constructed with nodes for all meshes Mi(tu)

in all sequences i = [1, N ] and edges eiujv = e(Mi(tu),Mj(tv)) connecting all nodes.

Edges eiujv are weighted according to the similarity measure s(Mi(tu),Mj(tv)). The

shape similarity tree Tsst minimising the total non-rigid surface motion required for

alignment can then be evaluated as the minimum spanning tree (MST) of the complete

graph Ω.

Tsst = arg min
T∈Ω

 ∑
(i,j,u,v)∈T

s(Mi(tu),Mj(tv))

 (2.1)

Parallel implementation of Prim’s MST algorithm requires O(n log n) time where n is

the number of graph nodes [CHL01]. This is prohibitively expensive for the graph Ω

which typically has 103 − 105 nodes. In practice as can be observed from the simi-

larity matrix, Figure 2.3(c), many mesh pairs have a low similarity and, therefore not

suitable for pairwise alignment. To reduce the computational cost in constructing the

shape similarity tree we prune edges in the graph Ω according to a minimum similarity

threshold.This similarity threshold can be calculated automatically from the similarity

matrix as the minimum of the maximum similarity for each row in the matrix. Set-

ting the threshold in this way ensures that all frames have at least one tree connection
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within the threshold. Computation time for a 1500 node graph is < 2s1.

2.2.3 Mesh sequence alignment

The shape similarity tree Tsst defines the shortest path of non-rigid surface motion

required to align the mesh for every frame across all sequence. Starting from the root

node Mroot we align meshes along the branches of the tree using a pairwise non-rigid

alignment.

Non-rigid pairwise mesh alignment uses a coarse-to-fine approach combining geometric

and photometric matching in a Laplacian mesh deformation framework [Sor06]. This

builds on recent work using Laplacian mesh deformation for sequential frame-to-frame

alignment over mesh sequences [dST∗08, CBI10a]. Here we use both photometric SIFT

features [Low04] and geometric rigid patch matching [CBI10a] to establish correspon-

dence between pairs of meshes [HBH11]. The combination of geometric and photomet-

ric features increases reliability of matching by ensuring that there is a distribution

of correspondences across the surface. Alignment is performed starting from a coarse

sampling (30 patches) which allows large deformations and recursively doubling the

number of patches in successive iterations to obtain an accurate match to the surface.

Since estimated feature correspondences are likely to be subject to matching errors we

use an energy based formulation to introduce feature matches as soft constraints on

the Laplacian deformation framework as proposed in [Sor06]:

x̄ = arg min
x
‖Lx− δ(x0)‖2 + ‖Wc(x− xc)‖2 (2.2)

L is the mesh Laplacian, δ(x0) are the mesh differential coordinates for the source

mesh with vertex positions x0. x is a vector of mesh vertex positions used to solve for

Lx = δ. xc are soft constraints on vertex locations given by the feature correspondence

with a diagonal weight matrix Wc. A tetrahedral Laplacian system [dST∗08] is used

based on the discrete tetrahedron gradient operator G [BS08] with L = GTDG, where

D is a diagonal matrix of tetrahedral volumes. Equation 2.2 solves for the non-rigid

1timings are single threaded on an Intel Q6600 2.4GHz CPU
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Figure 2.4: Mesh alignment results. Top: reconstructed frames of a dataset containing walk,

jog, jumps and reaching motions, each of them coloured differently to represent non-aligned

geometry. Middle: aligned frames, coloured using a flower patter to show the performance

of the non-sequential alignment algorithm. Bottom: close-up of the alignment, to highlight

robustness of pattern location across all frames.

deformation which minimises the change in shape whilst approximating the feature

correspondence constraints.

Pairwise non-rigid alignment across the branches of the shape similarity tree Tsst results

in known correspondence between the root mesh Mroot and all other meshes Mi(tu).

This correspondence allows every mesh to be resampled with the structure of the root

mesh giving a consistent connectivity for all frames over all captured mesh sequences.

As a result of the 3D shape reconstruction process [SH07b] and the subsequent align-

ment step [BHKH13], a database multicamera capture is initially reconstructed into a

set of unaligned mesh sequences, and then converted into a temporally coherent mesh

representation in all frames, creating a 4D video dataset.

To test the proposed global non-sequential alignment approach, a dataset of 8 different

unaligned mesh motions (such as walk, run, jumps, etc..), each of them between 20

and 40 frames long, was used. In Figure 2.4, the top row shows non-aligned meshes,

randomly coloured to represent difference in geometry. The middle row shows aligned

meshes using a flower pattern applied over the mesh, and the bottom row shows a

close-up of the alignment to highlight the pattern consistent location across all frames
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Figure 2.5: Global non-sequential mesh alignment results. A puzzle pattern texture is used to

highlight alignment robustness across different poses of the Dan dataset.

to emphasise mesh alignment. Figure 2.5 presents higher resolution results for the

proposed non-sequential alignment approach in the same dataset. Notice how the

puzzle pattern remains fixed on the same body parts across all poses, showing the

robustness of the proposed approach for global mesh sequence alignment.
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2.3 Captured characters

In order to generate results for the methods introduced in the following chapters of

this thesis, five different characters were captured using the studio setups mentioned in

Section 2.2. Each character has distinct surface attributes, which allowed us to build

an extensive dataset of motions containing a large range of both surface dynamics and

appearance. Captured motions and character attributes are listed below, full sequences

details are given in table 2.1.

Character Roxanne

Captured in Studio #1, a female character with long brown hair. She wears tight

shorts, t-shirt, and a pony tail. The dynamics present in her hair are particularly

difficult to reconstruct and align due to the rapid change in shape, especially in motion

such as jog and jump. Figure 2.6 presents three arbitrarily selected frames from

three different cameras to give an example of how the source data looks. Figure 2.7

illustrates reconstructed frames of her walk sequence.

Figure 2.6: Captured source frames used for reconstruction (arbitrarily selected for illustration

purposes).

Figure 2.7: Reconstructed frames 3, 6, 9, 10 and 15 of the ’walk’ motion of the ’Roxanne’

character.
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Character J.P.

Captured in Studio #1, it is a male break-dancer character wearing loose clothing.

He was captured performing a wide range of dancing motions, including back-flips

and cartwheels. Figure 2.8 shows 3 arbitrarily selected frames to show an example of

how the source data looks. Figure 2.9 shows reconstructed frames of his performance,

notice the baggy trousers and loose t-shirt.

Figure 2.8: Sample of source video frames (after background subtraction) used for reconstruc-

tion (arbitrarily selected for illustration purposes).

Figure 2.9: Reconstructed frames 2, 7, 9, 13, 15, 25, 28, 34 and 39 of the ’pop’ motion of the

JP character.
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Character Dan

Captured in Studio #1, a male character wearing a red sweater and jeans. Overall his

clothes are fairly tight, wrinkles are present in both jeans and sweater. Figure 2.10

shows three arbitrarily selected frames from sequences walk, high jump and high reach

to show an example of how the captured source data looks. Figure 2.11 top row shows

frames from a short jump sequence. Figure 2.11 bottom row shows frames of a high

reach sequence.

Figure 2.10: Captured source frames used for reconstruction (arbitrarily selected for illustra-

tion purposes).

Figure 2.11: Top row: Reconstructed frames 1, 10, 12, 14 and 18 of the ’short jump’ motion

of the ’Dan’ character. Bottom row: Reconstructed frames 1, 3, 7, 9 and 12 of the ’reach high’

motion of the ’Dan’ character.
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Character Infantry

Captured in Studio #2, it is a male character dress up with an infantry uniform from

the Middle Ages. He wears brown tights and a dusty white shirt, with a leather vest

on top and a thick brown leather belt. The vest is loose and long, the bottom part

dynamics are similar to the motion of the cloth of a thick skirt. Figure 2.12 shows

three arbitrarily selected frames from sequences long jump, jog and standing to show

an example of how the captured source data looks. Figure 2.13 top row and bottom

row show frames of short jump and long jump sequences, respectively.

Figure 2.12: Sample of captured source frames used for reconstruction (arbitrarily selected for

illustration purposes).

Figure 2.13: Top row: reconstructed frames 1, 4, 6, 8 and 12 of the ’low jump’ motion of the

’Infantry’ character. Bottom row: reconstructed frames 3, 5, 8, 10 and 14 of the ’long jump’

motion of the ’Infantry’ character.
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Character Knight

Captured in Studio #2, it is a male character wearing a medieval knight dress. His

costume includes white tights, a metallic upper-body chainmail armour and a leather

cape on top. Both the chainmail and the cape contain highly non-rigid dynamic mo-

tions. These properties make the Knight the most challenging character investigated

in this thesis. Figure 2.14 shows three arbitrarily selected frames to show an example

of how the source data looks. Figure 2.15 top and bottom rows present reconstructed

frames of the walk and the jog sequences, respectively.

Figure 2.14: Sample of captured source frames used for reconstruction (arbitrarily selected for

illustration purposes).

Figure 2.15: Top row: Reconstructed frames 5, 7, 9, 10 and 12 of the ’walk’ motion of the

’Knight’ character. Bottom row: Reconstructed frames 2, 5, 6, 8 and 12 of the ’jog’ motion of

the ’Knight’ character.
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Character Studio # vertices Motions Frames

Roxanne Studio #1 2886
walk 23

jog 21

JP Studio #1 5580

flashkick 199

free 499

head 249

kickup 219

lock 249

pop 249

Dan Studio #1 2667

walk 29

jog 19

walk left 27

walk right 29

walk-to-stand 32

stand-to-walk 31

high jump 58

low jump 21

long jump 63

short jump 36

one-arm reach low 70

one-arm reach high 100

two-arms reach low 171

two-arms reach high 161

punch 20

ducking 54

Infantry Studio #2 4052

walk 32

jog 19

walk left 27

walk right 29

walk-to-stand 32

stand-to-walk 31

high jump 58

low jump 21

long jump 63

short jump 36

Knight Studio #2 4058

walk 32

jog 21

walk left 31

walk right 30

Table 2.1: Captured characters



Chapter 3

Mesh Sequence Parametrisation

Inspired by previous research introducing methods to parametrically control skeletal

motion capture (MoCap) sequence data [WH97, RCB98, PSS02, KGP02, KG04], our

goal is to find analogous methods to interactively control a character created from 4D

performance capture data. This chapter demonstrates that interactive animation from

temporally aligned mesh sequences can be obtained by combining multiple captured

clips, enabling continuous real-time control of movement. Using intuitive high-level

parameters such as speed and direction for walking or height and distance for jumping,

the user can control a virtual avatar built from blended 4D data that maintains the

realism of the captured sequences.

A naive approach to combine mesh sequences is to linearly blend vertex positions. How-

ever, this may lead to unnatural geometric errors such as mesh shrinking and collaps-

ing. In the last decade, non-linear mesh deformation approaches [ACOL00, SZGP05,

LSLCO05, Sor06, XZY∗07, KG08] have been proposed, offering more natural solutions

to mesh deformation. However, these approaches are not suitable for interactive ap-

plications due to their relatively high computational cost. Typically non-linear mesh

deformation requires iterative solution of an energy minimisation or matrix inversion

problem which is not readily applicable to real-time applications even with GPU im-

plementation.

In order to fulfil our requirement for real-time interpolation of 4D data, this chapter in-

troduces a hybrid piece-wise linear approach for mesh blending [CTGH11, CTGH12b]

35
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that combines the real-time performance of the linear methods with the natural de-

formation of non-linear approaches. The proposed approach is used to interactively

combine captured mesh sequences, allowing real-time parametric control to synthesise

novel 4D video data. Results of the proposed method are shown and evaluated.

3.1 Related Work

To date the primary focus for research in 4D performance capture has been free-

viewpoint video replay [CTMS03, SH07b, dST∗08, VBMP08] without modification or

editing of the content. The lack of temporal coherence in the mesh sequence has pro-

hibited the development of simple methods for manipulation. As discussed in Section

2.2.3, recent research has successfully achieved temporal alignment across mesh se-

quences [CBI10a, HBH11, BHH11, BHKH13], allowing the representation of a complete

database of multiple 4D performance capture sequences with the same mesh topology.

Such progress in mesh reconstruction and alignment has enabled the possibility of syn-

thesising novel mesh sequences by combining reconstructed data.

On the other hand, in the last two decades many different approaches for skeletal motion

capture (MoCap) data manipulation, ranging from methods for motion interpolation to

pose editing, have been investigated. MoCap sequences typically represent the human

motion as skeletal joint angles with 30-60 degree of freedom. To allow the flexible

reuse of MoCap data in animation techniques have been introduced for editing and

manipulation of MoCap sequences.

3.1.1 Parametrisation of Skeletal Motion Capture Data

Initial research on skeletal MoCap combined several clips to create novel motions. Wi-

ley and Hahan [WH97] pioneered the mixing of motions to expand a dataset of MoCap

data while retaining the quality of the original data. Their approach, based on linear

interpolation of joint angles, does not guarantee the synchronisation in key-events on

the motions, hence it is susceptible to artefacts such as foot sliding and unrealistic an-

imation. Furthermore, the computational cost of the approach increased exponentially
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with the number of motion samples. Linear blending of joint angles for parametric

skeletal motion synthesis results in plausible motions because the joint-angle space rep-

resents the non-linear relationship between degrees of freedom and the Euclidean space

in which the character moves. Rose et al. in their Verbs and Adverbs [RCB98] com-

bined different styles of walk to interactively animate a character, allowing the user to

control not only speed and direction but also the avatar’s mood. A combination of ra-

dial basis functions and low order polynomials is used to create the interpolation space

between example motions. Inverse kinematic constraints are used to avoid artefacts

such us foot sliding. Following the same ideas, Park et al. also blend motions to create

interactive parametric avatars [PSS02]. A new approach for pose interpolation based

on quaternion algebra was introduced, ensuring correct pose and orientation. Speed

and direction of the avatar were parametrically controlled by the user, while the actual

path of the root was determined through a user-specified trajectory. Further improve-

ments in parametric blends were presented also by Rose et al. [RISC01], introducing a

new scheme for pose interpolation based on cardinal basis functions, greatly increasing

the efficiency of the system. Additional samples, so-called pseudo-examples, derived

directly from the source interpolation space designed by the artist were computed in

order to improve the accuracy of scattered data interpolation.

Motion parametrisation methods require interpolated motions to be semantically simi-

lar, otherwise they fail to produce believable human poses. To fullfill this requirement,

previous research [WH97, RCB98, PSS02] assumed that input clips were similar in

motion, a task that was done by manually selecting the right clip segments. In order

to overcome this laborious step, Kovar and Gleicher proposed an approach to auto-

matically identify and parametrise motions in large data sets [KG04]. A pose search

method based on numerically similar matches are used as intermediaries to find more

distant matches. Furthermore, they introduced an automatic scheme for parametrising

a space of blends according to user-specified motion features. This high-level paramet-

ric control of the motion allows the animator to control the desired motion by intuitive

parameters rather than blending factors. Initial research to achieve intuitive parametric

control was first investigated by Ahemed et al. [AMH01].

As captured motion data is a set of time-varying signals, statistical techniques have also



38 Chapter 3. Mesh Sequence Parametrisation

been investigated for motion synthesis and representation [BW95, MTH00, Bow00,

AM00, PB02]. Molina-Tanco and Hilton presented a two-level approach to author

novel motions from a database of motion capture example [MTH00]. A Markov chain

of joint trajectories is built in the first level, enabling the generation of the overall

motion path. The second level of the model matches the states of the Markov chain

with actual segments of the captured motions, resulting in a novel synthesised realistic

motion. Low-dimensional representation methods were also investigated by Bowden,

who used K-means clustering and hierarchical Principal Component Analysis, PCA, to

built a Markov chain that models a motion example [Bow00]. However, this approach is

ill-suited for motion synthesis since its lack of flexibility: once the first state is chosen,

the resulting action is either fixed or random. Alexa and Müller [AM00] also used

PCA for 3D animation data reduction. Pullen and Bregler used signal processing to

analyse human motion, dividing the data into frequency bands [PB02]. Frequency

analysis was perform to match keyframed animation with captured motion in order

to enhance the final synthesised motion. Mukai and Kuriyama [MK05] proposed a

method that treats motion interpolations as statistical predictions of missing data in

an arbitrarily definable parametric space. This approach relaxes the problem of spatial

inconsistencies, such as foot-sliding, that occurred with previous methods.

Further research in synthesising novel motion by the reutilisation of captured clips fo-

cused not only on motion interpolation but also motion concatenation, leading to a

graph representation that encapsulates both motion and transitions. This representa-

tion, usually referred as Motion Graphs [KGP02], was first used by Molina-Tanco and

Hilton [MTH00]. A number of techniques [AF02, LCR∗02, AFO03, IF04, HG07] intro-

duced similar approaches for automatically identify logically similar motions in a data

set, enabling the transition between a set of captured motions allowing to synthesise

novel clips. Such approaches, mostly based on motion clip concatenation, are discussed

in more detail in Section 4.1.
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3.1.2 Parametrisation of 4D Captured Data

Due to the relatively recent introduction of techniques for temporally coherent sur-

face motion capture [SH07b, dST∗08, VBMP08, BHKH13] there has been relatively

little research on parametrisation and animation control of reconstructed mesh se-

quences. Nevertheless, in the last decade researchers have investigated ways of editing

and parametrising synthetic mesh sequences to increase the versatility of each motion

clip.

Naive linear interpolation of vertex positions produces visual artefacts such as mesh

shrinking, shortening and collapsing due to the nature of the Cartesian coordinates,

which only encodes global information of each point. In order to overcome this limi-

tation, non-linear methods for mesh interpolation have been investigated to synthesise

novel parametric shapes. Lewis et al. observed that human shape interpolation could

be uniformly represented as mappings from a pose space, defined by an underlying skele-

ton, to displacements in the objects local coordinate frame [LCF00]. This consideration

enabled Lewis et al. to introduce a system for shape interpolation that avoids problems

associated with linear shape interpolation, where nonlinearities were expressed in terms

of skeletal deformations. A similar approach also based on radial basis interpolation

for articulated shapes was presented by Sloan et al. [SRC01]. Allen et al. presented

a shape interpolation scheme for 3D human models obtained through a set of static

whole-body [ACP02]. However, unlike Lewis et al. [LCF00], they do not require tem-

porarily coherent mesh models. After fitting a skeleton into the scanned model, shapes

are combined using a k -nearest neighbour interpolation in pose space.

Skeleton-based techniques to approximate mesh kinematics fail in providing the rich

range of deformations that a surface can adopt. Alexa et al. [ACOL00] proposed a

different approach for mesh interpolation that preserves local geometric information

without the requirement of articulated shapes . In contrast, they presented a more

general scheme that blends the interior of shapes with minimal local distortion. Shapes

are initially decomposed into isometric representations and then the corresponding

vertex are interpolated using a least-distorting triangle-to-triangle morphing approach,

minimising the paths of the vertices. Inspired by previous research in skeleton-based
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inverse kinematics, further research in skeletonless mesh deformation was presented in

Mesh-Based Inverse Kinematics, MeshIK, where a space of meaningful deformations

is created from a set of example meshes [SZGP05]. A vector of features that encodes

important shape properties is extracted from each example mesh. Edited meshes are

reconstructed using feature vectors by solving a least squares minimisation problem for

the free vertices while enforcing constraints in the vertices that the user moves.

Sorkine and Lipman present advances in geometry processing related to the Laplacian

processing framework and differential surface representations [Sor06, LSLCO05]. In

contrast to the traditional global Cartesian coordinates, which only encodes information

about spatial location of each point, differential representations encodes information

about the local shape of the surface, including the size and orientation of local details.

This representation increases the robustness and realism of operations such as mesh

editing and interpolation with respect previous approaches. Xu et al. [XZY∗07] present

a method that generalises previously introduced gradient domain editing techniques

[HSL∗06] to deform mesh sequences. Given a set of sparse and irregularly distributed

keyframe constraints, their approach adjusts the meshes at the keyframes so satisfy

these constraints, and then smoothly propagate the constraints and deformations at

keyframes to the whole sequence to generate a new deforming mesh sequence. Kircher

and Garland [KG08] propose an approach for editing free-form deformation of surfaces

like cloth and faces. Their method is based on a differential surface representation that

is invariant under rotation and translation and which is well suited for surface space-

time editing. This method opened up a broad range of possible motion alterations

including motion blending and keyframe animation. Recently, Tejera and Hilton [TH11]

presented a shape constrained Laplacian mesh deformation framework for key-frame

interactive mesh sequence editing. The learnt deformation space of motion ensures

both preservation of the captured motion characteristics and underlying anatomical

structure of the actor.

Nevertheless, most of the proposed techniques for mesh editing and blending require

solution of a least-squares minimisation which is prohibitively expensive for interactive

animation. Methods for real-time blending of captured 4D mesh sequences are required

to create interactive characters from performance capture. Such methods need to be
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both fast enough to run at interactive rates >25fps and robust enough to provide mesh

deformations that maintain the captured realism.

The methods described above in this section aim to synthesise 3D mesh poses by

editing or interpolating 3D mesh models, techniques that can lead to generation of

novel 3D mesh sequences. Other approaches [SMH05, XYA06, HHS09, XLS∗11] for 3D

mesh sequence synthesis rely on mesh sequence editing together with concatenation

of clips. In such approaches, analogous to Motion Graph for skeletal MoCap data

[AF02, LCR∗02, AFO03, IF04, HG07], similarities between captured 3D mesh motions

are evaluated, enabling linking of different actions through frames with high shape

similarity. Research in methods for 3D mesh sequence concatenation is discussed in

more detail in Section 4.1.

3.2 Parametric Motion Control of Mesh Sequences

4D video data reconstructed from multi-camera capture enables the replay of the cap-

tured motions from any viewpoint, reproducing the non-rigid surface dynamics present

in the captured character [BHKH13]. With increasingly availability of 4D video datasets

an interest in reusing captured motions has appeared in the Computer Graphics com-

munity. The reutilisation of reconstructed clips could potentially allow authoring of

novel 4D motions maintaining the realism of the captured data. Our goal is to find

methods to combine multiple captured 4D sequences, and also capable of performing

this online. Achieving such a goal would enable interactive real-time control of a 4D

virtual character created from captured data.

Previous approaches for mesh sequence manipulation are limited by the lack of methods

to interactively blend and edit the reconstructed models. Thus, our motivation is to

investigate methods for real-time blending of 4D video sequences. Three steps are

required to achieve high-level parametric control from mesh sequences: time-warping

to align the mesh sequences; non-linear mesh blending of the time-warped sequences;

and mapping from low level blending weights to high-level parameters (speed, direction,

etc.). This section presents how the proposed approach fulfils these requirements.



42 Chapter 3. Mesh Sequence Parametrisation

Given a set of N temporally aligned mesh sequences M = {Mi(t)}Ni=1 of the same or

similar motions (e.g. high jump and low jump) we are interested in finding a blended

mesh sequence

MB(t,w) = b(M,w) (3.1)

where w = {wi}Ni=1, wi ∈ [0..1] is a vector of weights for each input motion and b() is a

mesh sequence blending function. We require this function to perform at online rates,

≥ 25 Hz, and also the resulting mesh MB(t,w) to maintain the captured visual quality

of the source {Mi(t)}Ni=1 meshes.

3.2.1 Time-warping

Each 4D video sequence of related motions (e.g. walk and run) is likely to differ in

length and location of corresponding events, for example foot-floor contact. Thus, the

first step for mesh sequence blending is to establish the frame-to-frame correspondence

between different sequences.

Previous work on skeletal motion parametrisation assumed that individual mesh se-

quences Mi(t) are temporally aligned by a continuous time-warp function t = f(tu)

[BW95, WP95] which aligns corresponding poses of related motions prior to blending

such that t ∈ [0, 1] for all sequences.

Similarity, in our work, given two similar motion sequences Mi(t) and Mj(t) (e.g. walk

and run) a similarity matrix containing shape similarity [HHS10a] for all possible pair of

meshes is built. We then build a graph connecting each mesh Mi(t) with both Mi(t+1)

and Mj(t + 1), assigning their shape similarity as a cost in its corresponding edge, as

depicted in Figure 3.1, where arbitrary weights were assigned for illustration purposes.

Dijkstra’s shortest path optimisation algorithm is used to find the optimal path starting

from the top-left node of the graph until reaching a leaf node. The resulting path is the

optimal frame to frame correspondence between sequences Mi(t) and Mj(t). Manual

annotations representing selected keyframes can be imposed as a hard constraints in

the path optimisation.

Temporal sequence alignment helps in preventing undesirable artefacts such as foot

skating in the final blended sequence. Key-frames containing poses such as foot-floor
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Figure 3.1: Graph used to find corresponding frames between two different mesh sequences

Mi(t) and Mj(t). Edges weights are assign using the similarity matrix built from computing

the shape similarity [HHS10a] of all possible pair of frames (in this figure arbitrary given for

illustration purposes). Dijkstra’s path optimisation algorithm is used to find the optimal path.

or hand-object contact are selected and provided to the time-warp function t = gij(s)

which defines the non-linear time warp between Mj(s) and Mi(t).

3.2.2 Real-time Mesh Blending

Previous research in 3D mesh deformation concluded that [LCF00] linear-methods for

mesh blending, despite being computationally efficient, may result in unrealistic re-

sults. Non-linear methods [BS08] have appeared to overcome this limitations achieving

plausible surface deformation, however the price paid is a significant increase in pro-

cessing requirements. This results in non-linear method being unsuitable for online

applications.

In this work we present a piece-wise linear approach for 3D mesh blending that combines

the realistic deformation of the non-linear approaches with the real-time performance of

the linear methods. Section 3.3 discusses in more detail the advantages and disadvan-

tages of the current approaches and presents the blending approach that will be used
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in the rest of this work. Section 3.4 presents and evaluation of the proposed method

and shows examples of the results achieved using 4D video mesh data.

3.2.3 High-level Parametric Control

High-level parametric control is achieved by learning a mapping function f(w) between

the blend weights and user specified motion parameters p. As in skeletal motion blend-

ing the blend weights do not provide an intuitive parametrisation of the motion. We

therefore learn a mapping w = f−1(p) from the user-specified parameter to the corre-

sponding blend weights required to generate the desired motion. Motion parameters p

are high-level user specified controls for a particular class of motions such as speed and

direction for walk or run, and height and distance for a jump. The inverse mapping

function f−1() from parameters to weights can be constructed by a discrete sampling of

the weight space w and evaluation of the corresponding motion parameters p [AMH01].

Figure 3.2 depicts an example of high-level mapping for a blended motion created

combining a reach high and a reach low motion. Figure 3.2b shows both the captured

high-reach motion (top yellow arm) and the low-reach (bottom green arm), as well as

the in-between reach motions generated by non-linear blending. Figure 3.2a plots the

actual hand position of the blended shapes depending on the blending weights wi. We

can observe that the relationship between the hand position and the blending weight

is non-linear. In Figure 3.2c, using curve fitting, we find a 3rd order polynomial that

represents the relation f(w) = h, where w is the blending weight and h the actual

height of the hand. In this particular example, least-square fitting gives the polynomial

f(w) = −0.0006w3 + 0.0086 + w2 + 0.0554w + 1.0070. Finally, shown in Figure 3.2d,

we find f−1(h) = w = 12.78h3 − 53.84h2 + 85.58h − 44.62, enabling high-level reach

control for the user: given a requested height h, the corresponding blending weight w

can be automatically found.
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(a) Hand position, in height, depending on

the blending weight w of the blended shapes

in Figure 3.2b.

(b) Yellow top and bottom green arms are

the captured meshes. In-between poses are

generated using a non-linear mesh blending

scheme. Colour represents change in pa-

rameter w.

0.0 0.2 0.4 0.6 0.8 1.0
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Blending weight (w)

R
ea

ch
h

ei
gh

t
(m

et
er

s)

(c) Curve fitting to match points displayed

in Figure 3.2a. f(w) = −0.0006w3 +

0.0086 + w2 + 0.0554w + 1.0070.
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(d) Inverse mapping to find f−1(h) = w.

In this example, f−1(h) = w = 12.7875h3−

53.8466h2 + 85.5823h− 44.6235.

Figure 3.2: In order to achieve high-level parametric control, a mapping function f−1(h) is

learned using the relation between blend weights and the actual blended mesh.
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Figure 3.3: Linear mesh interpolation between of 3D meshes according to Equation 3.2. Left

and right: input meshes, including a straight tube and a 90◦ bended tube. Centre: in-between

steps of the result of linearly blending the straight tube of the left and the bended tube of the right.

Blended meshes fail in maintaining the original length and thickness of the object. Coloured

using a heatmap to highlight errors in geometry caused by the linear approach, no error in

dark blue to high error in red. Error is computed using vertices distance between linear and

non-linear interpolation.

3.3 3D Mesh Blending

As discussed in Section 3.1.2, methods for 3D mesh interpolation can be traditionally

categorised into two different groups: linear and non-linear. This section discusses

both approaches and introduces a novel approach that combines the robustness of the

non-linear methods with the fast performance of the linear. These properties make the

proposed approach suitable for real-time 3D mesh sequence parametrisation.

3.3.1 Linear Blending

Methods for parameterisation of skeletal motion capture have previously been intro-

duced [RCB98, KG04, MK05, HG07] allowing continuous high-level movement control

by linear interpolation of joint angles. An analogous approach for 3D mesh models

consists in linearly blend its global vertex positions as follows

ML(w) =
1∑
wi

N∑
i=1

wixi, (3.2)

where ML() is the linearly blended mesh, w = {wi}Ni=1 a vector of weights for N

meshes, xi a vector of vertex positions of the ith mesh, and wixi denotes the product of
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the mesh vertex positions xi by weight wi. This technique is computationally efficient

but may result in unrealistic deformations or mesh collapsing if there are significant

differences in shape. This is depicted in Figure 3.3, which shows how a straight tube is

progressively blended into a 90◦ bended tube using linear interpolation from Equation

3.2. The upper part of the shape of the tube is severely shortened when intermediate

blending weights are used.

Such artefacts appear due to the nature of the linear approach: it only uses the global

spatial location of each vertex, and ignores shape local information such as neighbour’

distance, face orientation or size. In order to overcome these limitations, methods and

operators that encapsulate the local information of each face of the original mesh are

required.

3.3.2 Non-Linear Blending

In the last decade, a range of non-linear mesh blending approaches have been intro-

duced [SP04, Sor06, XZY∗07, KG08]. These methods are based on differential surface

representation [BS08] which encodes local information about shape surface details such

as face orientation relative to neighbouring faces. This representation allows mesh

blending and editing methods to produce plausible deformations, but commonly re-

quires least-squares solution of a system of equations which is prohibitive for real-time

interaction.

In this work we have used the following non-linear approach. Given a set of N tem-

porally aligned meshes M = {Mi}Ni=1 of similar poses we want to compute a blended

mesh deformation according to a set of weights w = {wi}Ni=1, where
∑N

i=1wi = 1

MNL(w) = b(M,w) (3.3)

where b() is a non-linear blend function which interpolates the rotation and change

in shape independently for each element on the mesh according to the weights w and

performs a least-squares solution to obtain the resulting mesh MNL(t,w). Computation

of triangle rotations qk and scale/shear transformations Sk is performed using slerp and
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(a) A vector of affine transformations T = {TA
ij , T

B
ij , T

C
ij , T

D
ij } is found for each pair of meshes

Mi and Mj

(b)

Figure 3.4: Pipeline of the proposed non-linear mesh blending approach. From an input mesh

Mi, a vector of transformations T, and a blending weight wij, the function l() computes a per-

triangle interpolation that finally is used to create the resulting mesh after applying a Laplacian

minimisation.
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linear interpolation, respectively, as shown in Equations 3.4 and 3.5:

qki = slerp(qki , q
k
j , wi) (3.4)

Sk
i = Sk

i + wi(S
k
j − Sk

i ) (3.5)

where k denotes the index of each triangle, i and j refer to the pair of meshes (Mi,Mj)

being blended and wi is the relevant weight. Applying the transformations qk and

Sk results in a set of new triangles than can be linked back together using existing

approaches [KG08, Sor06, SP04, XZY∗07] to non-linear mesh editing to obtain natural

deformation between the keyframes. In particular, we employ a Laplacian deformation

framework [Sor06, TH11]. For N > 2, function b() performs the non-linear interpolation

iteratively for each pair of frames.

Figure 3.4 depicts the proposed approach. Figure 3.4a presents two example meshes Mi

and Mj , both containing a set of triangles {A, B, C, D}, and the computed vector of

transformations T = {TA
ij , T

B
ij , T

C
ij , T

D
ij }, where T k

ij is the affine transformation between

Mi and Mj of the kth triangle. Figure 3.4b shows the proposed pipeline for non-linear

mesh interpolation. From an input mesh Mi, a vector of transformations T and a blend-

ing weight wij , the function l() applies a per-triangle weighted transformation resulting

in an unconnected mesh created by the interpolated triangles. Using the local surface

information from Mi, encoded through differential coordinates [Sor06, TH11], a min-

imisation of the Laplacian deformation reconnects the interpolated triangles, creating

the resulting MNL(wi) blended mesh.

This approach enables the computation of an interpolated mesh MNL(wi) from two or

more input meshes, while minimising the change of their original local properties. This

helps in avoiding undesirable deformation artefacts such as mesh thinning, shrinking

and collapsing. For N > 2 we apply the approach iteratively for each pair of frames.

An example of the results achieved with the proposed scheme is shown in Figure 3.5,

where a 3D mesh of a straght tube is blended with a 90◦ bended tube. In contrast to the

mesh shortening observed with linear interpolation, the Laplacian deformation results

in intermediate meshes than maintain the original volume, length and thickness of the

source models. However, the approach requires a relatively computationally expensive

iterative non-linear optimisation which is not suitable for real-time animation.
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Figure 3.5: Left and right: input pair of 3D meshes. Centre: blended meshes computed using

the non-linear approach presented in Section 3.3.2 and blending weight 0.2, 0.4, 0.6 and 0.8

respectively. Notice how the volume, length and width of the input model is we kept, greatly

improving the results achieve with a linar approach depicted in Figure 3.3.

3.3.3 Hybrid Piecewise Linear Blending

In this work we introduce a hybrid piece-wise linear solution which approximates the

non-linear deformation whilst maintaining real-time performance. Our approach for

mesh blending exploits offline pre-computation of non-linear deformation for a small

set of intermediate parameter values. Differences between the linear and non-linear

mesh deformation are pre-computed and used to correct errors in linear deformation

at run-time. This approach approximates the non-linear deformation to within a user-

specified tolerance whilst allowing real-time computation with a similar cost to linear

blending. The price paid is a modest increase in memory required to store intermediate

non-linear mesh displacements for blending.

Given the non-linear mesh deformation MNL(w) (Equation 3.3) and linear approxima-

tion ML(w) (Equation 3.2) we can evaluate a displacement field

DNL(w) = MNL(w)−ML(w) (3.6)

that computes the difference in shape between the linear and the non-linear approach.

The exact non-linear deformation for blend weights w can then be recovered by linear

interpolation together with a non-linear correction:

MNL(w) = ML(w) +DNL(w). (3.7)
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(a) Results achieved using the proposed hybrid piece-wise linear approach with a vector of pre-

computed weights r = {0.5}. Notice how the upper part of the tube is coloured in light blue,

showing small geometric dissimilarities with respect to non-linear results.

(b) Results achieved using the proposed hybrid piece-wise linear approach with a reference vector

of precomputed weights r = {0.25, 0.5, 0.75}. Blended meshes are almost equivalent to the results

achieved with a non-linear approach.

Figure 3.6: Left and right: input pair of meshes. Centre: blended meshes computed using the

proposed hybrid piecewise linear approach for blending weights 0.2, 0.4, 0.6 and 0.8.

An advantage of storing the displacement field DNL is that for blending between mesh

sequences of similar motions linear blending gives a reasonable approximation for large

parts of the surface DNL ≈ 0 allowing efficient compression whilst accurately repro-

ducing regions of significant non-linear deformation. An evaluation of the compression

achieved with respect the area corrected with the non-linear approach is presented in

Section 3.4.

To accurately approximate the non-linear deformation for blending a set of N source

meshes M with arbitrary weights w we pre-compute the non-linear displacement field

DNL(r) at a discrete set of intermediate weight values {ri}Ri=1 to give an additional

set of MNL reference meshes for interpolation. Real-time online interpolation is then
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performed using a linear vertex blending with the non-linear correction:

M(w) =

N+NNL∑
j=1

g(w, rj)(ML(rj) +DNL(rj)) (3.8)

where g(w, rj) is a weight function giving a linear blend of the nearest reference meshes

and zero for all other meshes. Equation 3.8 gives an exact solution at the original

and non-linear interpolated reference meshes, and an approximate interpolation of the

nearest reference meshes elsewhere. A recursive bisection of the weight space w is

performed to evaluate a set of non-linearly interpolated source meshes such that for all

w the approximation error (MNL(w)−M(w)) < ε. Typically for interpolation of mesh

sequences representing related motions only a single subdivision is required.

Figure 3.6 depicts an example of the results for a range of weights wi achieved using

the propose hybrid blending approach, using the same input meshes used in Figures

3.3 and 3.5 to illustrate the linear and non-linear methods introduced earlier in this

chapter. Meshes are coloured using a heatmap to highlight differences in the geometry

of the blended result with respect the non-linear approach. Figure 3.6a uses a reference

weight vector r = {0.5}, thus precomputing just a single subdivision of displacement

fields. Notice how the error significantly decreases with respect the linear approach

illustrate in Figure 3.3. Results in Figure 3.6b are generated using a reference vector of

weights r = {0.25, 0.5, 0.75}, thus 3 intermediate displacement fields were precomputed.

The error with respect to the non-linear approach hardly noticeable.

3.4 Evaluation of Hybrid Non-Linear Blending

Figures 3.7a and 3.7b present a comparison of errors for linear blending with the pro-

posed hybrid non-linear approach with one and three interpolated reference meshes.

Meshes are coloured using a heatmap to highlight errors in geometry with respect the

non-linear result. A more challenging blend is shown in Figure 3.8, where the opaque

poses shown in 3.9d are interpolated. The linear method, shown in the centre-left col-

umn, clearly fails in maintaining the original volume of the mesh, resulting in sever

unnatural deformations, specially for the limbs and head. On the other hand, the non-

linear approach shown in the left-column, does not suffer from unnatural deformations.
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Both the original volume and length of the limbs are maintained, enabling synthesis

of novel poses that maintain the realism of the captured data. Centre-right and right

columns are the results obtained by the proposed hybrid approach, coloured using a

heat-map to highlight differences with respect to the non-linear approach. Notice how

arms and head maintain realistic pose and proportions.

Figure 3.9 illustrates the geometric errors of the proposed hybrid blending approaches

used in Figure 3.8, evaluating 3 different error metrics: average vertex displacement

error, maximum vertex displacement error and RMS. Linear interpolation suffers from

undesired vertex displacement, resulting in large difference to the non-rigid approach,

consequently generating unnatural deformations. The proposed approaches for hy-

brid mesh blending significantly reduces such error using a single vector of precom-

puted offsets (r = {0.5}, in blue). Using three precomputed displacement vectors

(r = {0.25, 0.5, 0.75}, in red) our approach achieves results with hardly any visual

difference with respect the non-linear approach.

Table 3.1 presents quantitative results for error and CPU-time of figures 3.7a, 3.7b and

3.8. A number error measures have been compared, including RMS, absolute maxi-

mum vertex displacement, and displacement error as a percentage of model size. This

evaluation demonstrate that the proposed real-time hybrid non-linear mesh blending

approach achieves accurate approximation even with a single intermediate non-linear

displacement map whereas linear blending results in large errors.

The influence of the threshold ε in the final result is shown in Figures 3.10a and 3.11a.

In the former, the walk and jog poses located in the top row, in green, are linearly

blended resulting in a mesh ML(w),w = {0.5}, shown in the centre of the top row.

Bottom row shows the result of the propose hybrid blending approach for different

values of ε. For threshold values larger than 6 mm, only the areas with large errors

(i.e. the limbs) are corrected, while the remaining of the mesh remains identical to the

results of the linear approach. If the threshold ε is set to lower values, more regions of

the linearly blended mesh will be corrected, although this might be unnecessary because

they do not produce visual artefacts. This in an important observation that allows us to

decrease the size of DNL without compromising on perceived visual quality, as shown
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(a) Result of blending two poses of a street dancer using linear (top row), hybrid with one and

three reference meshes (2nd/3rd row) and non-linear (bottom row). Top row shows that linear

blending results in large errors (red) for the left leg which are corrected with the hybrid approach.

(b)

Figure 3.7: Result of blending two equivalent poses of the low jump (left) and high jump

(right) sequences. 2nd and 3rd rows show that our proposed hybrid approach, with one and

three references meshes respectively, gives an approximation to the non-linear blending whilst

the top row shows large errors with linear blending.
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Figure 3.8: Results of blending the two opaque grey poses shown in Figure 3.9d. From left

to right columns: non-linear approach, linear, hybrid with r = {0.5} and hybrid with r =

{0.25, 0.5, 0.75}. Quantitative evaluation plotted Figure in 3.9 and shown in Table 3.1.
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(c) RMS error with respect the non-linear
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(d) In opaque grey: two input shapes to

be interpolated. In-between semitransparent

shapes are the non-linear results. For de-

tailed results, see Figure 3.8.

Figure 3.9: Visualisation of the errors associated with each of the blending approaches dis-

cussed in this section for interpolation of the two opaque shapes shown in Figure 3.9d. For

comparison purposes, three different error metrics (average vertex error, maximum vertex error

and RMS) are shown. Actual resulting blended meshes are shown in Figure 3.8. Sample rate

∆w = 0.1.
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Sequence #vertices Method
Max. Error Max. Error

Max. RMS
Time

% cm. sec / frame

Fig. 3.7a 5,580

Linear 14.38 % 23 7.01 0.008

Hybrid R = 1 3.67 % 6 1.63 0.015

Hybrid R = 3 1.60 % 2 0.4 0.017

Non-linear 0.00 % 0 0.00 0.749

Fig. 3.7b 3,000

Linear 9.14 % 15 5.32 0.004

Hybrid R = 1 1.34 % 2 0.67 0.014

Hybrid R = 3 0.93 % 1 0.42 0.016

Non-linear 0.00 % 0 0.00 0.789

Fig. 3.8 5,580

Linear 17.34 % 29 7.29 0.004

Hybrid R = 1 5.06 % 8 1.97 0.014

Hybrid R = 3 1.26 % 1 0.51 0.016

Non-linear 0.00 % 0 0.00 0.789

Table 3.1: Maximum vertex displacement error with respect to non-linear blending as a per-

centage of model size for in meshes in Figure 3.7.

in Figure 3.12. In order to better evaluate the influence of the threshold ε, a more

challenging example is shown in Figure 3.11a, where two significantly different poses in

shape, taken from the J.P., are blended. Again, linear blend fails dramatically, resulting

in up to 20 cm. vertex displacement errors. Furthermore, a quantitative evaluation is

presented in Figures 3.10b and 3.11b, showing how the percentage of the area of the

mesh which is corrected depends on ε, and its influence on the final displacement error.

Figure 3.12 characterises the representation error and storage cost against the number

of subdivisions for different error thresholds ε of the blend in Figure 3.10a. A relatively

small error reduction for thresholds below 5mm is present, while the memory usage

increases significantly. This is caused by the 5mm resolution of the original database,

since details below this level are not reconstructed.

This evaluation demonstrates that the proposed hybrid non-linear mesh blending al-

lows accurate approximation of non-linear mesh deformation whilst maintaining the

computational performance of linear blending to allow real-time interactive animation.
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(a) Top row: left and right, two equivalent poses of walk and run sequences. In the middle

the resulting linear blended mesh, coloured using a heat-map (red largest error) to display the

errors with respect to the non-linear result. Bottom row: results of our hybrid approach using

different threshold ε (2, 3, 4 and 8 mm.). Grey represent areas with errors below the threshold

(non corrected), and blue represents areas above the threshold that have been corrected.
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(b) Maximum displacement error (red) and percentage of the mesh area corrected (green) for

the pose interpolation shown in Figure 3.10a for a number of values of ε.

Figure 3.10: Qualitative and quantitative evaluation of the influence of parameter ε in the

hybrid blending approach presented in this section.
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(a) Top row: left and right, two poses from J.P. dataset. In the middle the resulting linear

blended mesh, coloured using a heat-map (red largest error) to display the errors with respect

to the non-linear result. Bottom row: results of our hybrid approach using different threshold ε

(2, 3, 5 and 7 cm.). Grey represent areas with errors below the threshold (non corrected), and

blue represents areas above the threshold that have been corrected.
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(b) Maximum displacement error (red) and percentage of the mesh area corrected (green) for

the pose interpolation shown in Figure 3.11a for a number of values of ε.

Figure 3.11: Qualitative and quantitative evaluation of the influence of parameter ε in the

hybrid blending approach presented in this section.
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Figure 3.12: Evaluation of the maximum error and memory usage of the hybrid blending

method, for the walk-run parameterised motion.

3.5 Results

3.5.1 Data

Datasets used in this work are reconstructed from multiple view video capture of actor

performance in two different studio setups, as described in Section 2.2. In Studio #1, 8

HD cameras equally spaced in a circle were used, forming a capture volume 5m2× 2m.

This studio was used to capture characters Dan and Roxanne, presented in figures

3.13a and 3.13b. A second studio, Studio #2, formed by 10 HD cameras, was used to

capture characters Infantry and Knight, presented in figures 3.13c and 3.13d.

Reconstruction is performed using multi-view stereo [SH07b] followed by per-character

temporal alignment [HBH11, BHKH13] of all frames to have a consistent mesh struc-

ture, see Section 2.2.1 for more details. Throughout this work we use a single intermedi-

ate mesh for hybrid non-linear interpolation which gives a an accurate approximation,

as shown in Figure 3.7.
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(a) ’Dan’ character. 2667 vertices and

5330 triangles.

(b) ’Roxanne’ character. 2886 vertices

and 5772 triangles.

(c) ’Infantry’ character. 4052 vertices and

8100 triangles.

(d) ’Knight’ character. 4058 vertices and

8120 triangles.

Figure 3.13: Samples of the 4 different character datasets used in this work. Each subfigure

shows a an opaque render of an arbitrary pose of the dataset and its wireframe.
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3.5.2 Parametric Animations

Figure 3.14 shows parametrised motion spaces for walking, jumping and reaching mo-

tions constructed from pairs of mesh sequences for Dan character. Rendered meshes are

coloured to show the parameter change. Figure 3.15 presents results for the Infantry

character. Figure 3.16 presents equivalent results for character Knight.

Figures 3.17 and 3.18 present a multi-parameter character animation constructed from

four mesh sequences from dataset Dan, with walking speed and direction control, in

which the presented hybrid blending method with 1 reference runs at 0.020 secs/frame

using 4 input sequences and 3 blending weights, with a maximum displacement error

of 0.73% with respect to the non-linear approach. Figures 3.19 and 3.20 present similar

results using datasets Infantry and Knight respectively.

These results show that the proposed mesh sequence blending approach using the hybrid

non-linear deformation achieves a natural transition between the captured motions.

Four datasets of different actors performance, captured in two different studio setups,

have been tested and evaluated. Tested datasets contain different levels of surface

motion complexity, ranging from characters with tight clothes such as jeans and t-shirt

as Dan to long hair and loose clothing as in Knight and Roxanne.

3.5.3 Discussion

Qualitative results demonstrate that the proposed approach successfully synthesises 3D

mesh sequences combining similar captured motions, resulting in novel motions that

maintain the realism of the reconstructed data. However, our scheme presents a number

of limitations. The approach may fail to produce natural intermediate motions if the

input motions are not related, for example a blend between a walk and a jump. Note

that this limitation was also present in previous research on skeletal motion parametri-

sation. Nevertheless, to fully exploit the captured datasets of motions, methods of

combining dissimilar motions are required.

Other limitations are related to the accuracy of the 4D data alignment, a requirement

in the proposed approach. Errors in the mesh surface alignment may cause undesired
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drift in the blended vertices position, resulting in visual surface artefacts. Highly non-

rigid surface areas such as hair typically suffer from alignment errors, thus such areas

may not produce plausible intermediate meshes.

Limitations related to anatomical and physical facets of the character are also present.

No anatomical constraints are imposed to the synthesised blends, thus these may re-

sult in unnatural poses. Furthermore, foot-floor and hand-object constraints are not

enforced, exposing intermediate meshes to external contact artefacts. Those could be

fixed imposing both space-time and mesh-IK [TH11] constraints.
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(a) Walk-to-run speed parametrisation, from walk (green) to run (yellow).

(b) Length of jump parametrised from short (red) to long (orange).

(c) Height of jump parametrised from low (grey) to high (purple).

(d) Parametrised reach action from high (light purple) to low (orange).

(e) Parametrised reach action from high (light purple) to low (orange).

Figure 3.14: Examples of parameterised motions between two motion sequences with continu-

ous parameter variation (every 5th frame). Results generated using dataset ’Dan’.
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(a) Walk-to-run speed parametrisation, from walk (green) to run (yellow).

(b) Length of jump parametrised from short (dark blue) to long (light blue).

(c) Height of jump parametrised from low (purple) to high (pink).

Figure 3.15: Examples of parameterised motions between two motion sequences with continu-

ous parameter variation (every 5th frame). Results generated using dataset ’Infantry’.

Figure 3.16: Walk-to-run speed parametrisation, from walk (green) to run (yellow). Results

generated using dataset ’Knight’
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Figure 3.17: Screenshot of the interactive scenario created to control a character in real time

using the proposed approach. The user can interactivelly control a character built using dataset

’Dan’, manipulating its speed and direction.

Figure 3.18: Path interactively travelled by the user, using character ’Dan’, controling speed

and direction.
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Figure 3.19: Interactive character created using dataset ’Infantry’. User controls speed and

direction.

Figure 3.20: Interactive character created using dataset ’Knight’. User controls speed and

direction.
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Chapter 4

4D Parametric Motion Graphs

Chapter 3 showed how novel 3D-mesh sequences can be generated by the combination

of captured 4D video sequences. However, the requirement for these sequences to be

similar in motion restricts parametrisation to single motion classes. Artefacts such as

mesh collapsing and shrinking, together with unrealistic deformations, may appear if

the interpolated sequences are not from the same class of semantically related motions.

Methods to overcome such limitation are required to fully exploit the datasets of 4D

video sequences to synthesise novel motions with a greater range of actions.

Over the last decade, research with skeletal motion capture, MoCap, data has ap-

proached this problem by proposing methods based on finding similarities between

the captured clips to concatenate different motions [MTH00, LCR∗02, AF02, KGP02,

SO06, HG07]. This allows the synthesis of a novel motion sequence as a result of

seamlessly concatenating segments of captured data. A new data structure referred as

Motion Graph was proposed to encapsulate links between clips of MoCap data [KGP02].

Our goal is to find analogous methods for 4D video data, to allow transitions between

different classes of parametrised motion (for example walk to jump).

Introduction of motion graphs for 4D video is a challenging problem do to the relative

complexity of the data compared to skeletal MoCap. In MoCap, similarity between

motions can be computed from direct comparison of joint angle or positions [KGP02],

in 4D video measurement of similarity based on surface shape is required. Furthermore,

69
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there is a significant difference in data size, while MoCap is traditionally stored using

a hierarchical skeletal model of < 50 joints, 4D video meshes consist of thousands of

vertices.

This chapter introduces the 4D Parametric Motion Graphs, 4DPMG, [CTGH12a, CTGH13],

a new data structure that encapsulates different 4D video parametric spaces, described

Chapter 3, and the links between them. The 4DPMG allows real-time interactive con-

trol of a 3D-mesh character created by the combination of multiple 4D video sequences

of different motions.

4.1 Related Work

Two approaches have been traditionally used to animate virtual characters: key-frame

animation, in which a highly skilled animator draws key poses of a character motion

and then in-between poses are filled; and animation from captured skeletal motion

data (MoCap). Key-frame animation is time consuming, requiring a highly skilled

animator and may fail in produce motion detail present in real motion. Skeletal MoCap,

achieved by mechanical sensors or marker-based technologies, provides a highly detailed

rigid skeletal motions, and it have been widely used in both visual-effects and gaming

industries [Gle99]. However, the motion is baked in and requires additional tools to

adjust the character motion for artistic or scene constraints.

In order to exploit the captured MoCap data, in animation production over the last two

decades there has been an increasing interest by the Computers Graphics community

on finding methods for reusing and editing skeletal motion.

4.1.1 Reuse of Skeletal Motion Capture

The main goal is to exploit captured sequences to enable the synthesis of novel motions

that maintain the realism of the source clips. Approaches can be divided into three

groups: interpolation methods, previously discussed in Section 3.1.1, which aim to blend

a set of captured sequences to generate novel motions; skeletal editing methods, which

aim to modify a captured clip by manually editing a captured pose; and concatenation
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methods, which aim to synthesise motions by linking a set of captured sequences. The

later is discuss in detail in the remainder of this section.

Early work in piecing together motion clips was presented by Perlin and Goldberg

[Per95, PG96], who used simple blends to link procedurally generated motions to syn-

thesise coherent sequences. Lamouret and van de Pane [LvdP96] propose a technique

for creating new animations from physically simulated motions stored in a database.

However, their system was applied to a simple agent, the Luxo lamp, with only five

degree of freedom. Molina-Tanco and Hilton [MTH00] present a two-level approach to

author novel motions from a database of MoCap example. A Markov chain of joint tra-

jectories is built in the first level, enabling the generation of the overall motion path.

The second level of the model matches the states of the Markov chain with actual

segments of the captured motions, resulting in a novel synthesised realistic motion.

In the early 1990s, online motion generation was also investigated in the game industry.

Move trees [MBC01] are graph structures that represent connections in a database of

motions. However, graph edges, representing links between motion clips, are manu-

ally found. Further research on graphs representing links between captured sequence

focused on relaxing these manual requirements, leading the algorithms for automatic

computation of seamless motion links.

Lee et al. [LCR∗02] achieve real-time control of three-dimensional avatars by prepro-

cessing plausible transitions between motion segments, and clustering clips for efficient

motion search at run-time. Kovar et al. [KGP02] introduce the so-called Motion Graph,

consisting in a graph-like structure that encapsulates not only original motion clips, but

also connections between them. Novel motions can be created by simply building walks

on the graph. Arikan and Forsyth [AF02] presented a framework that generates human

motions by cutting and pasting motion capture data, based on randomised search of

a hierarchy of graphs. This approach can generate motion sequences that automati-

cally satisfy a set of user constraints, including multiple character interaction. Pullen

and Bregler [PB02] keyframe a selected set of the character’s degrees of freedom and

find matches between these and lower frequency bands of motion data. As a result,

synthetic sequences are generated by short clip concatenation. Arikan et al. [AFO03]
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presented an intuitive framework for motion synthesis based on user annotations (i.e:

walk, run and then jump). The MoCap database needs to be annotated offline, and

a Support Vector Machine (SVM) classifiers is used to generalise the user annotations

to the entire database. Final motion is constructed by cutting pieces of motions from

the database and assembling them together. Ikemoto and Forsyth [IF04] propose a

method to significantly increase a collection of MoCap sequences by cutting limbs from

one motion sequence and attaching them to another, referred as transplantation. They

describe a methodology to evaluate the realism of the results, which can also be applied

for general motion synthesis assessment.

Further research [ZS08] improves on traditional motion graph connectivity by initially

creating a new set of interpolated motions from the original captured sequences, ex-

panding the dataset. This allows the construction of a well-connected motion graph,

with smoother transitions. Heck and Gleicher [HG07] introduce a new data structure

so-called Parametric Motion Graphs to describe valid ways of generating linear blend

transitions between motion clips dynamically generated through parametric synthesis

in real-time. Their main contribution is to find connectivities not between individual

motions but to groups of similar motions.

Due to the growing complexity of motion graphs [SO06, HG07, ZS08], recent research

in MoCap animation also focuses on developing highly structured representation for

large unstructured motion capture datasets. The Motion-Motif Graphs [BCvdPP08]

use motion segmentation and clustering techniques in unstructured motion data to

automatically build compressed graphs from large datasets of motions with more than

100,000 frames. More recently, Motion Graphs++ [MC12] introduced a new highly

structured generative statistical model for both motion analysis and synthesis. The

approach is capable of generating infinite variations within the same action, and it is

demonstrated to work in a database containing two hours of MoCap data and more

that 15 different actions.



4.1. Related Work 73

4.1.2 2D Video-Based Animation

Approaches for more general computer generated animation (i.e: not restricted to char-

acter animation) based on traditional 2D video footage have also been recently explored.

Video Rewrite [BCS97] uses existing clips of a person talking to synthesise novel videos

of a person mouthing words never pronounced before. Phonemes are automatically

detected in the original input and the corresponding video segments are stitched back

together to generate the desired output. Video Textures [SSE00] introduce a method

for video clip evaluation to extract its structure, and for synthesising a new, similar

looking video of arbitrary length. Among other applications, Video Textures allows 2D

interactive control of video-based animation. Human Video Textures [FNZ∗09] improve

previous motion concatenation techniques by simultaneously capturing maker-based

data and video data. Markers provide 3D spatial information that combined with 2D

information from video footage allow the computation of seamless transition between

original video clips. More recently, Hilsmann et al. [HFE13] introduce a pose space

image based rendering demonstrating photorealistic animation of clothing from a set

of 2D images augmented with 3D shape information to support natural transitions.

4.1.3 Reuse of 4D Performance Capture

Inspired by previous research in concatenation of MoCap sequences [KGP02, AF02,

LCR∗02], and taking advantage of recent improvements in 4D performance capture

discussed in Section 2.2.1, methods to create interactive 3D-mesh characters from 4D

performance capture have recently appeared. Analogous to Motion Graphs [KGP02]

for MoCap data, the goal is to generate novel 4D video sequences by the concatenation

of segments of captured sequences.

Starck et al. [SMH05] introduce a video-based representation for free-viewpoint visual-

isation and concatenate animation from captured 3D video sequences. Their approach

uses a spherical matching algorithm to derive surface correspondence from global sur-

face information, allowing the computation of seamless transitions between original

3D performance capture clips. Animation control is achieved using a motion graph

structure of geometry, with transitions manually identified. Huang et al. [HHS09] in-
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troduce the so-called Surface Motion Graphs, enabling the synthesis of novel 3D-video

sequences concatenating segments of 3D performance capture according to user con-

straints on movement, position and timing. The resulting motion is created by finding

the optimal path in the Surface Motion Graph that satisfies user constraints. Shape

similarity [HHS10a] are used to identify transitions between input sequences, which

does not require a consistent mesh topology over time.

More recently, example-based approaches through resampling multi-view video se-

quences have been extended to body motion [XLS∗11] allowing offline animation via

key-frame or skeletal motion. These approaches preserve the realism of the captured

sequences in the final render, but are not suitable for interactive real-time character

control.

4.2 Introducing 4D Parametric Motion Graphs

This chapter introduces the 4D Parametric Motion Graph, 4DPMG, a graph repre-

sentation for interactive animation from a database of 4D video sequences. Given a

4D performance database of mesh sequences for different movements with a consistent

mesh structure at every frame, referred to as 4D video, we first achieve parametric

control by combining multiple sequences of related motions, as discussed in Chapter

3. This gives a parametrised motion space controlled by high-level parameters (for ex-

ample walk speed/direction or jump height/length). However, parametric motions can

only be synthesised by combining semantically similar sequences (i.e: walk and run),

whereas the interpolation of non-similar sequences, such as jump and walk, would fail

in generating a human-realistic motion. Therefore, in order to fully exploit a dataset

of 4D video sequences, methods for linking motions performing different actions are

required, enabling the generation of a richer range of actions.

For both motion parametrisation and motion transition of 4D video sequences it is

necessary to introduce techniques which preserve the surface motion whilst allowing

real-time interaction. The 4DPMG representation allows interactive real-time control

of character animation from a database of captured mesh sequences.
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The 4DPMG represents the set of character motions and transitions which can be con-

trolled interactively at run-time from a 4D performance capture database. Parametrised

sets of motions form the graph nodes each representing a distinct set of motions which

the character can perform with associated user-controlled animation parameters. The

problem is then to define the graph edges which allow smooth transition between

motions at run-time whilst maintaining real-time interactive control of the charac-

ter motion. The parameter space for each node is continuous and we cannot therefore

pre-compute all possible optimal transitions between parametrised motions. 4DPMG

introduces a real-time approach to evaluate the optimal motion transitions with low-

latency. Figure 4.1 shows a simple 4DPMG with nodes for four motions: walk with

parameters for speed and direction; long-jump with parameters for length; jump-up

with parameters for height; and reach with parameters for hand position. The arrows

between nodes indicate possible transitions and the arrows to the same node indicate

loops for cyclic motion.

4.3 4DPMG Nodes: Parametric Motion Spaces

As illustrated in Figure 4.1, nodes of a 4DPMG are created by the combination of

similar motions. Each node can be considered as an independent parametric motion

space created as described in Chapter 3. This particular example depicts a 4-node

parametric motion graph with speed and direction control in node 1; reach hand control

in node 2; jump height control in node 3; and length of jump control in node 4.

The hybrid piece-wise linear approach for 4D video sequence interpolation introduced

in Section 3.3 is used provide real-time control of movement within each node, with

intuitive high-level parameters such as speed and direction for walking or height and

distance for jumping.

4.4 4DPMG Edges: Parametric Motion Transitions

Transitions between parametrised spaces for different motions in the 4DPMG are re-

quired to allow interactive character animation with multiple motions. Natural tran-
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Figure 4.1: Illustration of a 4D Parametric Motion Graphs showing four nodes with

parametrised motion spaces: walk (top) parametrised for speed and direction; long-jump (bottom-

left) parametrised for length; jump-up (bottom-middle) parametrised for hight; and reach (botom-

right) parametrised for hand location.

sitions require a similar shape and non-rigid motion in both spaces. In addition, for

responsive interaction in real-time character control it is important to ensure low la-

tency between the user input and motion transition.

Parametric transitions have been previously investigated by Shin and Oh [SO06], propos-

ing the Fat Graphs for skeletal MoCap data. Groups of transition edges are used to

create a fat edge, which parametrises similar motion segments into a blendable form.

Similarly, Heck and Gleicher presented the parametric motion graphs [HG07], a novel

representation for parametric skeletal motion control. A discrete set of good transi-

tions is precomputed by evaluating the similarity in pose and motion between pairs

of source and target points in the parametric space. To limit the memory required a

fixed number of good transitions are stored and interpolated at run-time. However,

precomputation of a fixed set of transitions can result in a relatively high latency due

to the delay between the current state and next pre-computed good transition.
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In this work we introduce an alternative approach which does not require the pre-

computation of a discrete set of transitions. Optimal transitions are computed at

run-time based on the current state in the source space and desired state in the target

motion space. Our approach presents two main advantages over previous techniques

for parametric motion control: transitions are not limited to a pre-computed fixed set

allowing the best transition for a given starting point to be evaluated at run-time; and

transition points can be evaluated on the fly to minimise latency whilst ensuring a

smooth transition.

4.4.1 Finding Transition Candidates

A parametrised motion is defined as a mesh sequence

M r(tr,wr), (4.1)

where wr ∈ <Nr
is the set of user controlled parameters for the rth motion class

and tr ∈ [0..1] is the normalised frame time. Each parametrised motion M r(tr,wr)

is computed from a set of 4D mesh sequences {M r
i (t)}Nr

i=1 according to Equation 3.8.

Given a current source state M s(ts,ws) and a target state M t(td,wd) the problem is

then to find the optimal transition path at run-time.

To evaluate the best transition path Popt online we optimise a cost function representing

the trade-off between similarity in mesh shape and motion at transition, ES(P ), and the

latency, EL(P ), or delay in transition for a path P between the source state M s(ts,ws)

and target state Md(td,wd):

Popt = arg min
P∈Ω

(ES(P ) + λEL(P )) (4.2)

where λ defines the trade-off between transition similarity and latency (λ = 5 through-

out this work). The transition path P is optimised over a trellis of frames starting at

the current frame M s(ts,ws) in the source motion space and a trellis ending at the

target frame Md(td,wd) in the target motion space as illustrated in Figure 4.2. The

trellis is sampled forward in time at discrete intervals in time ∆t and parameters ∆w

up to a maximum depth lmax in the source space. Similarly from the target frame a
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Figure 4.2: Illustration of the transition between a parametrised motion space source created

by the sequences Ms
i (pink) and Ms

j (blue), and a parametrised motion space target created

by sequences Md
i (red) and Md

j (brown). A trellis linking the current location on the source

parametric space and the target location is built, shown in red, with the candidate transition

frames, shown in grey. The green path represents the optimal path Popt. Orange arrow shows

the actual transition. Motions used to create a parametric space are depicted in Figure 4.1.

trellis is constructed going backward in time. This defines a set of candidate paths

P ∈ Ω with transition points between each pair of frames in the source and target

trellis. For a path P the latency cost EL(P ) is measured as the number of frames in

the path P between the source and target frames. Transition similarity cost ES(P ) is

measured as the similarity in mesh shape and motion at the transition point between

the source and target motion space for the path P .

4.4.2 Transition Similarity Cost

The mesh and motion similarity between any two source and target frames s(M s(ts,ws),Md(td,wd))

is defined as follows. As the vertex correspondence between the source and target

meshes are known we can compute the shape and motion similarity between any pair

of meshes. The Euclidean distances between their vertex positions and velocities gives

a distance

d(Mi,Mj) =
1

Nx
(‖xi − xj‖2 + λ‖si − sj‖2), (4.3)
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Figure 4.3: Similarity matrices computed between two parametric spaces each created from

two input motions. (a) walk and short jump similarity; (b) jog and short jump similarity; (c)

walk and long jump similarity; (d) jog and long jump similarity.

where vertex velocity si(t) = xi(t)− xi(t− 1) and Nx number of vertices. Similarity is

then computed by normalising by the maximum distance:

s(Mi,Mj) = 1− d(Mi,Mj)

max(d(Mi,Mj))
. (4.4)

Evaluation of the similarity s(M s(ts,ws),Md(td,wd)) between pairs of frames in a

continuous source and target parametric motion space is prohibitively expensive for

online computation. Real-time computation can be achieved by approximating the

similarity using an interpolation of the corresponding pre-computed similarity between

the mesh sequences used to build the source and target motion spaces. Section 4.4.3

gives further details on how the matrix of similarities S is pre-computed offline and

how arbitrary similarities are approximated at run time.

Figure 4.3 depicts an example of the precomputed similarities between two parametric

motion spaces, each of them built from two motions: node A, containing a walk and a

run motion, and node B containing a short jump and a long jump motion. Subfigures

4.3a, 4.3b 4.3c 4.3d illustrate the four similarity matrices. Dark blue areas indicate

good possible transitions, with high shape similarity between the two linked poses. A

more detailed illustration of the similarity matrices is presented in Figure 4.4. Fig-

ure 4.4a highlights the point where the highest similarity is located, showing the two

poses that correspond to this point. Similarly, Figure 4.4b highlights the least similar

location, as well as the meshes evaluated there. A simple visual qualitative inspection

shows that, while the poses in Figure 4.4a are similar in shape (both consist in an
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(a) Highest similarity is found at the highlighted location, where

the two illustrated poses are compared.

(b) Lowest similarity is found at the circled location, where the two

rendered poses are compared.

Figure 4.4: Highest and lowest similarities found between an example 2-node 4DPMG created

from a walk and jog motion (node A); and a short and jump motion (node B).

upright standing position), the poses in Figure 4.4b are highly dissimilar, validating

the proposed approach for mesh similarity evaluation.

To achieve real-time evaluation of the optimal transition with accurate approximation

of the true similarity we introduce a non-linear bisection approach analogous to the

hybrid mesh blending presented in Section 3.2. Source and target motion parame-

ter spaces are subdivided with offline non-linear interpolation of intermediate meshes.

Real-time online computation of the similarity between motion spaces is then per-

formed by linear interpolation of the similarity. Bisection subdivision allows accurate

approximation of the true non-linear similarity. In practice, a single bisection gives an
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Figure 4.5: (a,b) Similarity matrices for input sequences walk/short jump, and jog/short

jump; (c) Similarity matrix for non-linear blended sequence MNL(r), r = {0.5} and short jump.

(d,e) Similarity matrices for input sequences walk/long jump and jog/long jump. (f) Similarity

matrix for non-linear blended sequence MNL(r), r = {0.5} and long jump.

accurate approximation for path optimisation as discussed in Section 4.4.5. As in the

hybrid mesh blending approach, the price paid is a small pre-computation step and a

modest increase of memory usage. The proposed approach enables the computation

of mesh similarities with significantly lower errors than using the linear method, while

maintaining the online performance.

Figure 4.5 depicts similarity matrices generated using the proposed approach for sim-

ilarity interpolation in a simple 4DPMG consisting of two nodes: node A, containing

walk and jog motion; and node B, containing short and long jump. Subfigures 4.5a and

4.5b illustrate the similarity matrix between walk/short jump and jog/short jump re-

spectively. Subfigure 4.5c presents the interpolated similarity matrix for MNL(w),w =

{0.5}. Subfigures 4.5d,4.5e and 4.5f show another example for walk/jog node and long

jump motion.
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4.4.3 Optimal Transition Path Evaluation

As explained in Section 3.2, from a set of captured mesh sequences {Mp(t)}Np=1 defining

a parametric motion space we can pre-compute interpolated mesh sequencesMNL(t, r) =

b(M, r), where b() is a non-linear blend function and r the blending weights. Bisection

subdivision of the parametric motion space gives a set of reference mesh sequences

{MR(t, rp)}NR
p=1 composed of the set of captured mesh sequences {Mp(t)}Np=1 and a non-

linear set {MNL(t, rp)}Rp=1 using a blending weight set {rp}Rp=1 where NR = N +R.

To evaluate the transition cost between a source and target parametric motion space we

pre-compute the shape and motion similarity between each pair of source and target

reference mesh sequences. For each pair of source M s
R(ts, rs) and target Md

R(td, rd)

mesh sequences we evaluate the shape and motion similarity s(M s
R(ts, rs),Md

R(td, rd))

for all frames ts ∈ [0, T s], td ∈ [0, T d] giving a matrix Ssd. Pre-computing the similarity

between all pairs of source and target mesh sequences gives a similarity matrix S of

size N s
RT

s ×Nd
RT

d, where N s
R and Nd

R are the number of reference mesh sequences in

the source and target motion space respectively. Figure 4.3 illustrates an example of

the similarity matrices between two input parametric spaces created from a walk/jog

and short/long jump respectively. Figure 4.5 illustrates an example of the in-between

non-linear similarity matrices precomputed for r = {0.5} in the walk/jog space and

both the short and long jump sequences.

Online real-time computation of the shape similarity between the mesh in the source

M s(ts,ws) and target M t(td,wd) spaces for any source ws and target wt parame-

ter value can then be evaluated as a weighted sum of the similarity of the corre-

sponding pairs of reference meshes in source M s
R(ts, rsp) and target M t

R(td, rdq) where

r = h−1(w) ∈ [0, 1]. For convex weights it can be shown that the following inequality

holds (see Appendix A for proof):

s(M s(ts,ws),Md(td,wd))

≥
Ns∑
p=1

Nd∑
q=1

rspr
d
qs(M

s
R(ts, rp),M

t
R(td, rq))

≥ rsS>(rd)> (4.5)
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Thus a lower-bound on the similarity between any two frames in the parameterised

source and target motion space can be evaluated by a sum of the weighted similarity

between the source and target mesh sequences. As the pairwise sequence similarities can

be pre-computed, evaluation of the maximum lower-bound on similarity between any

point in the two parameterised spaces can be efficiently computed at run-time. If ws

and wd are the source and target weight vectors then we can evaluate the maximum

similarity according to Equation 4.5. Bisection subdivision of the source and target

parametric motions spaces to give a set of non-linearly interpolated reference meshes

results in a piecewise linear approximation of the non-linear similarity which can be

efficiently evaluated at run-time.

Figure 4.6 illustrates an example of how the approximate similarity between two ar-

bitrary meshes M s(ts, ws) and Md(td, wd) is computed in a scenario with r = {}.

First, the true similarities s(M s
i (ts),Md

i (td)), s(M s
j (ts),Md

i (td)) and s(M s
i (ts),Md

j (td)),

s(M s
j (ts),Md

j (td)) are retrieved from the matrix of precomputed similarities S and each

pairs is interpolated according to the blending weight ws, giving the approximate sim-

ilarities s(M s(ts, ws),Md
j (td)) and s(M s(ts, ws),Md

i (td)) as shown in Subfigure 4.6a.

Finally, the resulting pair of interpolated similarities is again interpolated, accord-

ing to the destination node weight wd, giving the requested approximated similarity

s(M s(ts, ws),Md(td, wd)), as illustrated in Figure 4.6b.

The optimal transition path Popt for a given source frame (current state) and target

frame (end state) is evaluated according to Equation 4.2 at run-time by evaluating the

cost for all paths in the trellis defining possible transitions between the source and target

motion spaces. The similarity cost ES(P ) for path P is defined as the similarity at the

transition frames between the source and target motion spaces evaluated according to

Equation 4.5:

ES(P ) = s(M s(ts,ws),Md(td,wd)). (4.6)

The optimal path Popt can be evaluated with low-latency at run-time because compu-

tation of the similarity cost by interpolation, Equation 4.5, is computationally efficient.

Furthermore, the path is optimised across all possible transitions between the trellis in

the source and target motion spaces as discussed in Section 4.4.1.
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(a) Step one for online similarity approximation for any arbitrary pair of meshes

s(Ms(ts, ws),Md(td, wd)). Similarities s(Ms
i (ts),Md

i (td)) and s(Ms
i (ts),Md

j (td));

s(Ms
j (ts),Md

i (td)) and s(Ms
j (ts),Md

j (td)) are retrieved from the matrix S and interpo-

lated according to the weight ws.

(b) Final step, similarities s(Ms(ts, ws),Md
i (td) and s(Ms(ts, ws),Md

j (td) are interpolated ac-

cording to weight wd

Figure 4.6: Online approximation of the similarity between two parametric meshes

s(Ms(ts, ws),Md(td, wd)).
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4.4.4 Mesh Similarity Evaluation

As stated in Section 4.4.2, a matrix S containing the similarities s(M s
R(ts, rp),Md

R(td, rq))

is precomputed offline and used at runtime to approximate any similarity s(M s(ts,ws),Md(td,wd)).

The approximation error depends on the weights in rp and rq, which are based on a

recursive bisection subdivision of the weight space.

Figure 4.7 shows the influence of the number of subdivisions in the weight space r on

the final performance of the proposed approach. Figure 4.7c characterises the ground-

truth non-linear similarities at time ts = 0.08 and td = 0.54 between a parametric

space built from walk and run motions and a parametric space built from low jump

and high jump motions of the dataset Dan. Figure 4.7a is the result of approximating

these similarities using a linear approximation, coloured as a heat map to highlight the

differences with respect to the non-linear approach. Figures 4.7d and 4.7f characterise

the similarities obtained using one subdivision and two subdivisions of the weight space

respectively. Figures 4.7b, 4.7e and 4.7g show the error (difference between hybrid linear

approximation and ground-truth non-linear similarity) normalised to the range [0,1].

Note that even with a single bisection, Figure 4.7e, the maximum error in similarity

computation is < 33% and with two bisections, Figure 4.7g, the maximum error in

similarity is < 10%.

Table 4.1 shows the computational time and quantitative errors for figures of Figure

4.7. Notice how the error with respect to the non-linear case decreases significantly

using the proposed approach with one subdivision (r = {0.5}). Using two recursive

subdivisions (r = {0.25, 0.5, 0.75}) the error is not significant in the computation of the

best transition. Real-time online performance is maintained with the evaluation of all

similarities for a trellis of depth 10 taking less than 9ms for all subdivision levels. These

quantitative results demonstrate that the proposed approach gives accurate approxi-

mation of the non-linear similarity between parametric motion spaces whilst allowing

computationally efficient evaluation for real-time motion control. The price paid is

pre-computation of the reference meshes and evaluation of pairwise similarities that

need to be stored in memory. Throughout this work two subdivisions have been used

to accurately approximate the similarities between the different nodes of a 4DPMG.
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Figure 4.7: Influence of the number of subdivisions in the weight space r on the error in

similarity computation. The two mesh parametric spaces being compared have been built from a

walk and a run motions, and from a high jump and low jump motions. ts = 0.05 and td = 0.54,

t ∈ [0, 1]. Errors and computational time are presented in Table 4.1.
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Method offline time online time avg. error max. error

Non-linear 0.000 s 160.58 s 0.000 0.000

Linear 39.698 s 0.009 s 10.05 17.61

1 subdivision 78.087 s 0.009 s 2.55 5.88

2 subdivisions 238.023 s 0.009 s 0.64 1.74

Table 4.1: Computational time (offline and online) and errors of the proposed approach pre-

sented in Section 4.4.4 to approximate the computation of mesh similarities for all possible

transition with a trellis depth = 10. Evaluation of the transition example shown in Figure 4.8d.

Method ES(Popt) λEL(Popt) Latency(s)
online CPU offline CPU

time (s) time (s)

1 Precomputed 251.10 207.00 1.656 0.000005 93.32

5 Precomputed 236.13 191.59 1.533 0.000007 93.32

10 Precomputed 237.28 208.38 1.444 0.000010 93.32

Online depth = 12 254.41 166.99 1.336 0.000190 12.56

Online depth = 10 276.30 116.63 0.933 0.000085 12.56

Table 4.2: Comparison of transition cost, latency and computation time for pre-computed

fixed transitions with the proposed online computation(λ = 5, frame-rate= 0.04s). Cost and

computation times are average values of 50 randomly generated transitions for each method

between walk/run and long/short jump parametric motion spaces.

4.4.5 Transition Performance Evaluation

The performance of the proposed online approach for transitions between parametric

motion spaces has been evaluated against a näıve offline method in which a fixed set

of the n best transitions between two parametric spaces was precomputed and stored.

We present both quantitative and qualitative evaluations. The former is presented

using mesh similarity and transition latency metrics, while the latter is shown using

animation still renders of the resulting transitions.

Table 4.2 presents quantitative results for transition cost, latency and computation

time averaged over 50 transitions with random start and end points in the source and

target motion space. Results demonstrate that the proposed online path optimisation

achieves lower latency (less time delay in transition) for a similar transition cost, whilst
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maintaining real-time performance for evaluation of transitions (<0.2ms/transition).

Pre-computation of fixed transitions gives a marginally lower similarity as it selects the

best transition points, but results in significantly higher latency.

Figure 4.8 shows a qualitative comparison of the same transitions using 6 different

configurations with dataset Dan. Figure 4.8a shows the result using 1 precomputed

transition, forcing the character to transit always in the same point in the parametric

space. In that setup, from the moment that the transition is requested we have to wait

until the character reaches that specific point, thus a relatively high-latency transition

is expected. Similarly, Figure 4.8b shows the result of the same transition using 5

precomputed transitions. Since the amount of transition points to be evaluated is also

small and constant, high-latency transitions are as well expected in this case, as it

is depicted by the large amount of pink meshes in the figure. Figures 4.8c to 4.8f

show the performance of the proposed online path optimisation approach using trellis

depths (lmax) of 12, 10, 5 and 3 respectively. A smooth transition with reduced latency

(smaller number of transition frames) is produced for online path optimisation with a

trellis depth of 12 and 10 as shown in Figures 4.8c and 4.8d. Figures 4.8e and 4.8f show

that as the trellis depth is reduced to 5 and 3 unnatural jumps in the motion appear

at the transition. This is due to the severely restricted path propagation, causing the

optimisation to fail in finding a good transition point between the motion spaces within

the trellis. Further transition examples using dataset Dan are shown in Figure 4.9b

and 4.9a.

In this work we use time step size ∆t = αT and parameter step size ∆p = α(wmax −

wmin) with α = 0.1, where the parameter range between the interpolated motion

samples is [wmin,wmax].

4.5 Results

In order to test the proposed approach, a variety of 4DPMG are built using the datasets

mentioned in Section 3.5.1. Interactive characters are loaded into a OpenGL [opeb]

application described in Appendix B that allows real-time motion control and online

render of the resulting pose in a 3D virtual scenario.
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(a) 1 transition precomputed. (b) 5 transition precomputed.

(c) Online with depth = 12. (d) Online with depth = 10.

(e) Online with depth = 5. (f) Online with depth = 3.

Figure 4.8: Comparison of the same transition between a run motion w = 0.9 of the parametric

space showed in Figure 3.14a to a jump motion w = 0.65 of the parametric space showed in

Figure 3.14b. In yellow, source Ms(ts,ws) and target Md(td,wd) meshes. In pink the meshes

computed to transition.



90 Chapter 4. 4D Parametric Motion Graphs

(a) Transition from long jump to walk. (b) Transition from jog to low jump. Notice how

the character automatically reduces the speed in

the first part of the pink section, until reaching the

walk pose where the optimal transition was found.

Figure 4.9: In yellow, the source and target poses requested by the user. In pink the meshes

automatically generated to generate the transition. Using dataset Dan.

4.5.1 Qualitative Results

Figures 4.10, 4.11, 4.12, 4.14, 4.13 4.15 4.16, and 4.18 present a variety of motion

sequences interactively created using the dataset Dan with the proposed 4DPMG im-

plementation. Animated versions of each of these figures as well as further results are

included in the supplementary video attached to this thesis. Figures 4.16 and 4.17 show

similar results for database Infantry, notice how the long jumping motion is significantly

exaggerated in this dataset. Resulting clips combine walk, jog, turn, different styles of

jump, and reaching motions. Different colours are used to highlight changes in motion

parametrisation.

Visual qualitative evaluation of these results confirms that our approach for real-time

character animation from 4D video capture achieves realistic results. Parametric tran-

sitions generated with the framework introduced in this chapter maintain the visual

quality of the captured sequences. Meshes which have been online automatically syn-

thesised can hardly be distinguished from the captured meshes, both in sill figures and

animated video. Transition latency is always < 1.2 seconds, enabling interactive control

of the motion with minimal lag between the requested pose and the actual transition.

Object interaction is also demonstrated with 4DPMG. In Figure 4.15, wooden boxes

are rendered to act as an obstacle that the character needs to avoid. Our approach
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also allows the user to draw a path that will be followed by the character, avoiding the

obstacles. In Figure 4.13, wooden benches separated by different distances were loaded

to increase the realism of the parametric jumps. In Figure 4.17 character Infantry

interactively avoids two piles of wood of different lengths, followed by a sharp left turn.

A realistic grass texture is used to add more realism into the final render.

Animations generated using the proposed method can be also combined with traditional

2D video footage, as Figure 4.18 demonstrates. Standard camera tracking methods

applied to video footage allow the extraction of camera location parameters. Animation

results can then be rendered from the requested viewpoint, allowing real-time control

of a synthetic character virtually moving in 3D inside real video footage.

4.5.2 Limitations

Results presented in this chapter demonstrate the potential for interactive character

animation from 4D performance capture. 4DPMG enable real-time interaction with

high-level movement control. Nevertheless, the current implementation presents some

limitations.

Online computation of transitions between motion spaces with up to 3 parameters

can be performed in real-time (< 0.2ms) for trellis depth < 10. Online optimisation

of transition paths is shown to give reduced latency compared to fixed precomputed

transitions. This allows optimal transitions to be computed with respect to the current

state. However, higher-dimensional spaces require an exponentially increasing number

of candidate transitions to be evaluated. GPU implementation and pre-computation

of transitions costs could be employed at the expense of increased storage and fixed

transitions locations leading to increased latency.

The current implementation relies on the assumption that a good transition point will

be found in the dataset. However, this is an assumption that may not be true, specially

if the dataset being used contains a sparse variety of motions with minimal similarity

between them. Hence, the proposed approach may produce unrealistic transitions be-

tween parametric spaces if the input data does not contain a minimal similarity between
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Figure 4.10: Real-time interactive character animation with a 4DPMG. The presented ap-

proach allows us to exploit a small dataset of 4D motions and create realistic novel motions.

some of the clips. In order to avoid unpleasant transitions, a threshold could be spec-

ified in Function 4.6, forbidding all transitions which the similarity is lower than a

certain value. If no good transition can be found, the character must remain in the

current node.

Nodes of the proposed 4DPMG framework consist in independent parametrised motion

space. In order to produce meaningful interpolated blends, nodes have to be popu-

lated with semantically similar motions, which are currently manually selected. This

limitation is overcome in previous motion graph research with skeletal motion cap-

ture, MoCap, by methods for automatic sequence labelling [KG04, MC12, KTT∗12].

Analogous methods for 3D-mesh sequences can potentially be investigated to relax the

current manual selection of similar motions, thus fully automating the definition of the

graph structure.

Finally, it is important to highlight that the proposed approach for character animation

from 4D performance capture applies only to the geometry of the motion. However,

datasets used in this work have been created from studio capture footage, as shown

in Chapter 2, hence the appearance of the captured models is available. Chapter

5 investigates methods for texturing parametric models to synthesise photorealistic

character animation from 4D performance capture.
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Figure 4.11: Close-up of the character Dan going from walk to jog, then turning right and

and transitioning into a parametric jump motion.

Figure 4.12: All kind of turn can be synthesised combining walk and turn motions. Transitions

to other parametric motions such as jump control can be performed at any time.

Figure 4.13: CG objects can be loaded into our OpenGL application, increasing the realism

of the final result. In this case, a parametric jump motion is used to jump between benches,

non-equally spaced.
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Figure 4.14: A character interactively controlled combines walk, run, reach and jump. Using

dataset Dan.

Figure 4.15: A character automatically follows a path set by the user to reach the red cones,

avoiding the obstacles. Using dataset Dan.

Figure 4.16: Infantry character was interactively controlled, combining motions such as walk,

jog, left turn, right turn, short jump and long jump. Grey meshes indicate transitions between

parametric spaces.
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Figure 4.17: Infantry character interactively controlled to jump over obstacle of varying width,

combining motions such as walk, jog, left turn, right turn, short jump and long jump. Meshes

coloured depending on parametrisation.

Figure 4.18: 4DPMG also enables the possibility to create animations that can be rendered

into a traditional 2D video footage or still images. Interactive novel human motion can be

combined with real footage.
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Chapter 5

4D Video Textures

Visual realism remains a challenging goal in the production of character animation. In

film visual-effects, realism is achieved through highly skilled modelling and animation,

commonly using captured video to provide an artistic reference. For interactive content

a combination of material reflectance maps and static texture are commonly employed,

using captured imagery to provide realistic visual detail. Materials may be modulated

according to character motion and behaviour to create a more life-like appearance. The

use of static materials and texture results in a loss of visual realism compared to the

dynamic appearance of people in captured video.

This limitation has motivated interest in video-based rendering to reproduce the de-

tailed dynamic appearance of real-world scenes. Initial image-based approaches [CW93,

DTM96, KR97] achieved novel viewpoint synthesis of static scenes using image in-

terpolation techniques. Free-viewpoint video [ZKU∗04] enables video-realistic render-

ing of novel views from multi-view footage, but is limited to replay of the captured

performance. The inference from multiple-view video of structured 4D video mod-

els, representing the dynamic 3D surface shape and view-dependent appearance over

time, allows greater reuse of the captured performance [CTMS03, dST∗08, VBMP08,

GSdA∗09, XLS∗11]. The motion of the resulting character models may be modified

via skeletal rigging, or direct surface manipulation, and rendered with the captured

video, to reproduce a detailed dynamic appearance that conveys a high degree of visual

realism.

97
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As discussed in Chapter 4, 4D video geometry may be readily manipulated in such

pipelines by blending [CTGH11], concatenating [HHS09, CTGH12a, CTGH13] or edit-

ing captured model sequences [ACP03, KG08, VBMP08, TH11]. However the dynamic

appearance of the character remains that of the original motion, baked into the cap-

tured video. For example the wrinkling of skin or clothing during movement remains

fixed if the motion is retimed or exaggerated. This limits the extent to which the char-

acter motion can be modified whilst maintaining visual realism. Consequently there

remains a gap between existing video-based characters in interactive application and

full video-realism.

This chapter presents 4D Video Textures (4DVT) which allow the motion and dynamic

appearance to be interactively controlled whilst maintaining the visual realism of the

source video. The approach is based on the parametrisation of a set of 4D video

examples for an actor performing multiple related motions, for example a short and long

jump, following the approach introduced in Chapter 3. Appearance for an intermediate

motion is produced by aligning and combining the multiple-view video from the input

examples to produce plausible video-realistic dynamic appearance corresponding to the

modified movement. As the character motion changes so does the dynamic appearance

of the rendered video reflecting the change in motion. 4DVT enable real-time character

animation with interactive control of motion and viewpoint whilst maintaining the

video-realism.

5.1 Related work

Authoring photorealistic character animation has been a popular research topic in the

Computer Graphics community for the last two decades. Synthesising novel realistic

video is a challenging goal due to the observed surface appearance depending on com-

plex physical properties including illumination, shadows, shape, motion, reflectance,

sub-surface scattering and viewpoint.

As discussed in previous Chapters 2 and 3, a common approach to produce human

motion clips consists in reusing captured video data. The same idea has been used in
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the literature to synthesise photorealistic video characters [SMH05, FNZ∗09, XLS∗11],

exploiting datasets of video footage to render new clips.

The proposed methods can be divided into two group: 2D video-based animation meth-

ods, which aim to generate 2D-video characters; and 3D video based methods, whose

goal is to author free-viewpoint video character animation that can be rendered from

any viewpoint.

5.1.1 2D video-based animation

Video Rewrite [BCS97] introduced the resampling of video frames to synthesise novel

video sequences for facial animations. Phonemes from input videos of actors talk-

ing were automatically labelled and mouth image frames were reordered to match the

query phonemes of the new audio track. Subsequent research on Video Textures [SSE00]

demonstrated animation of a variety of dynamic scenes by concatenating segments of

the source video with transitions between frames with similar appearance and motion.

Resulting videos maintain the captured realism of the input clips. 2D-video anima-

tion is further investigated using video sprites [SE02], an extension of the previous

work [SSE00] which provides the user with flexible transition control of the animation.

However, the image-based frame-to-frame similarity used by Schöld and Essa [SE02]

limits the video footage where the approach can be applied to non-rigid or stochastic

motions, and cannot handle changes in appearance due to viewpoint modification and

self-occlusion, thus the approach is not suitable for human motion. Video textures are

further extended by Celly and Zordan [CZ04], using the ratio of height to width for the

human silhouette bonding box to identify transitions in a relatively small dataset with

manually selected subsets of motions. However, the poor morphing model to generate

transitions usually results in ghosting artefacts.

2D approaches for video-based animation preserve the video-realism of the source data

in the generation of novel sequences but are limited to a fixed viewpoint and replaying

the captured motion. These approaches rely on an appearance-based similarity metric

to identify similar frames in the source video for transitions. However, appearance-

based similarity may fail for dynamic scenes with self-occlusion, such as video of a
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person, due to the similar appearance of occluding parts resulting in erroneous transi-

tions. In order to overcome this limitation, Hornung et al. [HDK07] combined skeletal

motion capture, MoCap, with traditional 2D images to animate a single frame of an

articulated figure. As in skeletal motion graph the 3D MoCap information provides a

measure of the similarity between frames which is robust to self-occlusion. Manual cor-

respondences between the image features and 3D motion features are imposed. Limb

occlusion in the original images can be handled, however their method requires manual

intervention for the initial fitting step and does not handle video footage. Human Video

Textures [FNZ∗09] also combined 2D imagery and 3D skeletal information to produce

animations of people by augmenting the video acquisition with 3D motion-capture

markers allowing the identification of suitable frames for transitions. This achieves

video-realistic animation but is limited to both replaying segments of the captured

video restricting the range of movement and viewpoint

Dynamic Textures [CYJ02] enabled the synthesis of new poses and motions. Stable

texture patches were identified in the input frames using a coarse geometric proxy

of the motion. New texture patches to populate the requested pose were created by

modulating a PCA basis of patches. Recent research [HFE13] has introduced pose

space image based rendering demonstrating photorealistic animation of clothing from a

set of 2D images augmented with 3D shape information to support natural transitions.

This approach could potentially be extended to concatenation of 4D video sequences

to incorporate video-realistic dynamics. Nevertheless, these approaches do not allow

interactive viewpoint control.

To overcome the limitation of fixed viewpoint in 2D video concatenation, methods

for viewpoint control of video replay are required. Initial image-based approaches

[CW93, DTM96, KR97] achieved novel viewpoint synthesis of static scenes using im-

age interpolation techniques. Zitnick et al. [ZKU∗04] achieved free-viewpoint video

that maintain the visual quality of the source video over a limited range of viewpoints

by combining multiple synchronised video streams. Lipski et al. [LLB∗10] propose

a space-time interpolation method for complex real-world video-scenes, enabling the

synthesis of a limited range of novel viewpoints by combining captured images in a

space-time interpolation domain. A tetrahedralisation of the space is used to inter-
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polate correspondences between the original footage. Similarly, unstructured video-

based rendering [BBPP10] uses coarse scene reconstruction from multiple view video

captured with moving hand-held cameras to produce non-photorealistic transitions be-

tween viewpoints of complex dynamic scenes. More recently, Tompkin et al. introduced

Videoscapes [TKKT12], extending the 2D video concatenation to allow exploration of

cities from unstructured video collections.

5.1.2 3D video-realistic animation

Video-realistic animation and free-viewpoint rendering from 4D performance capture

has also been investigated. Starck et al. [SMH05] present a video-based approach

to character animation using a motion graph representation. Sequences of people are

represented using 2D spherical geometry images, which provides a temporally consistent

structure. A novel spherical matching technique was used to find transition between

captured motion clips. Surface Motion Graphs [HH09, HHS09] allow motion synthesis

from 3D video sequences according to user constraints on movements, position and

timing. Transitions, based on shape similarity, are automatically found to satisfy user

constraints. These approaches achieve a video-realistic quality similar to free-viewpoint

video rendering but animation is limited to replay of the segments of the captured 4D

video.

Chapter 4 presents an approach to generate novel 3D mesh sequences via 4D Parametric

Motion Graphs (4DPMG), however only geometric information is taken into account.

Synthesised mesh motions textured with the original video-footage result in unrealistic

appearance due to artefacts such as unnatural texture dynamics, texture ghosting and

stretching caused by the mismatch between the novel geometry and the originally cap-

tured video textures. To increase realism, flexibility and range of animation, methods

to synthesise textures for novel poses are required. In the literature we can find that a

common approach to solve this problem is based on texture warping from both distinct

poses and multiple viewpoints [ECJ∗06, SLAM08]. Floating Textures [EDDM∗08] in-

troduce a warping method based on real-time optical flow computation that improved

projective texturing of a 3D geometry proxy from multi-view camera capture.
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A recent advance in free-viewpoint video-realistic character animation that enables the

synthesis of novel poses was presented by Xu et al. [XLS∗11]. Video-based characters

indexes a database of 4D performance capture sequences to retrieve a sequence of multi-

view source images which best match a query motion and rendering viewpoint for each

frame. Image-based warping is employed to adjust the retrieved image sequence to

the query pose and viewpoint. This results in photo-realistic rendering of novel video

sequence of the character which match the target motion and can be composited within

a background video. However their method is not suitable for interactive character

animation.

The 4D Video Textures (4DVT) approach introduced in this work combines multiple

4D videos to interpolate the detailed video dynamics. The proposed approach main-

tains the dynamic appearance of the video as the motion changes allowing real-time

interactive animation with free-viewpoint video-realistic rendering. 4DVT enables for

first time interactive video-realistic visualisation of motions that were never captured

from any view point.

5.2 4D Video Textures Animation Pipeline

The pipeline used to create interactive video-real character animation from 4D perfor-

mance capture in illustrated in Figure 5.1 and comprises the steps listed below:

1. Multi-camera capture: Actor performance is captured in a multi-camera chroma-

key studio to facilitate foreground segmentation [SMN∗09], Figure 5.1(a), as pre-

viously discussed in Section 2.2.

2. 4D video models: A dataset of 3D-mesh sequences is created [SH07b] and

temporally aligned [BHKH13] following the approach discussed in Section 2.2.1,

building a 4D video dataset. Figure 5.1(b).

3. Free-viewpoint rendering: In Figure 5.1(c), photo-visual realism for the recon-

structed captured meshes is achieved by traditional free-viewpoint video render-

ing techniques are used to render photo-realistic characters [BBM∗01, CTMS03,

SH07b, VBMP08, dST∗08, GSdA∗09].
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Figure 5.1: Overview of the proposed framework of 4D Video Textures for interactive anima-

tion. (a) Multi-camera view performance capture. (b) Mesh reconstruction and alignment. (c)

Standard free-view point rendering. (d) Dynamic texturing with 4D Video Textures. (e) 4D

Video Textures Motion Graph. (f) Resulting video-realistic interactive animation.

4. 4DVT rendering: Novel 4D video sequences are synthesised by the combina-

tion of multiple captured 4D video. The underlying geometric proxy is generated

following the approach of Section 3.2. A novel approach for view-dependant align-

ment of multiple-view video input is used to synthesise the dynamic appearance

of the character. Shown in Figure 5.1(d), as the character motion changes, so

does the dynamic appearance of the rendered video.

5. 4DVT Motion Graphs: A motion graph structure, illustrated in Figure 5.1(e),

is built to enable transitions between different 4DVT motions based on appear-

ance as well as shape. This representation is an extension of the 4D Parametric

Motion Graph earlier introduced in Section 4.2.

6. Video-realistic composition: Finally, shown in Figure 5.1(f), video-realistic

character animation can be synthesised and composited together with traditional

2D video footage. Using standard camera tracking algorithms, and a coarse
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3D reconstruction of the scenario, a 3D video-realistic character is interactively

controlled inside 2D video scenario with moving camera.

Steps 1, 2 and 3 are discussed in the previous chapters of this thesis; steps 4 and 5 are

discussed in detail in the remaining of this chapter; and step 6 consists in a standard

video composition. The main contribution of this chapter is the introduction of 4DVT,

a novel method for interactive appearance synthesis that allows for first time both

viewpoint and motion control of an interactive video-realistic character.

5.3 4DVT: 4D Video Textures

5.3.1 Definition

A 4D video F (t) = {V (t),M(t)} combines multiple view video sequence V (t) =

{Ic(t)}Cc=1 with C camera views combined with a 4D proxy of the dynamic surface

shape represented as a mesh sequence M(t), where vertices correspond to the same

surface point over time. This form of representation has previously been employed for

free-viewpoint video rendering of dynamic scenes [CTMS03, SH07b, dST∗08, VBMP08].

Free-viewpoint video renders a novel video sequence I(t, v) for a viewpoint v from the

set of input videos V (t) using the mesh sequence M(t) as a geometric proxy [BBM∗01].

The objective of free-viewpoint video is to maintain the visual realism of the source

video whilst providing the flexibility to interactively control the viewpoint. However,

free-viewpoint video is limited to replay of the captured performance and does not allow

any change in scene motion.

The goal of 4D Video Textures (4DVT) is to allow interactive control of the scene

motion and rendering viewpoint whilst maintaining video quality rendering. Previous

approaches to video-based character animation from 4D video have proposed techniques

for resampling frames or segments of the captured data and warping either the geom-

etry or appearance to match the desired motion [SMH05, XLS∗11]. However, these

approaches only allow a limited range of motion control and do not take into account

the dynamics of the surface appearance resulting in loss of realism in the rendered

video.
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Captured 4D video

of a short jump

Captured 4D video

of a long jump

Synthesised 4D Video Texture

for intermediate length jump

Figure 5.2: 4D Video Textures: Original 4D videos for short (top) and long (bottom) jumps.

Centre: 4DVT synthesised medium jump (middle). In green, a close-up to highlight texture

details, notice how the the synthesised sequence (middle) maintains visual quality of the captured

sequences. Using dataset Dan.
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4DVT introduce a new approach which changes the dynamic appearance as the un-

derlying motion changes to maintain plausible video realism across a wider range of

motion. Figure 5.2 illustrates the problem — given two 4D videos as input, how can we

render an intermediate motion with a visual-quality comparable to the input motion

and plausible dynamic appearance? A straightforward approach is to use the mesh

sequence interpolation scheme introduced in Chapter 3, and then we use the original

multi-camera video footage to incorporate appearance into the blended geometry. How-

ever, this solution will result in unnatural appearance dynamics due to the change in

shape surface, as show later in this section in Figure 5.4. Linear blend of the source

video textures projected into the blended geometry also fails in providing plausible ap-

pearance, suffering from ghosting artefacts due to residual errors of the mesh sequence

alignment step as well as changes in appearance across the sequences.

Therefore, the problem is addressed by combining multiple 4D videos {Fi(t)}Ni=1 to

render a novel video sequence with interactive control of both the scene motion and

viewpoint. The general problem can be stated as follows. Given a set of motion control

parameters w and viewpoint v, we aim to render a novel video I(t, w, v) :

I(t,w, v) = h(F1(t), ..., FN (t),w, v), (5.1)

where h(.) is a function which combines the source 4D videos according to the specified

motion parameters w and viewpoint v. The rendered video I(t,w, v) should preserve

the visual quality of both the scene appearance and motion. Note that both w and

v can be functions of time t, but for simplicity purposes we write w and v instead of

w(t) and v(t).

The approach presented in this thesis embeds the set of 4D videos Fi(t) in a parametric

motion space p, where p = f(w) represents high-level motion parameters such as

speed and direction. This representation enables interactive control of the motion and

viewpoint to render a video output in two stages:

1. Synthesis of a 4D shape proxy M(t,w) by non-linear combination of the input

mesh sequences using the approach presented in Section 3.2.
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Figure 5.3: Overview of the proposed 4D Video Texture pipeline. Illustrated using dataset

’Fashion’.

2. View-dependent rendering of the output video I(t,w, v) based on real-time align-

ment of the rendered multi-view source videos Vi(t) using the 4D shape proxy

M(t,w).

Figure 5.3 presents an overview of 4DVT rendering pipeline. View-dependent optic

flow alignment of two 4D videos is performed based on the 4D proxy mesh M(t,w)

to produce the rendered video sequence with the motion w and dynamic texture ap-

pearance. This process is performed in real-time allowing interactive manipulation of

both the viewpoint v and motion parameters w. In order to synthesise an appearance

that maintains visual realism our approach assumes that the set of source 4D videos

{F (t)} are of the same subject performing related motions. Throughout this work

the proposed framework have been applied to multiple-view video sequences of people

performing a variety of related motions, for example walk, run, turn, reach and grab.

4DVT allow the creation of video characters with interactive video and motion control

and free-viewpoint rendering which maintain the visual quality and dynamic appear-

ance of the source videos. Intermediate motions are rendered with plausible dynamic

appearance for the whole-body, cloth wrinkles and hair motion.
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5.3.2 Interactive Control of the 4D Shape Dynamics

To interactively control the scene dynamics the combination of multiple mesh sequences

is required to compute a geometric proxy. Given a set of input sequences Mi(t)
N
i=1

representing the surface shape dynamics for multiple related motions, the objective is

to synthesise a novel sequence M(t,w) which reproduces the desired motion defined by

a set of high-level motion parameters w. For example, if the inputs are mesh sequences

for walk, turn and run motions, the output motion would be parametrized to allow

interactive control of speed and direction. In the work presented in this thesis this

is achieved using the hybrid non-linear approach presented in Section 3.2, providing

real-time interactive control of the motion.

5.3.3 View-dependant 4DVT Rendering

The critical challenge for video quality rendering with control of both motion and

viewpoint is the combination of multiple 4D videos {Fi} to render a novel output

video I(t,w, v). A naive approach to render the output video I(t,w, v) for a given set

of motion parameters w and viewpoint v is to use the known mesh correspondence to

transfer the multiple view video for each input mesh sequence Mi(t) to the interpolated

proxy shape M(t,w) and blend the resulting textures from multiple input motions.

However, any misalignment in the underlying geometric correspondence or change in

appearance due to the motion will produce blurring and ghosting artefacts.

The transfer of appearance between 4D videos for a walk and run motion is illustrated in

Figure 5.4. Figures 5.4(a) and 5.4(b) show both the captured geometry and captured

texture for a walk and run pose, respectively. Figure 5.4(c) shows the walk texture

Vi(t) transferred to the jog geometry Mj(t), notice how the texture distorts causing the

face to look unrealistic. Analogously, Figure 5.4(d) shows running appearance Vj(t)

projected into walk geometry Mi(t), distortion artefacts are also present. Appearance

distortion artefacts and deformed face features in figures 5.4(c,d) are caused by the

difference in surface dynamics for the two source motions. Figures 5.4(e-h) show the

same behaviour in an example using character Dan. Figures 5.5(a,b) show the result of

naive linear blending of the transferred appearance into a blended mesh M(t,w),w =
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Figure 5.4: 4D video appearance transfer: In top row, using dataset Roxanne: (a,b) show

the original rendered 4D video frames for a walk and a run sequence; (c,d) show the result of

appearance transfer, notice the distortion artefacts caused by the difference in surface geometry

between the source 4D models. In bottom row, using dataset ’Dan’: (e,f) show original poses

from a walk and a jog motions. (g,h) show the result of appearance transfer, notice distortion

and unrealistic deformations.

{0.5}, and a heatmap to highlight differences between the blended textures. Even with

accurate surface alignment [HBH11] the 4D video appearance changes for different

motions due to the dynamics of the skin, clothing and hair. We therefore require an

approach to accurately align the dynamic appearance of the input motions. Figures

5.5(c,d) show the 4DVT result achieved using the view-dependent appearance alignment

proposed in this thesis and described in detail in the remaining of this chapter.

4DVT mitigates ghosting and distortion artefacts by inferring an aligned video-texture

from the multiple-view videos input Vi(t) for rendering. Unfortunately it is not possible

to directly pre-compute the alignment between the multiple-view videos for different
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Figure 5.5: 4D video appearance transfer to an intermediate blended geometry (w = 0.5):

(a,b) result of naive blending, and texture difference map; (c,d) result of 4D video texture view-

dependent alignment and blending, and texture difference map. Using dataset Dan.

Figure 5.6: Top: Captured frames from cameras 1, 3, 5 and 7 of a walking pose. Bottom:

Captured frames from cameras 1, 3, 5 and 7 of the jog pose corresponding to the walk pose

shown in the top row. Direct texture alignment between camera views is not possible due to

changes in surface visibility.

motions as the surface visibility depends on the pose relative to the camera which will

change significantly for different motions. Figure 5.6 illustrates an example of this

difficulty. Top row shows the captured frames from cameras 1, 3, 5 and 7 of a pose

from a walking motion. Bottom row shows the corresponding frames (equivalent poses)

from the same cameras of a jog motion. Although the poses captured from each camera

are similar, direct alignment pre-computation would fail because of the differences in

surface visibility due to changes in pose and location.

An alternative would be to pre-compute a texture map from the multiple view video

input and perform alignment in the texture domain. There are two significant problems

with this solution: firstly, there may be a significant loss of view-dependent detail

in the combination of multiple view video into a single texture map due to errors
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in shape and camera calibration, as noted in previous work [EDDM∗08]; secondly,

alignment in the texture domain is non-trivial due to the distortion of the original

surface appearance, discontinuities or seams in the texture map and any errors in

the geometric surface alignment. We therefore propose an alternative approach which

overcomes these limitations.

Inspired by previous research on Floating Textures [EDDM∗08] we propose a view-

dependent approach for 4D video texture rendering which combines multiple view video

input from multiple motions in real-time. Floating Textures proposed a view-dependent

optic flow alignment to refine the integration of appearance information from multiple

view video. The approach demonstrated high-quality real-time free-viewpoint render-

ing, avoiding ghosting and blur artefacts which occur due to errors in the shape proxy

or camera calibration. However, Floating Textures is limited to refinement for a single

geometric proxy and corresponding set of multiple view images, thus it is not valid

interpolation of multiple motions.

This thesis proposes an approach to render dynamic video textures based on multiple

4D videos of different motions. The set of 4D videos {Fi(t)}Ni=1, with corresponding

motion parameters wi, for a particular motion class are embedded in the parametrised

motion space w. Video of novel motions is then rendered by interpolating between the

set of 4D videos {Fi(t)}Ni=1 according to the motion parameters w and viewpoint v.

A view-dependent approach is introduced to align the appearance for video sequences

with different surface dynamics.

View-dependent rendering with parametrised motion control therefore requires on-the-

fly combination of the view-dependent rendering for individual 4D videos Fi(t, wi). This

is achieved by online alignment using optic flow and blending according to the motion

parameters of view-dependent appearance. The proxy mesh sequence M(t,w) for the

given motion parameters w is first synthesized from Equatiom 3.7. As the same mesh

shape M(t,w) and viewpoint v are used to render each input motion the rendered

views share the same geometry and have similar appearance (see full-body miniatures

in top-left of subfigures 5.4). Differences in the rendered appearance are primarily due

to the different dynamics of the input motion (together with any residual error in the
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Figure 5.7: (a),(b) Original walk and run texture projected to a blended geometry

M(t, w), w = {0.5}, respectively. (c) Linear blend between (a) and (b), resulting in severe

ghosting artefacts. (d) Optic flow [Far03] between (a) and (b). (d) Result of the 4DVT view-

dependent texture alignment. Using dataset Roxanne.

shape reconstruction and mesh sequence alignment).

Our approach to 4D video alignment and rendering based on the proxy mesh sequence

M(t,w) comprises the following steps:

Input: multiple view video capture of an actor performing multiple related motions

Vi(t), together with the parametrization mesh sequence M(t,w) for user specified

parameter w and rendering viewpoint v.

1. For each input sequence Vi(t) we perform view-dependent rendering of view v

using the parametrisation mesh M(t, w) giving a set of image sequences Ii(t,w, v).

See Figure 5.7(a,b).

2. The alignment between each pair of input video sequences is then evaluated using

optic flow: aij(t,w, v) = o(Ii(t,w, v), Ij(t,w, v)). See Figure 5.7(c).

3. The combined rendered view is produced by blending of the warped texture view:

Iout(t,w, v) = z(aij(t,w, v), Ii(t,w, v), Ij(t,w, v),w). See Figure 5.5(c).

Output: Parametric video texture Iout(t,w, v)

For interactive animation control the image alignment o(.) is required to be performed

at run-time. A number of GPU implementations of optic-flow algorithms have been

evaluated [Far03, BBPW04, EDDM∗08]. We have found the GPU implementation of
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the Farneback [Far03] optic flow algorithm (available in OpenCV 2.4 [opea]) to achieve

the best results in terms of alignment error with favourable computational performance.

Function z(.) implements a per-pixel image warping and blending, weighted according

to w:

z(aij , Ii, Ij , w) = I
′
i(aij , w) · w + I

′
j(aij , 1− w) · (1− w), (5.2)

where I
′
(a,w) is the warped image I() according to the flow field a and the weight w

such that each pixel p′(x, y) of the warped image I ′ is computed

p′(x, y) = p(x+ ax(x, y) ∗ w, y + ay(x, y) ∗ w) (5.3)

where (x, y) are the pixel coordinates, ax(x, y) is the magnitude of the flow a in the

horizontal axis at (x, y) and ay is the magnitude of the flow a in the vertical axis at

(x, y).

Figure 5.8 presents examples of 4DVT rendering for five characters with intermediate

parameter values at intervals ∆w = 0.2 between the two source frames. This illustrates

reproduction of detail such as wrinkles for intermediate meshes without blurring and

ghosting which occur without view-dependent alignment. Large differences in shape

between Vi and Vj for character Dan (row 1) and JP (row 3) are particularly challenging.

Figure 5.9 presents a visual comparison between a linear approach for texture blending

and the 4DVT approach presented in this section. Two poses Vi(t) and Vj(t) from

the JP dataset are used as a source data. Blended results for weights w = {0.3} and

w = {0.6} are presented. Zoomed-in results show that the linear blending approach

(top row) fails in aligning input textures, causing the synthesised results suffer from

ghosting artefacts. The proposed 4DVT view-dependant optic flow alignment result,

highlighted in green in the bottom part of the figure, provide synthetic blended textures

that maintain the captured video quality.

Figure 5.10 shows close-up views for two examples of 4DVT rendering, each example

interpolated between two source 4D video frames. Full body renders of the source poses

are shown in the right and left columns. Notice the smooth change in wrinkle detail

as the motion transfers from the right pose to the left. The rendered dynamic appear-

ance detail changes with the underlying surface motion allowing realistic rendering as
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Figure 5.8: 4D Video Textures results from Section 5.3.3. Left and right columns are the

input free-viewpoint renders of the two poses of each character that are going to be interpolated.

Columns 2, 3, 4 and 5 are the synthesised results of the proposed approach Iout(t, w, v) for

weight values of vector w of 0.8, 0.6, 0.4 and 0.2 respectively. Notice how the synthesised novel

poses Iout(t, w, v) maintain the visual quality of the input data Vi(t) and Vi(t). Using datasets

Dan (top row), Roxanne (2nd row), JP (3rd row), Infantry (4th row) and Knight (bottom row).
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Figure 5.9: Poses Vi(t) (left column) and Vj(t) (right column) are interpolated using blending

weights w = {0.3} and w = {0.6}. Top row shows the results using a linear approach with

no texture alignment, zoomed-in details (red boxes) highlight ghosting and alignment artefacts.

Bottom row shows the result achieved using the 4DVT alignment approach introduced in this

chapter. Zoomed-in details (green boxes) show no texture artefacts.

Figure 5.10: Top-left, top-right: Input 4D video poses taken from walk and jog sequences,

dataset Dan. Bottom-left, bottom-right: Input 4D video poses taken from jog and walk sequences,

dataset Roxanne. Centre columns, close-up detail of the 4DVT texture alignment approach to

interpolate between the source poses. Notice how appearance details smoothly transfers between

poses, enabling the synthesis of in-between poses that maintain the captured visual quality.
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the character movement is interactively controlled. In principle the proposed 4DVT

framework could also be applied to other dynamic scenes where it is desirable to control

motion and viewpoint such as a trees, water, or cloth response to wind.

5.3.4 4DVT Motion Graphs

The approach introduced in Section 5.3.3 enables video-realistic rendering of novel

motions from a set of 4D videos of related motions. This allows the construction of a

motion class R(p) parametrised by a set of high-level motion parameters p to control

the within class motion. To fully exploit 4D video datasets, video-based character

animation within a 3D scene requires the combination of multiple motion classes Rj in

a Motion Graph structure [KGP02] to encapsulate motion clips and potential transitions

between them.

As discussed in Chapter 4, motion graphs [KGP02] have been extended in the literature

to represent transitions between parametrised motion classes for skeletal data [HG07]

and recently also for surface motion sequences [SMH05, SH07b, HHS09, CTGH13,

CTGH12a]. Since 4DVT enables the synthesis of video-realistic parametric animations,

a motion graph structure that exploits appearance information is required to represent

the potential transitions between 4DVT motion classes.

In this section we address the synthesis of texture for 4D Parametric Motion Graphs

[CTGH12a, CTGH13]. This combines the approach for view-dependant alignment of

appearance from different motions introduced in the previous section with a paramet-

ric motion graph structure. The motion graph is extended to take appearance infor-

mation into account for transitions between different parametrised motions. Adding

appearance information into the originally proposed 4DPMG cost function, described

in Equation 4.2, will help in finding transitions based not only in shape similarity, but

also in appearance similarity. This results in synthetic animations that avoid glitches

and discontinuities in both geometry and texture domain.

Interactive animation requires on-the-fly evaluation of a graph path P for transition

between the current motion class Rs(ps) and a target motion class Rd(pd) with a

rendering viewpoint v. On-the-fly optimisation of the graph path is performed over a
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discrete trellis of parameter values in the source and target motion class according to

the following cost function:

Popt = arg min
P∈Ω

(ES(P ) + λ1EA(P, v) + λ2EL(P )) , (5.4)

where Ω is the set of possible graph paths and ES(P ) and EA(P, v) evaluate the cost

of path P in terms of difference in shape and view-dependent appearances for view v

at the transition respectively, and EL(P ) is the latency, or path length, between the

current motion state, Rs(ps), and the target motion Rd(pd). λi are weights to balance

the relative importance of each term.

Analogous to 4DPMG, the latency cost EL(P ) for a path P is measured as the path

length |P | between the source Rs(ps) and target Rd(pd) motions. The shape cost,

ES(P ), previously defined in Equation 4.6 measures the change in shape and motion

at the transition between motion classes.

While shape ES(P ) and latency EL(P ) costs in Equation 5.4 are viewpoint indepen-

dent, the appearance cost EA(P, v) depends on the viewpoint v which is interactively

controlled by the user and exploits the view-dependent optic flow introduced in Sec-

tion 5.3.3. The appearance cost EA(P, v) measures the change in appearance at the

transition between motion class for rendering viewpoint v.

EA(P, v) = ‖aij(v)‖2 (5.5)

where aij(v) is the view-dependent optic flow aij(v) = o(Ii(v), Ij(v)) between the ren-

dered images Ii(v) ∈ Rs and Ij(v) ∈ Rd. Figure 5.11 illustrates the cost function terms

for the motion space Rs transitioning to a frame in the target motion space Rd. Shape

and latency costs are independent of the viewpoint, whereas the appearance cost de-

pends on the rendered appearance for a given viewpoint, v, which must be evaluated at

run-time. Real-time implementation of the appearance cost EA(P, v) is achieved using

a GPU optic flow implementation (see Section 5.3.3 for details).

The influence of viewpoint v in the appearance cost EA(P, v) is illustrated in Figure

5.12, which presents a visualisation of the appearance similarity for a transition between

a walk/jog node and a jump node created with dataset Dan. Figures 5.12a, 5.12b and

5.12c show a 4DVT character I(t, vi, w) with t = 0.6, w = 0.5 rendered from arbitrary
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Figure 5.11: Illustration of the motion graph costs trellis presented in Equation 5.4 for a

random transition, time vs. parameter value: (a) Shape similarity ES(P ); (b) Latency EL(P );

and (c) Appearance similarity EA(P, v).

viewpoints v1, v2 and v3 respectively. Figures 5.12d, 5.12e and 5.12f illustrate the

appearance similarity trellis for each of the views. Notice that dark blue areas of

viewpoint v1, which indicate high appearance similarity, differ significantly from v2 and

v3. Such severe difference in appearance similarity between viewpoints is caused by

what is actually being rendered in each particular vi. While v1 renders a frontal full-

body view of the character, viewpoints v2 and v3 render close-ups of the upper body,

thus ignoring other body parts for appearance similarity computation. Consequently,

if the target mesh in the motion space Rd has a large shape difference, evaluation of the

shape similarity ES(P ) will result in a low score; however, if viewpoint vi is zoomed-in

into a region of the character with high appearance similarity, such as the face in this

example, EA(P, v) will result in a high score. This observation demonstrates that the

appearance term EA(P, v) incorporated into the proposed cost function of Equation

5.4 adds meaningful information when searching for transition candidates. Since shape

and appearance similarity are not directly correlated it is important to consider both in

the minimisation problem to be solved when transitioning between parametric motion

spaces.

An example of this observation is illustrated in Figure 5.13, which shows the result

of requesting a transition between a walk/jog and a walk to stand motion from two

different viewpoints vi and vj . The optimal transition from viewpoint vi, which shows

a view of the full-body as display in Figure 5.13b, is found at ts = 0.95, ws = {0.1}
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(a) Viewpoint v1 (b) Viewpoint v2 (c) Viewpoint v3
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Figure 5.12: Top row, left to right: 4D Video character I(t, w, vi), t = 0.6, w = {0.5}

from viewpoints v1, v2 and v3 respectively. Using walk and jog sequences from dataset Dan.

Bottom row: Appearance costs trellis computed for each of the view points using the appearance

similarity measure from Equation 5.5. Notice how the candidates’ appearance similarity changes

depending on vi.

and td = 0.1, wd = {0}. If the viewpoint changes to vj , which shows a close-up view

of the face as shown in Figure 5.13b, the result of the optimisation changes, because

the appearance cost Ea(t, v) is view-dependant. In this case, the optimal transition is

found at ts = 0.28. Notice that at this time-stamp the shape similarity is significantly

lower, but this score is compensated by the high score in appearance similarity from

that particular viewpoint vj , leading to a different optimal transition point with respect

the solution found at vi.

Once all similarities are evaluated, the transition path P is optimised over a trellis of

depth lmax with a discrete parameter sampling ∆w = wmax−wmin
10 in the source and
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(a) Transition found between a walk/jog motion and a walk to stand motion from viewpoint

vi using 4DVT Motion Graphs. Left: transition pose found from walk/jog space (ts = 0.94).

Centre: target transition pose from walk to stand motion. Right: Optical flow between the two

linked poses.

(b) Transition found between a walk/jog motion and a walk to stand motion from viewpoint vj.

Left: source transition pose in the walk/jog space (ts = 0.28). Centre: target transition pose in

the walk to stand motion. Right: Optical flow between the two linked poses.

Figure 5.13: Detail of the transitions generated using a 4DVT Motion Graph between a

walk/jog motion and a walk to stand motion, from two different viewpoints. Top row shows

the two linked frames found using the optimisation from Equation 5.4 at viewpoint vi. Bot-

tom row shows the transition found between the same two motions from viewpoint vj. Notice

that changes in viewpoint affect the result of the optimisation (different t value) performed by

Equation 5.4 because the appearance cost Ea(t, v) is view dependant.

target motion space for all possible transition paths Ω using Dijkstra’s shortest path

algorithm. Despite the large number of potential transition paths the optimal path

Popt can be evaluated in real-time for lmax < 10 which is sufficient to produce visually

seamless motions.
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5.4 Results and Evaluation

Evaluation was performed over five 4D performance capture datasets captured under

two studio configurations at 25 fps, as described in Section 2.2. The resulting interactive

animations ran at ∼ 10 fps on a GeForce GTX 680 GPU equipped Pentium 2.5Ghz

quad core PC.

Figures 5.14 to 5.23 show a variety of results generated using 4DVT, rendered every 10th

frame for visualisation purposes. Animated versions of these figures as well as further

video-results are available in the supplementary video of this thesis. Visual quality of

the synthesised sequences is comparable to the rendering of captured free-viewpoint

video sequences.

Figure 5.14 shows a long path interactively travelled using Dan character. Notice

how the resulting animation seamlessly combines walk, jog, turn and jump motions.

Similarly, Figure 5.15 shows an animation interactively generated using the Knight

character, who wears a loose a metallic upper-body chainmail armour with a leather

cape on top. In the last part of the animation the character switch from a walk motion

into a jog motion, notice how the highly non-rigid surface of the cape is successfully

reproduced by our 4DVT approach. Figure 5.16 presents character Dan jumping across

benches with variable in-between distance. 4DVT rendering in combination with photo-

realistic CG object results in plausible video-realistic animations. Infantry character

animation is illustrated in Figures 5.17, Figures 5.18 and 5.19. Observe the seamless

transitions from a walk/jog motion into a jump motion present in all Infantry figures.

In order to stress the realism of the results generated using the proposed 4DVT approach

Figure 5.19 explicitly highlights synthesised poses using a semi-transparent green layer.

Originally captured textures are marked in blue. No significant differences in visual

quality are observed.

2D standard video footage can be combined with 4DVT to generate fully video-realistic

real-world scenarios with interactive character animation. In Figure 5.20 Roxanne char-

acter performs a synthesised walk to jog motion in an outdoor background. Similarly,

in Figures 5.21 and 5.22 character Dan is animated in outdoor scenes combining walk,
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Figure 5.14: Character Dan interactively animated using 4DVT Motion Graphs in a virtual

scenario. Combines walk, jog, left turn, right turn, short jump and long jump captured motions.

jog, turn, long jump and short jump motions. Notice the highly realistic video-texture,

including hair and wrinkle details, generated using the proposed approach. Refer to

the supplementary video of this thesis for further animated results, including multiple

challenging 4DVT characters composited with hand-held recorded videos.

Finally, although it is not a main goal of this research, limited object interaction is

also possible using our approach. Figure 5.23 shows character Dan grabbing boxes of

variable width, which is set by the user. The character’s parametrisation to reach the

requested size is automatically found by solving wi = f−1(p), where in this particular

example p is the width of the box and wi is the blending weight of the R motion class

that controls the width of a grab motion.

5.4.1 User study

A cohort of 51 non-expert participants undertook a public web-based survey to evaluate

aesthetic preference for videos and stills generated by the 4DVT framework. Partici-

pants were asked to compare 15 separate rendering pairs, each pair consisting in one

4DVT rendered model and one source FVVR captured model. Refer to Appendix C

for a detailed list of the renders used in the survey.

Participants were asked to indicate their preference for one rendering or the other on

a 5 point scale. The scale spanned strong preferences for either configuration (1 or 5),
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Figure 5.15: Knight character animated using our 4DVT approach. Notice the significantly

non-rigid clothing: metallic upper-body chainmail armour and a leather cape on top. 4DVT

successfully reproduces complex non-rigid surface and appearance deformations.

Figure 5.16: Character Dan jumping across benches with variable in-between distance. Photo-

realistic computer generated objects may be incorporated into the virtual scenario to increase

the realism of the animation. Notice the highly detailed texturing, reproducing surface dynamics

such as cloth wrinkling and hair movement.
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Figure 5.17: Infantry character animated using 4DVT Motion Graph. Notice the different

range of motions and transitions, including walk to jog motion, a range of different turn cur-

vatures and varying jump lengths. 4DVT fully exploits 4D video databases to synthesise large

novel range of motions.

Figure 5.18: Infantry character animated through 4DVT Motion Graphs jumping over obsta-

cles of varying length. Notice the detail in face and clothing.
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Figure 5.19: In order to stress the difference between captured 4D video models and 4DVT

synthesised characters, a green semi-transparent layer is rendered on the top of 4DVT models

in this figure. Blue is used to highlight the captured data. Notice how the difference in pose and

appearance visual quality is hardly perceptible between captured and generated characters.

Figure 5.20: Character Roxanne animated performing a walk to jog motion in a virtual sce-

nario created from a hand-held recorded video. The extraction of the camera calibration param-

eters of the captured 2D video enables the animation of 4DVT characters ’in’ real video footage,

obeying the original depth and scene properties.



126 Chapter 5. 4D Video Textures

Figure 5.21: Character Dan animated using 4DVT Motion Graphs, combining walk, jog, left

turn, and a range of jumps. The extraction of the camera calibration parameters of the captured

2D video enables the animation of 4DVT characters ’in’ real video footage, obeying the original

depth and scene properties.

Figure 5.22: Character Dan animated using 4DVT Motion Graphs, combining walk, jog, left

turn, and a range of jumps. Notice the appearance detail in face and and cloth wrinkling.
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Figure 5.23: 4DVT enables limited object interaction. In this example, character Dan is

animated to grab a box of variable width, interactivelly controlled by the user.

and no preference (3). Questions were put to participants in a randomised order, and

identical pairs were also inserted as a control. For such pairs, we observed preferences

of 3.15 ± 0.67 indicating natural variations in response.

We evaluated the perceived difference between real FVVR captured footage and synthe-

sised 4D captured footage using 4DVT. Users were shown a real 4D captured character

at a given time, alongside a character interpolated from that 4D footage using our

proposed algorithm. The interpolated character approximately matched the captured

one. Results were gathered for 15 sequences and are summarised per subject in Figure

5.24. On the scale, strong preference for real footage was indicated at 5, and 4D video

textures at 1. Overall the output is judged to be approximately equal (3.3 ± 1.10) indi-

cating the plausibility of the synthetic character. Interestingly characters Infantry and

Knight are from datasets captured using studio setup B, and are at a lower resolutions

than the other two performances captured in studio setup A. The increased noise in the

optic flow field resulting from, and combined with, the lower resolution imagery from

studio B datasets may have led to a greater preference for real imagery in these cases

(3.60 ± 1.03). Nevertheless, the overall mean is approximately neutral (3.30) with a

high standard deviation (1.10) indicating little perceivable difference between synthetic

output and real imagery.

Finally we asked participants to indicate their opinion of character animation produced

by our system on a scale 1-5, where very artificial was indicated at 1, and very realistic

at 5. The overall score of 3.97 (± 0.69) further indicates a good level of aesthetic

plausibility in our synthesised output.
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Figure 5.24: Preference for 4DVT synthesis vs. Real Capture.

5.4.2 Discussion and Limitation

Results and evaluation presented show that the proposed 4DVT rendering achieves

visual quality of dynamic appearance similar to the captured video. Quality of the

4DVT renderings is dependent on a number of factors: high-res multiple view video

capture without motion blur; 4D video reconstruction and robust temporal alignment;

and accurate optical flow alignment in 4DVT rendering. Visual artefacts in either the

captured video or 4D reconstruction will degrade the quality of the final rendering.

Small residual errors from incorrect geometric reconstruction and alignment can be

observed in the Knight and Infantry character video due to the relatively complex

clothing deformations and lower resolution capture. Errors in the online optical flow

alignment will result in blur or ghosting artefacts.

In addition to improvements in the 4D video reconstruction pipeline, our approach

presents two main limitations. First, the computational overhead of the online optical

flow. Although this is a performed in real-time using state-of-the art GPU implementa-

tions [opea], it limits the rendering to a single character and requires high-performance

GPU. Pre-computation of the alignment is desirable, however, this is non-trivial due

to the difference in character pose and camera views in each motion. Alignment com-

putation in the 4DVT space is also non-trivial due to the discontinuities in texture.
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A possible solution is pre-alignment in a set of canonical rendered views, however this

may result in a loss of quality.

The second main limitation is the loading time and memory requirements for the multi-

view camera capture source frames. Our approach requires the original HD imagery

to be preloaded into the GPU memory in order to to compute 4DVT appearance at

run time. Average data transfer timing from an optical hard drive to GPU memory

for an HD image frame with PNG compression requires up to 0.25 sec., Therefore the

imagery of a 30 frames sequence captured in a 8 HD camera studio requires up to 60

seconds of loading time. Furthermore, current standard graphics cards are provided

with up to 6GB memory, heavily limiting the amount of frames that our approach can

handle. Methods for free-viewpoint texture compression are required to both speed-up

loading time and reduce memory requirements.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

State-of-the-art methods for 3D surface reconstruction enable the representation of

real-world captured motions using a temporally-coherent mesh structure that deforms

over time [SH07b, VBMP08, dST∗08, GSdA∗09, BHKH13], referred to as 4D video.

This thesis addresses the problem of exploiting 4D video datasets with the goal of

rendering novel video-realistic character animations that maintain the visual-realism of

the source videos and allow interactive control of the motion. In order to achieve this

goal, a number of problems have been tackled through the research presented in this

thesis.

Initial research focused on building a parametrised motion space by combining the un-

derlying mesh sequence geometry from multiple related motions to obtain interactive

control of the motion. Inspired by previous research on skeletal motion capture (Mo-

Cap) [RCB98], which synthesised novel skeletal data by interpolation of joint angles,

methods for 3D mesh sequence synthesis based on pose blending were investigated. In

particular, three problems are addressed in Chapter 3. First, sequence time-warping

to align the key events across multiple motions. This avoids artefacts such as foot

skating or unrealistic motions when blending different sequences. The second problem

addressed is 3D mesh blending. Linear interpolation of vertex positions is demon-

strated to be computationally efficient, but may result in unrealistic deformations or
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mesh collapse if there are significant differences in shape. Non-linear mesh editing

techniques based on differential representations that encode local surface shape enable

plausible surface deformations, however these methods are too computationally expen-

sive for real-time animation [Sor06, BS08]. Therefore, in order to achieve real-time

performance with realistic deformations, a hybrid non-linear blending approach is in-

troduced. The proposed method enables online approximation of the non-linear result

by combining linear vertex blending and a set of precomputed non-linear displacement

maps. Quantitative evaluation of the proposed hybrid approach shows an average ver-

tex displacement error of online interpolated meshes 3 mm. A number of figures and

animated video results (supplementary material) are included to qualitatively evaluate

the interactive parametric animation control achieved using the proposed approach.

These results show no perceptual difference between the originally reconstructed 4D

motions and the synthesised parametric sequences, thus concluding that the proposed

method maintains the realism of the source data. Finally, the third problem addressed

in Chapter 3 is the need for high-level parametric control to provide the user with mean-

ingful motion parameters, such as walking speed or length of the jump. This is solved

by learning a mapping function from the high-level user-specified motion parameters to

the corresponding blend weights required to generate the desired motion. This gives a

closed-form non-linear function to interactively control the animation using high-level

parameter. In summary, the combination of the methods proposed for the problems

addressed in Chapter 3 (sequence time-warping, mesh blending and high-level para-

metric control) enable for the first time interactive control of the motion of a virtual

character built from 4D performance capture sequences which are semantically similar

in motion. This allows the construction of 4D parametric motion spaces at runtime.

Resulting animations maintain the dynamic surface detail present in the source 4D

video sequences and allow real-time interactive motion control.

The hybrid approach for mesh interpolation presented in Chapter 3 requires the source

sequences to be similar in motion (for example, walk and jog) in order to achieve re-

alistic poses. With the objective of relaxing this requirement, Chapter 4 introduces a

representation and methods for 4D video geometry manipulation. Inspired by existing

approaches for skeletal MoCap [KGP02, HG07] and 3D mesh [HHS09] sequence con-
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catenation, a novel graph representation is introduced, referred to as a 4D Parametric

Motion Graphs (4DPMG), that allows transition between 4D parametric spaces for

multiple motion classes (i.e. walk and jump) by blending and concatenating captured

sequences. Each node in a 4DPMG is a parametric space created by the combination of

similar motions, as described in Chapter 3. The edges of the graph represent transitions

between two parametric spaces. Shape and motion similarity across all input frames are

computed and stored off-line in a matrix S. This enables online transitions between any

pair of parametrised meshes, ensuring both fast response (low transition latency) and

smooth transitions. Realistic online interpolation and seamless concatenation of 4D

video mesh sequences enable 4DPMG to achieve for the first time interactive and con-

tinuous motion control of a virtual character built from 4D performance capture. This

is demonstrated by quantitatively evaluating the latency and shape similarity of a large

set of randomly generated transitions. Qualitative evaluation is illustrated in a num-

ber of figures depicting different animations interactively created using 4DPMG. The

supplementary video includes a number of online synthesised animations that combine

walk, jog, different styles of jumps, reach and grab for 4 different characters. These

results demonstrate that the animations synthesised through 4DPMG maintain the

dynamic surface details of the originally reconstructed data. The proposed framework

overcomes the limitations of previous methods for 3D mesh animation, which were

based on sequence concatenation and do not allow interactive control of the motion

[SMH05, HHS09], by enabling both the construction of parametric spaces of meshes

and the computation of transitions between them at runtime.

Chapter 5 addresses the remaining challenge to achieve video-realistic rendering. As

the character motion is interactively controlled by combining multiple 4D videos, di-

rect rendering from the multi-view source videos will result in incorrect appearance

dynamics and visual artefacts such as blur and ghosting when images from multiple

motions are combined. Therefore, an approach is required to combine appearance

from multiple 4D videos to render dynamic appearance matching the character mo-

tion. A novel method for free-viewpoint appearance synthesis is introduced, referred

to as 4D Video Textures (4DVT), which combines the source 4D videos to synthesise

novel view-dependant textures that change the dynamic appearance as the underlying
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parametrised motion changes. Exploiting the known vertex-to-vertex correspondence

across multiple sequences, the parametrised 4D geometric proxy is first textured using

view-dependant rendering for each of the source multi-view videos. Optical flow is com-

puted between the rendered images for the desired view and used to align and warp the

dynamic appearance from 4D videos of different motions to obtain high-quality visual

output which matches the parametrically controlled motion. Finally, the transition

cost function introduced in the 4DPMG representation in Chapter 4 is extended by

the addition of an appearance term. This helps to find better transition candidates by

considering not only latency and shape similarity, but also appearance similarity. A

user study is performed to evaluate our approach for free-viewpoint texture alignment.

51 individuals were asked to compare and score a set of pairs of renders, each of them

containing an original 4D video frame and a synthesised 4DVT frame, depending on

their preference. Results confirmed that no significant perceptual difference existed

between source free-viewpoint rendering and synthesised 4DVT. Chapter 5 successfully

provides the last piece of the puzzle to enable interactive video-realistic character ani-

mation from 4D performance capture. The proposed method for motion synthesis and

viewpoint-dependant texture alignment advances the state-of-the-art for video-realistic

character animation by enabling real-time interactive control of character motion with

video-realistic rendering of dynamic appearance.

In summary, this thesis demonstrates the synthesis of video-realistic character anima-

tion by the combination and reutilisation of 4D video data. Results from chapters 3

and 4 demonstrate that a plausible geometric 3D-mesh proxy of the motion can be

generated by the online interpolation of captured mesh sequences. Novel techniques

for both mesh parametrisation and concatenation of parametric sequences have been

introduced. These techniques overcome limitations of previous approaches for charac-

ter animation, allowing for first time interactive flexible control of a virtual character

built from multi-camera capture. Furthermore, this work demonstrates that realistic

dynamic character appearance that matches a parametric mesh model can be provided

by the combination of synchronised multi-view imagery. The proposed method for

multi-view parametric texture alignment, referred to as 4D Video Textures, enables for

the first time the synthesis of video-realistic interactive characters built from 4D perfor-
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mance capture datasets. The results presented in this thesis represent a step forward in

the area of character animation, enabling interactive video-realistic rendering. Media

production industries, such as TV, film and video-gaming, could potentially benefit

from the methods presented in this thesis to generate digital doubles.

6.2 Future Work

The work presented in this thesis successfully achieved our initial goal: the creation of

video-realistic interactive character animation. However, a number of open problems

remain for future research.

Firstly, it is important to highlight that the quality of the presented results is limited by

the quality of the 4D video performance capture. Currently this includes visual artefacts

due to errors in reconstruction and temporal mesh sequence alignment. Improvements

in 4D video capture would result in improved quality in the rendered animations.

As discussed in Section 5.4.2, the main limitations of the 4D Video Textures approach

are related to the size of the input image data, which has a significant negative impact

in both the loading time and memory requirements of our framework. The current

implementation requires to pre-load all source multi-camera imagery (consisting in 8

to 10 HD images per frame, at 25 fps, in tested datasets) into GPU memory to enable

real-time texture retrieval for optical flow and texture synthesis computation. Recent

research [VH13] has investigated a novel layered representation for free-viewpoint ren-

dering that helps in alleviating the current memory overhead. This representation

has been combined with the 4DVT approach presented in this thesis, successfully im-

proving the performance of the framework. At the time of writing this document, a

paper describing this work is under submission. Furthermore, free-viewpoint rendering

has recently been demonstrated on mobile platforms [IVG∗13], bringing video-realistic

animations into low-performance devices such as mobile phones and tablets. Future

research could investigate the incorporation of these novel methods into the presented

framework to reduce the current requirement for high-performance machinery.

An off-the-shelf OpenCV [opea] optical flow implementation that exploits GPU compu-
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tational capabilities using NVIDIA CUDA [cud] is used to achieve online performance

of the 4DVT approach for texture alignment. This optical flow is the computational

bottleneck at runtime, restricting the current framework to a single character. In or-

der to relax the limitation, future research could investigate methods for optical flow

computation speed up or offline alignment of the appearance across multiple motions

to remove the need for online optical flow computation.

To fully exploit the video-realistic characters synthesised using the proposed 4DVT

approach, this thesis has presented a number of rendered results composited with stan-

dard 2D video footage. However, our approach does not currently incorporate any

colour correction or relighting step to manipulate the final illumination properties of

the texture, leading to possible unrealistic compositions due to differences between the

scene illumination and the captured character. Recent research on relightable human

performances [LWS∗13] could be used to extend our proposed 4DVT pipeline to address

this limitation. Similarly, reflectance estimation could be also incorporated.

Robust object interaction remains as an open problem. Limited object interaction is

demonstrated in this thesis, but it is still far from providing a reliable system. Future

research could investigate methods for 3D-mesh character interaction with both syn-

thetic objects and 4D video objects. Similarly, multi-character interaction can be also

investigated.



Appendix A

Proof Equation 4.5

This appendix provides a proof of the result defined in Equation 4.5. Let us consider two

parametrised meshes M s and Md with respective vectors of vertex coordinates Xs =∑
iw

s
iX

s
i and Xd =

∑
j w

d
jX

d
j where Xs

i ,Xd
j denote the vectors of vertex coordinates

for the temporally aligned input meshes M s
i , Md

j in each parametrised space and ws
i ,

wd
j denote their blending proportions. For conciseness and without loss of generality,

we omit the time component and assume weights have been normalised such that∑
iwi =

∑
j wj = 1.

Lemma Let us define a function d measuring the distance between pairs of meshes.

All meshes having being preliminary temporally aligned to guarantee a similar number

of vertices and connectivity, d can be defined as the squared Euclidean distance between

mesh vertices, namely:

d(Mi,Mj) = ‖Xi −Xj‖2. (A.1)

Note that for simplicity, we did not normalise by the number of vertices which remains

constant across all mesh sequences after alignment. The distance between any two

meshes M s and Md must satisfy the following property:

d(M s,Md) ≤
∑
i

∑
j

ws
iw

d
j d(M s

i ,M
d
j ). (A.2)
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Proof We start by expanding each term of Equation A.2. We have:

d(M s,Md) = ‖Xs −Xd‖2, (A.3)

= ‖
∑
i

ws
iX

s
i −

∑
j

wd
jX

d
j ‖2, (A.4)

= ‖
∑
i

ws
iX

s
i ‖2 − 2(

∑
i

ws
iX

s
i ) · (

∑
j

wd
jX

d
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j ‖2, (A.5)
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j ‖2, (A.6)
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(A.11)

The middle term on the right hand-side of Equations A.6 and A.11 remains identical.

In order to prove Equation (A.2) it is therefore sufficient to show that the following

two inequalities hold:

‖
∑
i

ws
iX

s
i ‖2 ≤

∑
i

ws
i ‖Xs

i ‖2, (A.12)

and

‖
∑
j

wd
jX

d
j ‖2 ≤

∑
j

wd
j ‖Xd

j ‖2. (A.13)

We carry out the proof for Equation A.12, the proof for Equation A.13 being identical.

We start by writing explicitly the squared norm of the vector of vertex coordinates as

a function of individual mesh coordinates:

‖
∑
i

ws
iX

s
i ‖2 =

∑
k

(
∑
i

ws
iX

s
i (k))2. (A.14)
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Noting that ws
i are by definition non negative, the previous equation can be written in

the form:

‖
∑
i

ws
iX

s
i ‖2 =

∑
k

(
∑
i

√
ws
i (
√
ws
iX

s
i (k)))2. (A.15)

Applying Cauchy-Schwarz inequality, we then obtain:

(
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and it follows from Equation A.15 that:
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i (
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Xs
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=
∑
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ws
i ‖Xs

i ‖2. (A.20)

This completes the proof. square

Result Let us now define a function s measuring the similarity between pairs of

meshes as a function of their distance d previously introduced:

s(Mi,Mj) = 1− d(Mi,Mj)

max(d(Mi,Mj))
. (A.21)

The similarity between any two meshes M s and Md must satisfy the following property:

s(M s,Md) ≥
∑
i

∑
j

ws
iw

d
j s(M

s
i ,M

d
j ). (A.22)

This provides a sufficient condition to identify similar meshes between two parametrised

space based on the similarity between pairs of input meshes defining each parametrised

space.
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Proof From Equation A.2 we have:
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From the definition of s, it follows that:

s(M s,Md) ≥
∑
i

∑
j

ws
iw

d
j s(M

s
i ,M

d
j ). (A.27)

This completes the proof. �

It should be noted that the result was stated in the case of shape similarity only. The

extension to shape and motion similarity is trivial since these are both expressed in

terms of a Euclidean distance between pairs of Nv-dimensional vectors.
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4DPMG OpenGL Environment

A C++ OpenGL [opeb] environment illustrated in Figure B.2 was built in order to

implement the 4D Parametric Motion Graph (4DPMG) approach presented Chapter

4. The application allows the user to load any 4DPMG defined in a customised XML

format. Once the data is loaded, the user can interactively control the character and

check the current configuration through an intuitive OpenGL graphic interface.

B.1 XML file format

The application loads the motion graph information such as number of nodes and

sequences embedded in each node from a customised XML file, using the following

tags:

<nodes>

Indicates that a new 4DPMG is created, and nodes will be defined.

<node>

Indicates that a new node in the current 4DPMG is created.

<sequences>

Defines the sequences used to create the current node.
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<sequence>

Defines a new sequence, pointing to the path where meshes are stored.

<offsets>

Indicates that the offsets of the sequences will be read.

<offset>

Defines path of the text file containing the local offsets of each mesh of the current

sequence. Used to locate the virtual character in the scenario.

<rotations>

Indicates that files containing the root rotations of each sequence will be read.

<rotation>

Defines the path to the text file containing the rotations of each mesh of the

current sequence. If the motion being read is a straight motion with no rotations,

it can be indicated with the keyword NO.

An example of an actual XML file used in this work is shown in Figure B.1. In this

particular case, a simple two-node 4DPMG is defined, each node containing two se-

quences with no root rotations in any of them. Notice how the proposed XML format

defines both the nodes and the sequences in each of them, but not the transition points,

which are found online depending on the current state of the graph, using the approach

introduced in Section 4.4.

B.2 C++ OpenGL GUI

An OpenGL [opeb] application shown in Figure B.2 has been developed in this work

to provide full animation control to the user. The user can interactively control the

character using the keyboard, and also visualise the current state of the 4DPMG, Figure

B.3a, and the current parametric state of the node, Figure B.3b. A menu bar located

on the top of the main window allows the configuration of visualisation options such

as camera location, lighting, shadows, etc. A second menu bar, located in the bottom

of the main screen, prints out live information regarding the application state, such as
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<?xml version="1.0"?>
<nodes >

<node>
<sequences >

<sequence >/media/seq_14_24_43_walk/</sequence >
<sequence >/media/seq_14_38_07_jog2/</sequence >

</sequences >
<offsets >

<offset >/media/seq_14_24_43_walk/offsets.txt</offset >
<offset >/media/seq_14_38_07_jog2/offsets.txt</offset >

</offsets >
<rotations >

<rotation >NO</rotation >
<rotation >NO</rotation >

</rotations >
</node>
<node>

<sequences >
<sequence >/media/seq_15_36_08_shortJump/</sequence >
<sequence >/media/seq_15_37_34_longJump/</sequence >

</sequences >
<offsets >

<offset >/media/seq_15_36_08_shortJumpoffsets.txt</offset >
<offset >/media/seq_15_37_34_longJump/offsets.txt</offset >

</offsets >
<rotations >

<rotation >NO</rotation >
<rotation >NO</rotation >

</rotations >
</node>

</nodes >

Figure B.1: Sample of the XML file format used to load a 4DPMG into the C++ OpenGL

application.

frame rate or latest options enabled. On the right-hand side of the window, a number

of extra options including save current animation, store current mesh, show previous

meshes, show travelled path and show wireframe can be enabled through checkboxes

and radial buttons.

The proposed OpenGL interface also incorporates input fields in which the user can

introduce parameters that are required for the 4DPMG approach. These options, all

previously discussed in Section 4.4, include depth of trellis, destination point in the

target node, parameters ∆t and ∆w, among others.
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Figure B.2: C++ OpenGL application implemented to test the approach introduced in this

chapter. On top, the main 3D scenario where the character is rendered. On bottom-left, the

current 4DPMG, shown in detail in Figure B.3a. Bottom-centre, in green, diagrams depicting

the current parametric state of the node, shown in detail in Figure B.3b.

(a) 4DPMG current state

visualisation. The active

node is highlighted in green.

(b) Visualisation of the current state of the parametric

space. Red and yellow lines depicts the current and pre-

vious configurations for all parameters wi.

Figure B.3: Diagrams used to visualise the state of the 4DPMG in real time.
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4DVT User Study

A user study was conducted in order to evaluate the user perception of the results

of the 4D Video Textures (4DVT) approach introduced in this thesis. A cohort of 51

non-expert participants undertook a public web-based survey to evaluate aesthetic pref-

erence for videos and stills generated by the 4DVT framework. Participants were asked

to compare 15 separate rendering pairs, each pair consisting in one 4DVT rendered

model and one source FVVR captured model. User had to rate each pair selecting one

of the following options:

1. Strongly prefer the left hand image.

2. Prefer the left hand image.

3. Neutral / no preference.

4. Prefer the right hand image.

5. Strongly prefer the right hand image.

Figures C.1 to C.6 illustrate examples of the render pairs evaluated by the users. Results

of the user study are discussed in Section 5.4.1.

145



146 Appendix C. 4DVT User Study

Figure C.1: User study pair #1
Figure C.2: User study pair #2

Figure C.3: User study pair #3 Figure C.4: User study pair #4

Figure C.5: User study pair #5 Figure C.6: User study pair #6
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vision-based human motion capture and analysis. Computer Vision and

Image Understanding 104, 2-3 (2006), 90–126.



Bibliography 157

[MK05] Mukai T., Kuriyama S.: Geostatistical Motion Interpolation. ACM

Transactions on Graphics (Proceedings of ACM SIGGRAPH) 24, 3

(2005), 1062–1070.

[MTG97] Moezzi S., Tai L.-C., Gerard P.: Virtual view generation for 3D

digital video. MultiMedia, IEEE 4, 1 (1997), 18–26.

[MTH00] Molina-Tanco L., Hilton A.: Realistic synthesis of novel human

movements from a database of motion capture examples. In In Workshop

on Human Motion (HUMO) (2000), pp. 137–142.

[opea] OpenCV (Open Computer Vision Library). http://www.opencv.org.

[opeb] OpenGL (Open Graphics Library). http://opengl.org.

[PB02] Pullen K., Bregler C.: Motion capture assisted animation: tex-

turing and synthesis. ACM Transactions on Graphics (Proceedings of

SIGGRAPH) 21, 3 (July 2002), 501–508.

[Per95] Perlin K.: Real time responsive animation with personality. IEEE

Transactions on Visualization and Computer Graphics 1, 1 (1995).

[PG96] Perlin K., Goldberg A.: Improv: a system for scripting interactive

actors in virtual worlds. In Proceedings of SIGGRAPH (New York, NY,

USA, 1996), ACM, pp. 205–216.

[Pop07] Poppe R.: Vision-based human motion analysis: An overview. Com-

puter Vision and Image Understanding 108, 1-2 (Oct. 2007), 4–18.

[Pot87] Potmesil M.: Generating octree models of 3d objects from their sil-

houettes in a sequence of images. Journal of Computer Vision, Graphics

and Image Processing 40, 1 (Oct. 1987), 1–29.

[PSS02] Park S. I., Shin H. J., Shin S. Y.: On-line locomotion genera-

tion based on motion blending. In Proceedings of the 2002 ACM SIG-

GRAPH/Eurographics symposium on Computer animation (New York,

NY, USA, 2002), SCA ’02, ACM, pp. 105–111.



158 Bibliography

[RCB98] Rose C., Cohen M., Bodenheimer B.: Verbs and adverbs: multidi-

mensional motion interpolation. IEEE Computer Graphics and Applica-

tions 18, 5 (1998), 32–40.

[RISC01] Rose III C. F., Sloan P.-P. J., Cohen M. F.: Artist-directed

inverse-kinematics using radial basis function interpolation. Computer

Graphics Forum (Proceedings of Eurographics) 20, 3 (2001), 239–250.

[Roh93] Rohr K.: Incremental recognition of pedestrians from image sequences.

In Proceedings of Computer Vision and Pattern Recognition, CVPR

(1993), pp. 8–13.

[SCD∗06] Seitz S., Curless B., Diebel J., Scharstein D., Szeliski R.: A

Comparison and Evaluation of Multi-View Stereo Reconstruction Al-

gorithms. In Conference on Computer Vision and Pattern Recognition

(CVPR) (2006), pp. 519—528.

[SD99] Seitz S., Dyer C.: Photorealistic Scene Reconstruction by Voxel Col-

oring. International Journal of Computer Vision 35, 2 (1999), 151–173.
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