
Surface-based Character
Animation

Dan Casas, Peng Huang and Adrian Hilton

16.1 Introduction

Current interactive character authoring pipelines commonly consist of two
steps: modelling and rigging of the character model which may be based
on photographic reference or high-resolution 3D laser scans, as discussed in
chapters 13 and 14; and move-trees based on a database of skeletal motion
capture together with inverse dynamic and kinematic solvers for secondary
motion. Motion graphs [Kovar et al. 02] and parametrized skeletal motion
spaces [Heck and Gleicher 07] enable representation and real-time interac-
tive control of character movement from motion capture data. Authoring
interactive characters requires a high-level of manual editing to achieve
acceptable realism of appearance and movement.

Chapters 11, ?? and 12 introduced recent advances in performance cap-
ture [Starck and Hilton 07b,Gall et al. 09b] that have demonstrated highly
realistic reconstruction of motion using a temporally coherent mesh rep-
resentation across sequences, referred to as 4D video. This allows replay
of the captured motions with free-viewpoint rendering and compositing
of performance in post-production whilst maintaining photo-realism. Cap-
tured sequences have been exploited for retargeting surface motion to other
characters [Baran et al. 09] and analysis of cloth motion to simulate novel
animations through manipulation of skeletal motion and simulation of sec-
ondary cloth movement [Stoll et al. 10]. However, these approaches do not
enable authoring of interactive characters which allow continuous move-
ment control and reproduction of secondary motion for clothing and hair.

This chapter presents a framework for authoring interactive characters
based on actor performance capture. A Surface Motion Graph representa-
tion [Huang et al. 09] is presented to seamlessly link captured sequences,
allowing authoring of novel animations from user specified space-time con-
straints. A 4D Parametric Motion Graph representation [Casas et al. 13] is
described for real-time interactive animation from a database of captured
4D video sequences. Finally, a rendering approach referred to as 4D Video
Textures [Casas et al. 14] is introduced to synthesize realistic appearance
for parametric characters.

235

236

16.2 Surface Motion Graphs

As discussed in chapters 11, ?? and 12, multiple view reconstruction of hu-
man performance as a 3D video has advanced to the stage of capturing de-
tailed non-rigid dynamic surface shape and appearance of the body, cloth-
ing and hair during motion [Starck and Hilton 07b,de Aguiar et al. 08a,Vla-
sic et al. 08a,Gall et al. 09b]. Full 3D video scene capture holds the poten-
tial to create truly realistic synthetic animated content by reproducing the
dynamics of shape and appearance currently missing from marker-based
skeletal motion capture. There is considerable interest in the reuse of cap-
tured 3D video sequences for animation production. For conventional skele-
tal motion capture (MoCap), Motion Graph techniques [Molina-Tanco and
Hilton 00,Kovar et al. 02,Arikan and Forsyth 02,Lee et al. 02] are widely
used in 3D character animation production for games and film. In this sec-
tion, we present a framework that automatically constructs motion graphs
for 3D video sequences, called Surface Motion Graphs [Huang et al. 09],
and synthesizes novel animations to best satisfy user specified constraints
on movement, location and timing. Figure 16.1 shows an example novel
animation sequence produced using a Surface Motion Graph with path
optimization to satisfy the user constraints.

Figure 16.1: An example of synthesized 3D character animation (10 tran-
sitions). Target: Stand#1→Hit#45, 10 metres, 250 frames.

Character Animation Pipeline

A frame-to-frame similarity matrix is first computed between all frames
across all 3D video motion sequences in the 3D video database. Poten-
tial transitions between motions are automatically identified by minimis-
ing the total dissimilarity of transition frames. The idea behind this is
to minimize the discontinuity that may be introduced by transitions when
transferring within or across different motions. A Surface Motion Graph
is then constructed using these transitions. Once the graph structure is
computed, a path on the graph is optimized according to user input such
as key-frames, global timing and distance constraints. Finally, concatena-
tive motion synthesis and rendering is performed to produce video-realistic
character animation.

16. Surface-based Character Animation 237

Graph Representation

A Surface Motion Graph represents possible inter- and intra-sequence tran-
sitions for 3D video sequences, analogous to motion graphs [Kovar et al. 02]
for skeletal motion capture sequences. It is defined as a directed graph:
each node denotes a 3D video sequence; each edge denotes one or mul-
tiple possible transitions. A path on the graph then provides a possible
motion synthesis. Figure 16.2 shows an example of Surface Motion Graph
constructed from multiple 3D video motion sequences for the actor shown.
The method to automatically identify transitions is described in Section
16.2.

Figure 16.2: An example of Surface Motion Graph for a game character.

Graph Optimization

Graph Optimization is performed to find the path through the Surface Mo-
tion Graph which best satisfies the required animation constraints. Inter-
mediate key-frames selected by the user provide hard constraints defining
the desired movement. Start and end key-frame locations specify the target
traverse distance dV and the target traverse time tV chosen by the user.
Both target traverse distance and time are used as soft constraints, which
define global constraints on the animation. The cost function for graph
path optimization to satisfy the constraints is described as follows:

Combined Cost. The cost function for a path P through the surface motion
graph between a pair of key frames is formulated as the combination of
three costs, Ctran representing cost of transition between motions, soft
constraints on distance Cdist and time Ctime,

C(P) = Ctran(P) + wdist · Cdist(P) + wtime · Ctime(P). (16.1)

where wdist and wtime are weights for distance and time constraints, re-
spectively. Throughout this work we set wdist = 1/0.3 and wtime = 1/10
which equates the penalty for an error of 30cm in distance with an error of
10 frames in time [Arikan and Forsyth 02].

238

Distance Cost. Cdist(P) for a path P with Nf frames on the Surface Motion
Graph is computed as the absolute difference between the user-specified
target distance dV and the total travelled distance dist(P), given the 3D
frames on the path of P is {M(tf)},f = [0, Nf − 1],

Cdist(P) = |dist(P)− dV |. (16.2)

dist(P) =

Nf−2
∑

f=0

|centre(M(tf+1))− centre(M(tf))|. (16.3)

where function centre() computes the projection of the centroid of the mesh
onto the ground.

Timing Cost. Ctime(P) for a path P with Nf frames is evaluated as the
absolute difference between the user-specified target time tV and the total
travelled time time(P),

Ctime(P) = |time(P)− tV |. (16.4)

time(P) = Nf ·∆t. (16.5)

where ∆t denotes the frame rate (e.g. 25 frames per second).

Transition Cost. Ctran(P) for a path P is defined as the sum of distortion
for all transitions between concatenated 3D video segments. If we denote
the index for concatenated 3D video segments as {fi}, i = 0, ..., Nf−1, the
total transition cost Ctran(P) is computed as

Ctran(P) =

NP−2∑

i=0

D(Sfi→fi+1
). (16.6)

whereNP denotes the total number of transitions on path P andD(Sfi→fi+1)
(Section 16.2 Equation 16.9) the distortion for transition from motion se-
quence Sfi to motion sequence Sfi+1

.

Path Optimization. Finally, the optimal path P opt for a given set of con-
straints is found to minimize the combined cost C(P), as defined in Equa-
tion 16.1,

P opt = argmin
P

C(P). (16.7)

An efficient approach using Interger Programming to search for the optimal
path that best satisfies the user-defined soft constraints can be found in
[Huang et al. 09].

16. Surface-based Character Animation 239

Transitions

A transition of the Surface Motion Graphs Si→j is defined as a seam-
less concatenation of frames from two 3D video sequences Si and Sj . If
we denote m,n as the central indices for the overlap, the length of over-
lap as 2L + 1, the blending weight for the kth transition frame is com-
puted as α(k) = k+L

2L , k ∈ [−L,L]. The kth transition frame Mi→j(tk) =
G(Mi(tm+k),Mj(tn+k), α(k)) will be generated by a non-linear 3D mesh
blend [Tejera et al. 13]. The distortion measure of a transition frame
Mi→j(tk) is then defined as the weighted 3D shape dissimilarity (Equa-
tion 16.11) between frame Mi(t) and Mj(t),

d(Mi→j(tk)) = α′(k) · c(Mi(tm+k),Mj(tn+k)). (16.8)

where α′(k) = min(1 − α(k), α(k)). The total distortion for a transition
sequence Si→j is then computed as the sum of the distortion of all transition
frames,

D(Si→j) =
L∑

k=−L

d(Mi→j(tk)). (16.9)

The optimal transition Sopt
i→j is then defined to minimize the distortion cost,

Sopt
i→j = arg min

Si→j

D(Si→j). (16.10)

3D Shape Similarity. To measure the similarity of the 3D mesh geometry
within each frame of the 3D video database, Shape histograms are used.
This has previously demonstrated to give good performance for measuring
non-rigid deformable shape similarity for 3D video sequences of human
performance [Huang et al. 10]. The volumetric shape histogram H(M)
represents the spatial occupancy of the bins for a given mesh M . We
define a measure of shape dissimilarity between two meshes Mr and Ms

by optimising for the maximum overlap between their corresponding radial
bins with respect to rotation about the vertical axis.

cshape(Mr,Ms) = min
φ
‖H(Mr)−H(Ms, φ)‖. (16.11)

The volumetric shape histogram H(M) partitions the space which contains
a 3D object into disjoint cells and counts the number of occupied voxels
falling in each bins to construct a histogram as a signature for this 3D
object. The space is represented in a spherical coordinate system (R, θ, φ)
around the centre of mass. An example of a 3D Shape Histogram is shown
in Figure 16.3.

240

Figure 16.3: A 3D Shape Histogram of 5 shells, 10 bins for θ and 20 bins
for φ together with the space partitions on the 5th shell is illustrated.

A frame-to-frame static similarity matrix C = [cr,s]N×N , where N de-
notes the total number of frames, between all frames across all 3D video
sequences in the 3D video database is pre-computed according to Eq.16.11,

cr,s = cshape(Mr,Ms). (16.12)

Adaptive Temporal Filtering Each transition is determined by a tuple (m,n,L).
The global optimization is then performed by testing all possible tuples
(m,n,L) and so finding optimal arguments for the minimum,

(mopt, nopt, Lopt) = arg min
m,n,L

L∑

k=−L

α′(k) · cm+k,n+k. (16.13)

This equates to performing an adaptive temporal filtering with window size
2L + 1 and weighting α′(k) on the pre-computed static similarity matrix
C. The process is computationally efficient. To obtain multiple transitions
between a pair of sequences, top T best transitions are preserved. T is
pre-determined by the user. An example of the frame-to-frame 3D shape
similarity matrix and transition frames (marked in yellow) evaluated using
a temporal window L = 4 and T = 4 are shown in Figure 16.4.

Figure 16.4: Shape similarity matrix and identified transitions for motions
Jog, Jog2Walk, Walk and Walk2Jog (left to right and top to bottom) .

16. Surface-based Character Animation 241

16.3 4D Parametric Motion Graphs

Parametric Control of Mesh Sequences

Parametric animation requires the combination of multiple captured mesh
sequences to allow continuous real-time control of movement with intuitive
high-level parameters such as speed and direction for walking or height
and distance for jumping. Methods for parametrization of skeletal motion
capture have previously been introduced [Kovar et al. 02, Rose et al. 98]
based on linear interpolation of joint angles. Analogously, as described by
Casas et al. [Casas et al. 12b], parametric animation of mesh sequences can
be achieved by interpolation between mesh sequences.

This requires temporal alignment of frames across multiple 3D video
mesh sequences, such that all frames have a consistent mesh connectivity
and vertices correspond to the same surface point over time. The set of
temporally aligned 3D video sequences are referred to as 4D video [Budd
et al. 13b], see Chapter 11 for further details.

Given a set ofN temporally aligned 4D mesh sequencesM = {Mi(t)}Ni=1

of the same or similar motions (e.g. high jump and low jump) we are inter-
ested in parametric control by blending between multiple mesh sequences

MB(t,w) = b(M,w) (16.14)

where w = {wi}Ni=1, wi ∈ [0..1] is a vector of weights for each input motion
and b() is a mesh sequence blending function. We require this function
to perform at online rates, ≥ 25 Hz, and the resulting mesh MB(t,w) to
maintain the captured non-rigid dynamics of the source {Mi(t)}Ni=1 meshes.

Three steps are required to achieve high-level parametric control from
mesh sequences: time-warping to align the mesh sequences; non-linear mesh
blending of the time-warped sequences; and mapping from low level blend-
ing weights to high-level parameters (speed, direction, etc.).

Sequence time-warping: Each 4D video sequence of related motions (e.g.
walk and run) is likely to differ in length and location of corresponding
events, for example foot-floor contact. Thus, the first step for mesh se-
quence blending is to establish the frame-to-frame correspondence between
different sequences. Mesh sequences Mi(t) are temporally aligned by a
continuous time-warp function t = f(tu) [Witkin and Popovic 95] which
aligns corresponding poses of related motions prior to blending such that
t ∈ [0, 1] for all sequences. Temporal sequence alignment helps in prevent-
ing undesirable artefacts such as foot skating in the final blended sequence.

Real-time Mesh Blending: Previous research in 3D mesh deformation con-
cluded that linear-methods for mesh blending, despite being computation-

242

Figure 16.5: Mesh sequence parametrization results [Casas et al. 12b]. In
each row, two input motions are interpolated, generating in-between para-
metric motion control. Top row, speed control; middle row, jump length
control; bottom row, jump height control.

ally efficient, may result in unrealistic results [Lewis et al. 00]. Non-
linear methods based on differential surface representation [Botsch and
Sorkine 08] overcome this limitation, achieving plausible surface deforma-
tion. However, the price paid is a significant increase in processing re-
quirements, hindering their use for online applications. Piece-wise linear
blending methods [Casas et al. 13] have demonstrated successful results
for online applications by precomputing a set of non-linear interpolated
meshes. At run time, any requested parametric mesh is computed by lin-
early blending the relevant offline interpolated meshes. This results in an
approximation to the robust non-linear blending approach with a compu-
tational cost similar to the linear approach.

High-level parametric control: High-level parametric control is achieved by
learning a mapping function f(w) between the blend weights w and the
user specified motion parameters p. A mapping function w = f−1(p) is
learnt from the user-specified parameter to the corresponding blend weights
required to generate the desired motion because the blend weights w do
not provide an intuitive parametrization of the motion. Motion parameters
p are high-level user specified controls for a particular class of motions
such as speed and direction for walk or run, and height and distance for a
jump. As proposed by Ahmed et al. [Ahmed et al. 01], the inverse mapping
function f−1() from parameters to weights can be constructed by a discrete
sampling of the weight space w and evaluation of the corresponding motion
parameters p.

Figure 16.5 presents three examples of mesh sequence parametriza-

16. Surface-based Character Animation 243

Figure 16.6: Illustration of a 4D Parametric Motion Graph. 10 differ-
ent motions are combined to create a 4-node 4DPMG, enabling speed,
direction, jump and reach parametric control. Each node represents an
independent parametric space, edges represent links between them.

tion, enabling control of speed, jump length and jump height, respectively.
Change in colour represents change in parametrization. In each example,
two motions are interpolated to generate in-between poses, enabling inter-
active parametric control of the motion.

4D Parametric Motion Graphs

Given a dataset of mesh sequences for different movements with a consistent
mesh structure at every frame, referred to as 4D video, parametric control
of the motion can be achieved by combining multiple sequences of related
motions, as discussed in Section 16.3. This gives a parametrized motion
space controlled by high-level parameters (for example walk speed/direc-
tion or jump height/length). However, parametric motions can only be
synthesized by combining semantically similar sequences (i.e: walk and
run), whereas the interpolation of non-similar sequences, such as jump and
walk, would fail in generating a human-realistic motion. Therefore, in or-
der to fully exploit a dataset of 4D video sequences, methods for linking
motions performing different actions are required.

An approach referred to as 4D Parametric Motion Graph, 4DPMG,
[Casas et al. 12a,Casas et al. 13] tackles this problem by employing a graph
representation that encapsulates a number of independent mesh parametric
spaces as well as links between them, to enable real-time parametric control

244

Figure 16.7: Diagram depicting the process of finding a transition between
two parametric meshes, Ms(ts,ws) and Md(td,wd), here arbitrarily se-
lected for illustration purposes, and marked with a purple star inside their
corresponding parametric spaces. Two trellis, depicted in red in each para-
metric space, are built to find the sets of transitions mesh candidates.
Optimal transition path Popt, also arbitrarily selected in this diagram, is
highlighted in green over the trellis.

of the motion. Figure 16.6 presents an illustration of a 4DPMG created
using 10 different motions used to create 4 parametric spaces.

The nodes of a 4DPMG are created by the combination of similar mo-
tions. Each node can be considered as an independent parametric motion
space created as described in Section 16.3. The problem is then how to
find transitions between parametric motions at run time. Natural tran-
sitions require a similar shape and non-rigid motion between the linked
meshes, otherwise the resulting animation will not look realistic due to
sudden change of the character’s speed and pose. In the literature, para-
metric transitions for skeletal data have been approached by precomputing
a discrete set of good transitions, evaluating the similarity in pose and
motion between pairs of the linked motion spaces [Heck and Gleicher 07].
However, precomputation of a fixed set of transition points may result in a
relatively high latency due to the delay between the current pose and the
next pre-computed good-transition pose.

In a 4DPMG, to evaluate the best transition path Popt between two
parametric points, a cost function representing the trade-off between sim-
ilarity in mesh shape and motion at transition, ES(P), and the latency,
EL(P), or delay in transition for a path P , is optimized

Popt = arg min
P∈Ω

(ES(P) + λEL(P)) (16.15)

where λ defines the trade-off between transition similarity and latency.
The transition path P is optimized over a trellis of frames starting at the

16. Surface-based Character Animation 245

Figure 16.8: An interactively controlled character generated using 4DPMG,
combining walk, jog, left turn, right turn, short jump and long jump mo-
tions. Grey meshes indicate transitions between parametric spaces.

current frame Ms(ts,ws) in the source motion space and a trellis ending
at the target frame Md(td,wd) in the target motion space, where Ms and
M t are interpolated meshes as defined in Equation 16.14. The trellis is
sampled forward in time at discrete intervals in time ∆t and parameters
∆w up to a maximum depth lmax in the source space. Similarly from the
target frame a trellis is constructed going backward in time. This defines a
set of candidate paths P ∈ Ω with transition points between each possible
pair of frames in the source and target trellis.

For a path P , the latency cost EL(P) is measured as the number of
frames in the path P between the source and target frames. Transition
similarity cost ES(P) is measured as the similarity in mesh shape and
motion at the transition point between the source and target motion space
for the path P . Online mesh similarity computation is prohibitely expensive
for large sets of transition candidates. To overcome this, Casas et al. [Casas
et al. 12a] proposed a method based on precomputing a set of similarities
between the input data, and interpolate them at runtime to approximate
any requested parametric pose similarity.

Figure 16.8 presents a parametric character interactively synthesized
combining 10 different motions. Qualitative and quantitative results using
4DPMG have demonstrated [Casas et al. 12a] realistic transitions between
parametric mesh sequences, enabling interactive parametric control of a
3D-mesh character.

4D Video Textures

The 4D Parametric Motion Graph allows real-time interactive control of a
character’s motion to produce novel animation sequences. However, this

246

is missing the realistic appearance of the source video for free-viewpoint
rendering. To achieve video-realistic rendering of the dynamic appearance
for 4D parametrically controlled animation a representation referred to as
4D Video Textures, 4DVT, is used [Casas et al. 14].

With 4DVT, appearance for an intermediate motion is produced by
aligning and combining multiple-view video from the input examples to
produce plausible video-realistic dynamic appearance corresponding to the
modified movement. As the character motion changes, so does the dynamic
appearance of the rendered view reflecting the change in motion.

A 4D video F (t) = {V (t),M(t)} combines multiple view video se-
quences V (t) = {Ic(t)}Cc=1 with C camera views with a 4D proxy of the
dynamic surface shape represented as a mesh sequenceM(t), where vertices
correspond to the same surface point over time. This form of representation
has previously been employed for free-viewpoint video rendering of dynamic
scenes [Carranza et al. 03,Starck and Hilton 07b,de Aguiar et al. 08a,Vlasic
et al. 08a]. Free-viewpoint video renders a novel video sequence I(t, v) for
a viewpoint v from the set of input videos V (t) using the mesh sequence
M(t) as a geometric proxy [Buehler et al. 01b]. The objective of free-
viewpoint video is to maintain the visual realism of the source video whilst
providing the flexibility to interactively control the viewpoint. However,
free-viewpoint video is limited to the replay of the captured performance
and does not allow for any change in scene motion.

4DVT overcomes this limitation [Casas et al. 14]. Given a set of motion
control parameters w and viewpoint v, we aim to render a novel video
I(t,w, v) :

I(t,w, v) = h(F1(t), ..., FN (t),w, v), (16.16)

where h(.) is a function which combines the source 4D videos according to
the specified motion parameters w and viewpoint v. The rendered video
I(t,w, v) should preserve the visual quality of both the scene appearance
and motion.

A two-stage approach is used to synthesize the final I(t,w, v) video.
First, a 4D shape proxyM(t,w) is computed by the combination of the in-
put mesh sequences using the approach presented in Section 16.3. Finally,
exploiting the known vertex-to-vertex correspondence across sequences,
view-dependent rendering of the source videos Vi(t) is perform using the
same 4D shape proxy I(t,w, v). The output video I(t,w, v) is generated
based on real-time alignment of the rendered images.

Qualitative and quantitative results have demonstrated that 4DVT suc-
cesfully enables the creation of video characters with interactive video and
motion control and free-viewpoint rendering which maintain the visual
quality and dynamic appearance of the source videos [Casas et al. 14].

16. Surface-based Character Animation 247

Figure 16.9: A character animated using 4D Video Textures jumping over
obstacles of varying length. Notice the texture detail in face and clothing.

Intermediate motions are rendered with plausible dynamic appearance for
the whole-body, cloth wrinkles and hair motion. Figure 16.9 presents an
animation interactively created combining 4D Video Textures and 4D Para-
metric Motion Graph, a character combines different styles of jumps and
walks to avoid the obstacles, and finally performs a sharp left turn.

16.4 Summary

Recent research on multi-camera performance capture has enabled detailed
reconstruction of motions as 3D mesh sequences with a temporally coher-
ent geometry. This chapter has presented a set of methods to allow the
reutilization of reconstructed motions, with the goal of authoring novel
character animation while maintaining the realism of the captured data.

A representation referred to as Surface Motion Graph has been intro-
duced to synthesize novel animations that satisfy a set of user defined
constraints on movement, location and timing. A graph optimization tech-
nique is used to find transitions between originally captured sequences that
best satisfy the animation constraints. A 3D shape similarity descriptor is
used to evaluate the transitions between different motions.

A parametric approach referred to as 4D Parametric Motion Graph has
been presented to synthesize novel interactive character animation by con-
catenating and blending a set of mesh sequences. This enables real-time
control of a parametric character that preserves the realism of the cap-
tured geometry. Video-realistic appearance for novel parametric motions
is generated at run-time using 4D Video Textures, a rendering technique
that combines multi-camera captured footage to synthesize textures that
changes with the motion while maintaining the realism of the captured
video.

